The 74th William Lowell Putnam Mathematical Competition
 Saturday, December 7, 2013

A1 Recall that a regular icosahedron is a convex polyhedron having 12 vertices and 20 faces; the faces are congruent equilateral triangles. On each face of a regular icosahedron is written a nonnegative integer such that the sum of all 20 integers is 39 . Show that there are two faces that share a vertex and have the same integer written on them.

A2 Let S be the set of all positive integers that are not perfect squares. For n in S, consider choices of integers $a_{1}, a_{2}, \ldots, a_{r}$ such that $n<a_{1}<a_{2}<\cdots<a_{r}$ and $n \cdot a_{1} \cdot a_{2} \cdots a_{r}$ is a perfect square, and let $f(n)$ be the minumum of a_{r} over all such choices. For example, $2 \cdot 3 \cdot 6$ is a perfect square, while $2 \cdot 3,2 \cdot 4,2 \cdot 5,2 \cdot 3 \cdot 4$, $2 \cdot 3 \cdot 5,2 \cdot 4 \cdot 5$, and $2 \cdot 3 \cdot 4 \cdot 5$ are not, and so $f(2)=6$. Show that the function f from S to the integers is one-to-one.

A3 Suppose that the real numbers $a_{0}, a_{1}, \ldots, a_{n}$ and x, with $0<x<1$, satisfy

$$
\frac{a_{0}}{1-x}+\frac{a_{1}}{1-x^{2}}+\cdots+\frac{a_{n}}{1-x^{n+1}}=0
$$

Prove that there exists a real number y with $0<y<1$ such that

$$
a_{0}+a_{1} y+\cdots+a_{n} y^{n}=0
$$

A4 A finite collection of digits 0 and 1 is written around a circle. An arc of length $L \geq 0$ consists of L consecutive digits around the circle. For each arc w, let $Z(w)$ and $N(w)$ denote the number of 0 's in w and the number of 1 's in w, respectively. Assume that $\left|Z(w)-Z\left(w^{\prime}\right)\right| \leq 1$ for any two arcs w, w^{\prime} of the same length. Suppose that some arcs w_{1}, \ldots, w_{k} have the property that

$$
Z=\frac{1}{k} \sum_{j=1}^{k} Z\left(w_{j}\right) \text { and } N=\frac{1}{k} \sum_{j=1}^{k} N\left(w_{j}\right)
$$

are both integers. Prove that there exists an arc w with $Z(w)=Z$ and $N(w)=N$.

A5 For $m \geq 3$, a list of $\binom{m}{3}$ real numbers $a_{i j k}(1 \leq i \ll j<$ $k \leq m)$ is said to be area definite for \mathbb{R}^{n} if the inequality

$$
\sum_{1 \leq i<j<k \leq m} a_{i j k} \cdot \operatorname{Area}\left(\Delta A_{i} A_{j} A_{k}\right) \geq 0
$$

holds for every choice of m points A_{1}, \ldots, A_{m} in \mathbb{R}^{n}. For example, the list of four numbers $a_{123}=a_{124}=a_{134}=$ $1, a_{234}=-1$ is area definite for \mathbb{R}^{2}. Prove that if a list of $\binom{m}{3}$ numbers is area definite for \mathbb{R}^{2}, then it is area definite for \mathbb{R}^{3}.
A6 Define a function $w: \mathbb{Z} \times \mathbb{Z} \rightarrow \mathbb{Z}$ as follows. For $|a|,|b| \leq 2$, let $w(a, b)$ be as in the table shown; otherwise, let $w(a, b)=0$.

\[

\]

For every finite subset S of $\mathbb{Z} \times \mathbb{Z}$, define

$$
A(S)=\sum_{\left(\mathbf{s}, \mathbf{s}^{\prime}\right) \in S \times S} w\left(\mathbf{s}-\mathbf{s}^{\prime}\right)
$$

Prove that if S is any finite nonempty subset of $\mathbb{Z} \times \mathbb{Z}$, then $A(S)>0$. (For example, if $S=$ $\{(0,1),(0,2),(2,0),(3,1)\}$, then the terms in $A(S)$ are $12,12,12,12,4,4,0,0,0,0,-1,-1,-2,-2,-4,-4$.

B1 For positive integers n, let the numbers $c(n)$ be determined by the rules $c(1)=1, c(2 n)=c(n)$, and $c(2 n+1)=(-1)^{n} c(n)$. Find the value of

$$
\sum_{n=1}^{2013} c(n) c(n+2)
$$

B2 Let $C=\bigcup_{N=1}^{\infty} C_{N}$, where C_{N} denotes the set of those 'cosine polynomials' of the form

$$
f(x)=1+\sum_{n=1}^{N} a_{n} \cos (2 \pi n x)
$$

for which:
(i) $f(x) \geq 0$ for all real x, and
(ii) $a_{n}=0$ whenever n is a multiple of 3 .

Determine the maximum value of $f(0)$ as f ranges through C, and prove that this maximum is attained.

B3 Let \mathscr{P} be a nonempty collection of subsets of $\{1, \ldots, n\}$ such that:
(i) if $S, S^{\prime} \in \mathscr{P}$, then $S \cup S^{\prime} \in \mathscr{P}$ and $S \cap S^{\prime} \in \mathscr{P}$, and
(ii) if $S \in \mathscr{P}$ and $S \neq \emptyset$, then there is a subset $T \subset S$ such that $T \in \mathscr{P}$ and T contains exactly one fewer element than S.

Suppose that $f: \mathscr{P} \rightarrow \mathbb{R}$ is a function such that $f(\emptyset)=0$ and

$$
f\left(S \cup S^{\prime}\right)=f(S)+f\left(S^{\prime}\right)-f\left(S \cap S^{\prime}\right) \text { for all } S, S^{\prime} \in \mathscr{P}
$$

Must there exist real numbers f_{1}, \ldots, f_{n} such that

$$
f(S)=\sum_{i \in S} f_{i}
$$

for every $S \in \mathscr{P}$?

B4 For any continuous real-valued function f defined on the interval $[0,1]$, let

$$
\begin{gathered}
\mu(f)=\int_{0}^{1} f(x) d x, \operatorname{Var}(f)=\int_{0}^{1}(f(x)-\mu(f))^{2} d x \\
M(f)=\max _{0 \leq x \leq 1}|f(x)|
\end{gathered}
$$

Show that if f and g are continuous real-valued functions defined on the interval $[0,1]$, then

$$
\operatorname{Var}(f g) \leq 2 \operatorname{Var}(f) M(g)^{2}+2 \operatorname{Var}(g) M(f)^{2}
$$

B5 Let $X=\{1,2, \ldots, n\}$, and let $k \in X$. Show that there are exactly $k \cdot n^{n-1}$ functions $f: X \rightarrow X$ such that for every $x \in X$ there is a $j \geq 0$ such that $f^{(j)}(x) \leq k$. [Here $f^{(j)}$ denotes the $j^{\text {th }}$ iterate of f, so that $f^{(0)}(x)=x$ and $\left.f^{(j+1)}(x)=f\left(f^{(j)}(x)\right).\right]$

B6 Let $n \geq 1$ be an odd integer. Alice and Bob play the following game, taking alternating turns, with Alice play-
ing first. The playing area consists of n spaces, arranged in a line. Initially all spaces are empty. At each turn, a player either

- places a stone in an empty space, or
- removes a stone from a nonempty space s, places a stone in the nearest empty space to the left of s (if such a space exists), and places a stone in the nearest empty space to the right of s (if such a space exists).

Furthermore, a move is permitted only if the resulting position has not occurred previously in the game. A player loses if he or she is unable to move. Assuming that both players play optimally throughout the game, what moves may Alice make on her first turn?

