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A1 Without loss of generality, assume d1 ≤ d2 ≤ ·· · ≤ d12.
If d2

i+2 < d2
i + d2

i+1 for some i ≤ 10, then di,di+1,di+2
are the side lengths of an acute triangle, since in this
case d2

i < d2
i+1+d2

i+2 and d2
i+1 < d2

i +d2
i+2 as well. Thus

we may assume d2
i+2 ≥ d2

i + d2
i+1 for all i. But then

by induction, d2
i ≥ Fid2

1 for all i, where Fi is the i-th
Fibonacci number (with F1 = F2 = 1): i = 1 is clear, i =
2 follows from d2 ≥ d1, and the induction step follows
from the assumed inequality. Setting i = 12 now gives
d2

12 ≥ 144d2
1 , contradicting d1 > 1 and d12 < 12.

Remark. A materially equivalent problem appeared on
the 2012 USA Mathematical Olympiad and USA Junior
Mathematical Olympiad.

A2 Write d for a∗ c = b∗ c ∈ S. For some e ∈ S, d ∗ e = a,
and thus for f = c ∗ e, a ∗ f = a ∗ c ∗ e = d ∗ e = a and
b∗ f = b∗ c∗ e = d ∗ e = a. Let g ∈ S satisfy g∗a = b;
then b = g∗a = g∗ (a∗ f ) = (g∗a)∗ f = b∗ f = a, as
desired.

Remark. With slightly more work, one can show that
S forms an abelian group with the operation ∗.

A3 We will prove that f (x) =
√

1− x2 for all x ∈ [−1,1].
Define g : (−1,1)→ R by g(x) = f (x)/

√
1− x2. Plug-

ging f (x) = g(x)
√

1− x2 into equation (i) and simplify-
ing yields

g(x) = g
(

x2

2− x2

)
(1)

for all x ∈ (−1,1). Now fix x ∈ (−1,1) and define a

sequence {an}∞
n=1 by a1 = x and an+1 = a2

n
2−a2

n
. Then

an ∈ (−1,1) and thus |an+1| ≤ |an|2 for all n. It follows
that {|an|} is a decreasing sequence with |an| ≤ |x|n for
all n, and so limn→∞ an = 0. Since g(an) = g(x) for
all n by (1) and g is continuous at 0, we conclude that
g(x) = g(0) = f (0) = 1. This holds for all x ∈ (−1,1)
and thus for x = ±1 as well by continuity. The result
follows.

Remark. As pointed out by Noam Elkies, condition
(iii) is unnecessary. However, one can use it to derive
a slightly different solution by running the recursion in
the opposite direction.

A4 We begin with an easy lemma.

Lemma. Let S be a finite set of integers with the following
property: for all a,b,c ∈ S with a ≤ b ≤ c, we also have a+
c−b ∈ S. Then S is an arithmetic progression.

Proof. We may assume #S ≥ 3, as otherwise S is trivially an
arithmetic progression. Let a1,a2 be the smallest and second-
smallest elements of S, respectively, and put d = a2−a1. Let
m be the smallest positive integer such that a1 +md /∈ S. Sup-
pose that there exists an integer n contained in S but not in
{a1,a1 + d, . . . ,a1 +(m− 1)d}, and choose the least such n.
By the hypothesis applied with (a,b,c) = (a1,a2,n), we see
that n−d also has the property, a contradiction.

We now return to the original problem. By dividing
B,q,r by gcd(q,r) if necessary, we may reduce to the
case where gcd(q,r) = 1. We may assume #S ≥ 3, as
otherwise S is trivially an arithmetic progression. Let
a1,a2,a3 be any three distinct elements of S, labeled
so that a1 < a2 < a3, and write rai = bi + miq with
bi,mi ∈ Z and bi ∈ B. Note that b1,b2,b3 must also be
distinct, so the differences b2− b1,b3− b1,b3− b2 are
all nonzero; consequently, two of them have the same
sign. If bi−b j and bk−bl have the same sign, then we
must have

(ai−a j)(bk−bl) = (bi−b j)(ak−al)

because both sides are of the same sign, of absolute
value less than q, and congruent to each other modulo
q. In other words, the points (a1,b1),(a2,b2),(a3,b3)
in R2 are collinear. It follows that a4 = a1 + a3− a2
also belongs to S (by taking b4 = b1 + b3− b2), so S
satisfies the conditions of the lemma. It is therefore an
arithmetic progression.

Reinterpretations. One can also interpret this argu-
ment geometrically using cross products (suggested by
Noam Elkies), or directly in terms of congruences (sug-
gested by Karl Mahlburg).

Remark. The problem phrasing is somewhat confus-
ing: to say that “S is the intersection of [the interval]
A with an arithmetic progression” is the same thing as
saying that “S is the empty set or an arithmetic progres-
sion” unless it is implied that arithmetic progressions
are necessarily infinite. Under that interpretation, how-
ever, the problem becomes false; for instance, for

q = 5,r = 1,A = [1,3],B = [0,2],

we have

T = {· · · ,0,1,2,5,6,7, . . .},S = {1,2}.

A5 The pairs (p,n) with the specified property are those
pairs with n = 1, together with the single pair (2,2).
We first check that these do work. For n = 1, it is clear
that taking v = (1) and M = (0) has the desired effect.
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For (p,n) = (2,2), we take v =
(
0 1

)
and M =

(
1 1
0 1

)
and then observe that

G(k)(0) =
(

0
0

)
,

(
0
1

)
,

(
1
0

)
,

(
1
1

)
, k = 0,1,2,3.

We next check that no other pairs work, keeping in mind
that the desired condition means that G acts on Fn

p as a
cyclic permutation. Assume by way of contradiction
that (p,n) has the desired property but does not appear
in our list. In particular, we have n≥ 2.

Let I be the n× n identity matrix over Fp. Decom-
pose Fn

p as a direct sum of two subspaces V,W such that
M− I is nilpotent on V and invertible on W . Suppose
that W 6= 0. Split v as v1+v2 with v1 ∈V , v2 ∈W . Since
M− I is invertible on W , there exists a unique w ∈W
such that (M− I)w = −v2. Then G(k)(w)−w ∈ V for
all nonnegative integers k. Let k be the least positive in-
teger such that G(k)(w) = w; then k is at most the cardi-
nality of V , which is strictly less than pn because W 6= 0.
This gives a contradiction and thus forces W = 0.

In other words, the matrix N = M− I is nilpotent; con-
sequently, Nn = 0. For any positive integer k, we have

G(k)(0) = v+Mv+ · · ·+Mk−1v

=
k−1

∑
j=0

n−1

∑
i=0

(
j
i

)
Niv

=
n−1

∑
i=0

(
k

i+1

)
Niv.

If n ≥ 2 and (p,n) 6= (2,2), then pn−1 > n and so
Gk(0) = 0 for k = pn−1 (because all of the binomial
coefficients are divisible by p). This contradiction com-
pletes the proof.

A6 First solution. Yes, f (x,y) must be identically 0. We
proceed using a series of lemmas.

Lemma 1. Let R be a rectangular region of area 1 with
corners A,B,C,D labeled in counterclockwise order. Then
f (A)+ f (C) = f (B)+ f (D).

Proof. We may choose coordinates so that for some c > 0,

A = (0,0),B = (c,0),C = (c,1/c),D = (0,1/c).

Define the functions

g(x,y) =
∫ x+c

x
f (t,y)dt

h(x,y) =
∫ y

0
g(x,u)du.

For any x,y ∈ R,

h(x,y+1/c)−h(x,y) =
∫ x+c

x

∫ y+1/c

y
f (t,u)dt du = 0

by hypothesis, so h(x,y+1/c) = h(x,y). By the fundamental
theorem of calculus, we may differentiate both sides of this
identity with respect to y to deduce that g(x,y+1/c) = g(x,y).
Differentiating this new identity with respect to x yields the
desired equality.

Lemma 2. Let C be a circle whose diameter d is at least
√

2,
and let AB and A′B′ be two diameters of C. Then f (A) +
f (B) = f (A′)+ f (B′).

Proof. By continuity, it suffices to check the case where α =
arcsin 2

d2 is an irrational multiple of 2π . Let β be the ra-
dian measure of the counterclockwise arc from A to A′. By
Lemma 1, the claim holds when β = α . By induction, the
claim also holds when β ≡ nα (mod 2π) for any positive in-
teger n. Since α is an irrational multiple of 2π , the positive
multiples of α fill out a dense subset of the real numbers mod-
ulo 2π , so by continuity the claim holds for all β .

Lemma 3. Let R be a rectangular region of arbitrary (posi-
tive) area with corners A,B,C,D labeled in counterclockwise
order. Then f (A)+ f (C) = f (B)+ f (D).

Proof. Let EF be a segment such that AEFD and BEFC
are rectangles whose diagonals have length at least

√
2. By

Lemma 2,

f (A)+ f (F) = f (D)+ f (E)
f (C)+ f (E) = f (B)+ f (F),

yielding the claim.

Lemma 4. The restriction of f to any straight line is constant.

Proof. We may choose coordinates so that the line in question
is the x-axis. Define the function g(y) by

g(y) = f (0,y)− f (0,0).

By Lemma 3, for all x ∈ R,

f (x,y) = f (x,0)+g(y).

For any c > 0, by the original hypothesis we have

0 =
∫ x+c

x

∫ y+1/c

y
f (u,v)dudv

=
∫ x+c

x

∫ y+1/c

y
( f (u,0)+g(v))dudv

=
1
c

∫ x+c

x
f (u,0)du+ c

∫ y+1/c

y
g(v)dv.

In particular, the function F(x) =
∫ x+c

x f (u,0)du is constant.
By the fundamental theorem of calculus, we may differentiate
to conclude that f (x+ c,0) = f (x,0) for all x ∈ R. Since c
was also arbitrary, we deduce the claim.
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To complete the proof, note that since any two points in
R2 are joined by a straight line, Lemma 4 implies that f
is constant. This constant equals the integral of f over
any rectangular region of area 1, and hence must be 0
as desired.

Second solution (by Eric Larson, communicated by
Noam Elkies). In this solution, we fix coordinates and
assume only that the double integral vanishes on each
rectangular region of area 1 with sides parallel to the
coordinate axes, and still conclude that f must be iden-
tically 0.

Lemma. Let R be a rectangular region of area 1 with sides
parallel to the coordinate axes. Then the averages of f over
any two adjacent sides of R are equal.

Proof. Without loss of generality, we may take R to have cor-
ners (0,0),(c,0),(c,1/c),(0,1/c) and consider the two sides
adjacent to (c,1/c). Differentiate the equality

0 =
∫ x+c

x

∫ y+1/c

y
f (u,v)dudv

with respect to c to obtain

0 =
∫ y+1/c

y
f (x+ c,v)dv− 1

c2

∫ x+c

x
f (u,y+1/c)du.

Rearranging yields

c
∫ y+1/c

y
f (x+ c,v)dv =

1
c

∫ x+c

x
f (u,y+1/c)du,

which asserts the desired result.

Returning to the original problem, given any c > 0, we
can tile the plane with rectangles of area 1 whose ver-
tices lie in the lattice {(mc,n/c) : m,n ∈ Z}. By re-
peated application of the lemma, we deduce that for any
positive integer n,∫ c

0
f (u,0)du =

∫ (n+1)c

nc
f (u,0)du.

Replacing c with c/n, we obtain∫ c/n

0
f (u,0)du =

∫ c+1/n

c
f (u,0)du.

Fixing c and taking the limit as n→ ∞ yields f (0,0) =
f (c,0). By similar reasoning, f is constant on any hor-
izontal line and on any vertical line, and as in the first
solution the constant value is forced to equal 0.

Third solution. (by Sergei Artamoshin) We retain the
weaker hypothesis of the second solution. Assume by
way of contradiction that f is not identically zero.

We first exhibit a vertical segment PQ with f (P) > 0
and f (Q)< 0. It cannot be the case that f (P)≤ 0 for all

P, as otherwise the vanishing of the zero over any rect-
angle would force f to vanish identically. By continuity,
there must exist an open disc U such that f (P) > 0 for
all P ∈ U . Choose a rectangle R of area 1 with sides
parallel to the coordinate axes with one horizontal edge
contained in U . Since the integral of f over R is zero,
there must exist a point Q ∈ R such that f (Q)< 0. Take
P to be the vertical projection of Q onto the edge of R
contained in U .

By translating coordinates, we may assume that P =
(0,0) and Q = (0,a) for some a > 0. For s sufficiently
small, f is positive on the square of side length 2s cen-
tered at P, which we call S, and negative on the square
of side length 2s centered at Q, which we call S′. Since
the ratio 2s/(1−4s2) tends to 0 as s does, we can choose
s so that 2s/(1−4s2) = a/n for some positive integer n.

For i ∈ Z, let Ai be the rectangle{
(x,y) : s≤ x≤ s+

1−4s2

2s
,

−s+ i
2s

1−4s2 ≤ y≤ s+ i
2s

1−4s2

}
and let Bi be the rectangle{

(x,y) : s≤ x≤ s+
1−4s2

2s
,

s+ i
2s

1−4s2 ≤ y≤−s+(i+1)
2s

1−4s2

}
.

Then for all i ∈ Z,

S∪A0,An∪S′,Ai∪Bi,Bi∪Ai+1

are all rectangles of area 1 with sides parallel to the co-
ordinate axes, so the integral over f over each of these
rectangles is zero. Since the integral over S is positive,
the integral over A0 must be negative; by induction, for
all i ∈ Z the integral over Ai is negative and the integral
over Bi is positive. But this forces the integral over S′

to be positive whereas f is negative everywhere on S′, a
contradiction.

B1 Each of the following functions belongs to S for the rea-
sons indicated.

f (x),g(x) given
ln(x+1) (i)
ln( f (x)+1), ln(g(x)+1) (ii) plus two previous lines
ln( f (x)+1)+ ln(g(x)+1) (ii)
ex−1 (i)
( f (x)+1)(g(x)+1)−1 (ii) plus two previous lines
f (x)g(x)+ f (x)+g(x) previous line
f (x)+g(x) (ii) plus first line
f (x)g(x) (iii) plus two previous lines

B2 Fix a face F of the polyhedron with area A. Suppose F
is completely covered by balls of radii r1, . . . ,rn whose
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volumes sum to V . Then on one hand,

n

∑
i=1

4
3

πr3
i =V.

On the other hand, the intersection of a ball of radius r
with the plane containing F is a disc of radius at most r,
which covers a piece of F of area at most πr2; therefore

n

∑
i=1

πr2
i ≥ A.

By writing n as ∑
n
i=1 1 and applying Hölder’s inequality,

we obtain

nV 2 ≥

(
n

∑
i=1

(
4
3

πr3
i

)2/3
)3

≥ 16
9π

A3.

Consequently, any value of c(P) less than 16
9π

A3 works.

B3 The answer is yes. We first note that for any collection
of m days with 1 ≤ m ≤ 2n− 1, there are at least m
distinct teams that won a game on at least one of those
days. If not, then any of the teams that lost games on
all of those days must in particular have lost to m other
teams, a contradiction.

If we now construct a bipartite graph whose vertices are
the 2n teams and the 2n−1 days, with an edge linking
a day to a team if that team won their game on that day,
then any collection of m days is connected to a total of at
least m teams. It follows from Hall’s Marriage Theorem
that one can match the 2n−1 days with 2n−1 distinct
teams that won on their respective days, as desired.

B4 First solution. We will show that the answer is yes.
First note that for all x >−1, ex ≥ 1+ x and thus

x≥ log(1+ x). (2)

We next claim that an > log(n+ 1) (and in particular
that an− logn > 0) for all n, by induction on n. For
n = 0 this follows from a0 = 1. Now suppose that
an > log(n+ 1), and define f (x) = x + e−x, which is
an increasing function in x > 0; then

an+1 = f (an)> f (log(n+1))
= log(n+1)+1/(n+1)≥ log(n+2),

where the last inequality is (2) with x = 1/(n+1). This
completes the induction step.

It follows that an− logn is a decreasing function in n:
we have

(an+1− log(n+1))− (an− logn)

= e−an + log(n/(n+1))
< 1/(n+1)+ log(n/(n+1))≤ 0,

where the final inequality is (2) with x = −1/(n+ 1).
Thus {an− logn}∞

n=0 is a decreasing sequence of posi-
tive numbers, and so it has a limit as n→ ∞.

Second solution. Put bn = ean , so that bn+1 = bne1/bn .
In terms of the bn, the problem is to prove that bn/n has
a limit as n→ ∞; we will show that the limit is in fact
equal to 1.

Expanding e1/bn as a Taylor series in 1/bn, we have

bn+1 = bn +1+Rn

where 0≤ Rn ≤ c/bn for some absolute constant c > 0.
By writing

bn = n+ e+
n−1

∑
i=0

Ri,

we see first that bn ≥ n+ e. We then see that

0≤ bn

n
−1

≤ e
n
+

n−1

∑
i=0

Ri

n

≤ e
n
+

n−1

∑
i=0

c
nbi

≤ e
n
+

n−1

∑
i=0

c
n(i+ e)

≤ e
n
+

c logn
n

.

It follows that bn/n→ 1 as n→ ∞.

Remark. This problem is an example of the general
principle that one can often predict the asymptotic be-
havior of a recursive sequence by studying solutions of
a sufficiently similar-looking differential equation. In
this case, we start with the equation an+1− an = e−an ,
then replace an with a function y(x) and replace the dif-
ference an+1−an with the derivative y′(x) to obtain the
differential equation y′ = e−y, which indeed has the so-
lution y = logx.

B5 Define the function

f (x) = sup
s∈R
{x logg1(s)+ logg2(s)}.

As a function of x, f is the supremum of a collection of
affine functions, so it is convex. The function e f (x) is
then also convex, as may be checked directly from the
definition: for x1,x2 ∈ R and t ∈ [0,1], by the weighted
AM-GM inequality

te f (x1)+(1− t)e f (x2) ≥ et f (x1)+(1−t) f (x2)

≥ e f (tx1+(1−t)x2).

For each t ∈ R, draw a supporting line to the graph of
e f (x) at x = t; it has the form y = xh1(t)+h2(t) for some
h1(t),h2(t) ∈ R. For all x, we then have

sup
s∈R
{g1(s)xg2(s)} ≥ xh1(t)+h2(t)
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with equality for x = t. This proves the desired equality
(including the fact that the maximum on the right side
is achieved).

Remark. This problem demonstrates an example of du-
ality for convex functions.

B6 First solution. Since fixed points do not affect the sig-
nature of a permutation, we may ignore the residue class
of 0 and consider π as a permutation on the nonzero
residue classes modulo p. These form a cyclic group of
order p− 1, so the signature of π is also the signature
of multiplication by 3 as a permutation σ of the residue
classes modulo p−1. If we identify these classes with
the integers 0, . . . , p− 2, then the signature equals the
parity of the number of inversions: these are the pairs
(i, j) with 0≤ i < j≤ p−2 for which σ(i)> σ( j). We
may write

σ(i) = 3i− (p−1)
⌊

3i
p−1

⌋
from which we see that (i, j) cannot be an inversion un-
less b 3 j

p−1c > b
3i

p−1c. In particular, we only obtain in-
versions when i < 2(p−1)/3.

If i < (p− 1)/3, the elements j of {0, . . . , p− 2} for
which (i, j) is an inversion correspond to the elements
of {0, . . . ,3i} which are not multiples of 3, which are
2i in number. This contributes a total of 0+ 2+ · · ·+
2(p−2)/3 = (p−2)(p+1)/9 inversions.

If (p − 1)/3 < i < 2(p − 1)/3, the elements j of
{0, . . . , p−2} for which (i, j) is an inversion correspond
to the elements of {0, . . . ,3i− p + 1} congruent to 1
modulo 3, which are (3i− p+ 2)/3 = i− (p− 2)/3 in
number. This contributes a total of 1+ · · ·+(p−2)/3=
(p−2)(p+1)/18 inversions.

Summing up, the total number of inversions is (p−
2)(p + 1)/6, which is even if and only if p ≡ 3
(mod 4). This proves the claim.

Second solution (by Noam Elkies). Recall that the sign
of π (which is +1 if π is even and −1 if π is odd) can
be computed as

∏
0≤x<y<p

π(x)−π(y)
x− y

(because composing π with a transposition changes the
sign of the product). Reducing modulo p, we get a con-
gruence with

∏
0≤x<y<p

x3− y3

x− y
= ∏

0≤x<y<p
(x2 + xy+ y2).

It thus suffices to count the number of times each pos-
sible value of x2 + xy+ y2 occurs. Each nonzero value
c modulo p occurs p+1 times as x2 + xy+ y2 with 0≤
x,y < p and hence (p+ χ(c/3))/2 times with 0 ≤ x <
y < p, where χ denotes the quadratic character modulo

p. Since p ≡ 2 (mod 3), by the law of quadratic reci-
procity we have χ(−3) = +1, so χ(c/3) = χ(−c). It
thus remains to evaluate the product ∏

p−1
c=1 c(p+χ(−c))/2

modulo p.

If p≡ 3 (mod 4), this is easy: each factor is a quadratic
residue (this is clear if c is a residue, and otherwise
χ(−c) = +1 so p+ χ(−c) is divisible by 4) and −1
is not, so we must get +1 modulo p.

If p≡ 1 (mod 4), we must do more work: we choose a
primitive root g modulo p and rewrite the product as

p−2

∏
i=0

gi(p+(−1)i)/2.

The sum of the exponents, split into sums over i odd
and i even, gives

(p−3)/2

∑
j=0

(
j(p+1)+

(2 j+1)(p−1)
2

)
which simplifies to

(p−3)(p−1)(p+1)
8

+
(p−1)3

8
=

p−1
2

(
p2−1

2
− p
)
.

Hence the product we are trying to evaluate is congruent
to g(p−1)/2 ≡−1 modulo p.

Third solution (by Mark van Hoeij). We compute the
parity of π as the parity of the number of cycles of even
length in the cycle decomposition of π . For x a nonzero
residue class modulo p of multiplicative order d, the
elements of the orbit of x under π also have order d
(because d divides p− 1 and hence is coprime to 3).
Since the group of nonzero residue classes modulo p
is cyclic of order p− 1, the elements of order d fall
into ϕ(d)/ f (d) orbits under π , where ϕ is the Euler
phi function and f (d) is the multiplicative order of 3
modulo d. The parity of π is then the parity of the sum
of ϕ(d)/ f (d) over all divisors d of p−1 for which f (d)
is even.

If d is odd, then ϕ(d)/ f (d) = ϕ(2d)/ f (2d), so the
summands corresponding to d and 2d coincide. It thus
suffices to consider those d divisible by 4. If p ≡ 3
(mod 4), then there are no such summands, so the sum
is trivially even.

If p ≡ 1 (mod 4), then d = 4 contributes a summand
of ϕ(4)/ f (4) = 2/2 = 1. For each d which is a larger
multiple of 4, the group (Z/dZ)∗ is isomorphic to the
product of Z/2Z with another group of even order,
so the maximal power of 2 dividing f (d) is strictly
smaller than the maximal power of 2 dividing d. Hence
ϕ(d)/ f (d) is even, and so the overall sum is odd.

Remark. Note that the second proof uses quadratic
reciprocity, whereas the first and third proofs are sim-
ilar to several classical proofs of quadratic reciprocity.
Abhinav Kumar notes that the problem itself is a spe-
cial case of the Duke-Hopkins quadratic reciprocity
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law for abelian groups (Quadratic reciprocity in a finite
group, Amer. Math. Monthly 112 (2005), 251–256; see
also http://math.uga.edu/~pete/morequadrec.

pdf).


