## The 75th William Lowell Putnam Mathematical Competition Saturday, December 6, 2014

A1 Prove that every nonzero coefficient of the Taylor series of

$$
\left(1-x+x^{2}\right) e^{x}
$$

about $x=0$ is a rational number whose numerator (in lowest terms) is either 1 or a prime number.

A2 Let $A$ be the $n \times n$ matrix whose entry in the $i$-th row and $j$-th column is

$$
\frac{1}{\min (i, j)}
$$

for $1 \leq i, j \leq n$. Compute $\operatorname{det}(A)$.
A3 Let $a_{0}=5 / 2$ and $a_{k}=a_{k-1}^{2}-2$ for $k \geq 1$. Compute

$$
\prod_{k=0}^{\infty}\left(1-\frac{1}{a_{k}}\right)
$$

in closed form.
A4 Suppose $X$ is a random variable that takes on only nonnegative integer values, with $E[X]=1, E\left[X^{2}\right]=2$, and $E\left[X^{3}\right]=5$. (Here $E[y]$ denotes the expectation of the random variable $Y$.) Determine the smallest possible value of the probability of the event $X=0$.

A5 Let

$$
P_{n}(x)=1+2 x+3 x^{2}+\cdots+n x^{n-1} .
$$

Prove that the polynomials $P_{j}(x)$ and $P_{k}(x)$ are relatively prime for all positive integers $j$ and $k$ with $j \neq k$.

A6 Let $n$ be a positive integer. What is the largest $k$ for which there exist $n \times n$ matrices $M_{1}, \ldots, M_{k}$ and $N_{1}, \ldots, N_{k}$ with real entries such that for all $i$ and $j$, the matrix product $M_{i} N_{j}$ has a zero entry somewhere on its diagonal if and only if $i \neq j$ ?

B1 A base 10 over-expansion of a positive integer $N$ is an expression of the form

$$
N=d_{k} 10^{k}+d_{k-1} 10^{k-1}+\cdots+d_{0} 10^{0}
$$

with $d_{k} \neq 0$ and $d_{i} \in\{0,1,2, \ldots, 10\}$ for all $i$. For instance, the integer $N=10$ has two base 10 overexpansions: $10=10 \cdot 10^{0}$ and the usual base 10 expansion $10=1 \cdot 10^{1}+0 \cdot 10^{0}$. Which positive integers have a unique base 10 over-expansion?

B2 Suppose that $f$ is a function on the interval $[1,3]$ such that $-1 \leq f(x) \leq 1$ for all $x$ and $\int_{1}^{3} f(x) d x=0$. How large can $\int_{1}^{3} \frac{f(x)}{x} d x$ be?
B3 Let $A$ be an $m \times n$ matrix with rational entries. Suppose that there are at least $m+n$ distinct prime numbers among the absolute values of the entries of $A$. Show that the rank of $A$ is at least 2 .

B4 Show that for each positive integer $n$, all the roots of the polynomial

$$
\sum_{k=0}^{n} 2^{k(n-k)} x^{k}
$$

are real numbers.
B5 In the 75th annual Putnam Games, participants compete at mathematical games. Patniss and Keeta play a game in which they take turns choosing an element from the group of invertible $n \times n$ matrices with entries in the field $\mathbb{Z} / p \mathbb{Z}$ of integers modulo $p$, where $n$ is a fixed positive integer and $p$ is a fixed prime number. The rules of the game are:
(1) A player cannot choose an element that has been chosen by either player on any previous turn.
(2) A player can only choose an element that commutes with all previously chosen elements.
(3) A player who cannot choose an element on his/her turn loses the game.

Patniss takes the first turn. Which player has a winning strategy? (Your answer may depend on $n$ and $p$.)

B6 Let $f:[0,1] \rightarrow \mathbb{R}$ be a function for which there exists a constant $K>0$ such that $|f(x)-f(y)| \leq K|x-y|$ for all $x, y \in[0,1]$. Suppose also that for each rational number $r \in[0,1]$, there exist integers $a$ and $b$ such that $f(r)=$ $a+b r$. Prove that there exist finitely many intervals $I_{1}, \ldots, I_{n}$ such that $f$ is a linear function on each $I_{i}$ and $[0,1]=\bigcup_{i=1}^{n} I_{i}$.

