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A1 The answer is j = 8. First suppose that j satisfies the
given condition. For p(x) = x j, we have p( j)(x) = j!
and thus j! is divisible by 2016. Since 2016 is divisible
by 25 and 7! is not, it follows that j≥ 8. Conversely, we
claim that j = 8 works. Indeed, let p(x) = ∑

n
m=0 amxm

be a polynomial with integer coefficients; then if k is
any integer,

p(8)(k) =
n

∑
m=8

m(m−1) · · ·(m−7)amkm−8

=
n

∑
m=8

(
m
8

)
8!amkm−8

is divisible by 8! = 20 ·2016, and so p(8)(k) is divisible
by 2016.

Remark: By the same reasoning, if one replaces 2016
in the problem by a general integer N, then the min-
imum value of j is the smallest one for which N di-
vides j!. This can be deduced from Pólya’s observation
that the set of integer-valued polynomials is the free Z-
module generated by the binomial polynomials

(x
n

)
for

n = 0,1, . . . . That statement can be extended to polyno-
mials evaluated on a subset of a Dedekind domain using
Bhargava’s method of P-orderings; we do not know if
this generalization can be adapted to the analogue of
this problem, where one considers polynomials whose
j-th derivatives take integral values on a prescribed sub-
set.

A2 The answer is 3+
√

5
2 . Note that for m > n+ 1, both bi-

nomial coefficients are nonzero and their ratio is(
m

n−1

)
/

(
m−1

n

)
=

m!n!(m−n−1)!
(m−1)!(n−1)!(m−n+1)!

=
mn

(m−n+1)(m−n)
.

Thus the condition
( m

n−1

)
>
(m−1

n

)
is equivalent to (m−

n+ 1)(m− n)−mn < 0. The left hand side of this last
inequality is a quadratic function of m with roots

α(n) =
3n−1+

√
5n2−2n+1
2

,

β (n) =
3n−1−

√
5n2−2n+1
2

,

both of which are real since 5n2−2n+1 = 4n2 +(n−
1)2 > 0; it follows that m satisfies the given inequality
if and only if β (n)< m < α(n). (Note in particular that
since α(n)−β (n) =

√
5n2−2n+1> 1, there is always

some integer m between β (n) and α(n).)

We conclude that M(n) is the greatest integer strictly
less than α(n), and thus that α(n)−1≤M(n)< α(n).
Now

lim
n→∞

α(n)
n

= lim
n→∞

3− 1
n +
√

5− 2
n +

1
n2

2
=

3+
√

5
2

and similarly limn→∞
α(n)−1

n = 3+
√

5
2 , and so by the

sandwich theorem, limn→∞
M(n)

n = 3+
√

5
2 .

A3 The given functional equation, along with the same
equation but with x replaced by x−1

x and 1
1−x respec-

tively, yields:

f (x)+ f
(

1− 1
x

)
= tan−1(x)

f
(

x−1
x

)
+ f

(
1

1− x

)
= tan−1

(
x−1

x

)
f
(

1
1− x

)
+ f (x) = tan−1

(
1

1− x

)
.

Adding the first and third equations and subtracting the
second gives:

2 f (x) = tan−1(x)+ tan−1
(

1
1− x

)
− tan−1

(
x−1

x

)
.

Now tan−1(t)+ tan−1(1/t) is equal to π/2 if t > 0 and
−π/2 if t < 0; it follows that for x ∈ (0,1),

2( f (x)+ f (1− x)) =
(
tan−1(x)+ tan−1(1/x)

)
+

(
tan−1(1− x)+ tan−1

(
1

1− x

))
−
(

tan−1
(

x−1
x

)
+ tan−1

(
x

x−1

))
=

π

2
+

π

2
+

π

2

=
3π

2
.

Thus

4
∫ 1

0
f (x)dx = 2

∫ 1

0
( f (x)+ f (1− x))dx =

3π

2

and finally
∫ 1

0 f (x)dx = 3π

8 .

Remark: Once one has the formula for f (x), one can
also (with some effort) directly evaluate the integral of
each summand over [0,1] to obtain the same result. A
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much cleaner variant of this approach (suggested on
AoPS, user henrikjb) is to write

tan−1(x) =
∫ y

0

1
1+ y2 dy

and do a change of variable on the resulting double in-
tegral.

A4 The minimum number of tiles is mn. To see that this
many are required, label the squares (i, j) with 1 ≤ i ≤
2m−1 and 1≤ j≤ 2n−1, and for each square with i, j
both odd, color the square red; then no tile can cover
more than one red square, and there are mn red squares.

It remains to show that we can cover any (2m− 1)×
(2n− 1) rectangle with mn tiles when m,n ≥ 4. First
note that we can tile any 2× (2k− 1) rectangle with
k ≥ 3 by k tiles: one of the first type, then k− 2 of the
second type, and finally one of the first type. Thus if we
can cover a 7×7 square with 16 tiles, then we can do the
general (2m−1)× (2n−1) rectangle, by decomposing
this rectangle into a 7×7 square in the lower left corner,
along with m− 4 (2× 7) rectangles to the right of the
square, and n−4 ((2m−1)×2) rectangles above, and
tiling each of these rectangles separately, for a total of
16+4(m−4)+m(n−4) = mn tiles.

To cover the 7×7 square, note that the tiling must con-
sist of 15 tiles of the first type and 1 of the second type,
and that any 2×3 rectangle can be covered using 2 tiles
of the first type. We may thus construct a suitable cov-
ering by covering all but the center square with eight
2× 3 rectangles, in such a way that we can attach the
center square to one of these rectangles to get a shape
that can be covered by two tiles. An example of such
a covering, with the remaining 2× 3 rectangles left in-
tact for visual clarity, is depicted below. (Many other
solutions are possible.)

A5 First solution: For s∈G and r a positive integer, define
a representation of s of length r to be a sequence of

values m1,n1, . . . ,mr,nr ∈ {−1,1} for which

s = gm1hn1 · · ·gmr hnr .

We first check that every s ∈ G admits at least one rep-
resentation of some length; this is equivalent to saying
that the set S of s ∈ G which admit representations of
some length is equal to G itself. Since S is closed un-
der the group operation and G is finite, S is also closed
under formation of inverses and contains the identity
element; that is, S is a subgroup of G. In particular, S
contains not only gh but also its inverse h−1g−1; since
S also contains g−1h, we deduce that S contains g−2.
Since g is of odd order in G, g−2 is also a generator of
the cyclic subgroup containing g; it follows that g ∈ S
and hence h ∈ S. Since we assumed that g,h generate
G, we now conclude that S = G, as claimed.

To complete the proof, we must now check that for each
s∈G, the smallest possible length of a representation of
s cannot exceed |G|. Suppose the contrary, and let

s = gm1hn1 · · ·gmr hnr

be a representation of the smallest possible length. Set

si = gm1hn1 · · ·gmihni (i = 0, . . . ,r−1),

interpreting s0 as e; since r > |G| by hypothesis, by the
pigeonhole principle there must exist indices 0 ≤ i <
j ≤ r−1 such that si = s j. Then

s = gm1hn1 · · ·gmihnigm j+1hn j+1 · · ·gmr hnr

is another representation of s of length strictly less than
r, a contradiction.

Remark: If one considers s1, . . . ,sr instead of
s0, . . . ,sr−1, then the case s = e must be handled sep-
arately: otherwise, one might end up with a represen-
tation of length 0 which is disallowed by the problem
statement.

Reinterpretation: Note that the elements
gh,gh−1,g−1h,g−1h−1 generate gh(g−1h)−1 = g2

and hence all of G (again using the hypothesis that g
has odd order, as above). Form the Cayley digraph on
the set G, i.e., the directed graph with an edge from s1 to
s2 whenever s2 = s1∗ for ∗ ∈ {gh,gh−1,g−1h,g−1h−1}.
Since G is finite, this digraph is strongly connected:
there exists at least one path from any vertex to any
other vertex (traveling all edges in the correct direc-
tion). The shortest such path cannot repeat any vertices
(except the starting and ending vertices in case they
coincide), and so has length at most |G|.
Second solution: For r a positive integer, let Sr be the
set of s ∈ G which admit a representation of length at
most r (terminology as in the first solution); obviously
Sr ⊆ Sr+1. We will show that Sr 6= Sr+1 unless Sr = G;
this will imply by induction on r that #Sr ≥min{r, |G|}
and hence that Sr = G for some r ≤ |G|.
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Suppose that Sr = Sr+1. Then the map s 7→ sgh de-
fines an injective map Sr → Sr+1 = Sr, so Sr is closed
under right multiplication by gh. By the same to-
ken, Sr is closed under right multiplication by each of
gh−1,g−1h,g−1h−1. Since gh,gh−1,g−1h,g−1h−1 gen-
erate G as in the first solution, it follows that Sr = G as
claimed.since r+1≤ |G|, we are done in this case also.

Remark: The condition on the order of g is needed
to rule out the case where G admits a (necessarily nor-
mal) subgroup H of index 2 not containing either g or
h; in this case, all products of the indicated form be-
long to H. On the other hand, if one assumes that both
g and h have odd order, then one can say a bit more:
there exists some positive integer r with 1 ≤ r ≤ |G|
such that every element of G has a representation of
length exactly r. (Namely, the set of such elements for
a given r strictly increases in size until it is stable un-
der right multiplication by both gh(g−1h)−1 = g2 and
gh(gh−1)−1 = gh2g−1, but under the present hypothe-
ses these generate G.)

A6 We prove that the smallest such value of C is 5/6.

First solution: (based on a suggestion of Daniel Kane)

We first reduce to the case where P is nonnegative in
[0,1] and P(0) = 0. To achieve this reduction, suppose
that a given value C obeys the inequality for such P.
For P general, divide the interval [0,1] into subintervals
I1, . . . , Ik at the roots of P. Write `(Ii) for the length of
the interval Ii; since each interval is bounded by a root
of P, we may make a linear change of variable to see
that∫

Ii
|P(x)|dx≤C`(Ii)max

x∈Ii
|P(x)| (i = 1, . . . ,k).

Summing over i yields the desired inequality.

Suppose now that P takes nonnegative values on [0,1],
P(0) = 0, and maxx∈[0,1] P(x) = 1. Write P(x) = ax3 +

bx2 + cx for some a,b,c ∈ R; then∫ 1

0
P(x)dx =

1
4

a+
1
3

b+
1
2

c

=
2
3

(
1
8

a+
1
4

b+
1
2

c
)
+

1
6
(a+b+ c)

=
2
3

P
(

1
2

)
+

1
6

P(1)

≤ 2
3
+

1
6
=

5
6
.

Consequently, the originally claimed inequality holds
with C = 5/6. To prove that this value is best possi-
ble, it suffices to exhibit a polynomial P as above with∫ 1

0 P(x)dx = 5/6; we will verify that

P(x) = 4x3−8x2 +5x

has this property. It is apparent that
∫ 1

0 P(x)dx = 5/6.
Since P′(x) = (2x−1)(6x−5) and

P(0) = 0, P
(

1
2

)
= 1, P

(
5
6

)
=

25
27

,P(1) = 1,

it follows that P increases from 0 at x = 0 to 1 at x =
1/2, then decreases to a positive value at x = 5/6, then
increases to 1 at x = 1. Hence P has the desired form.

Remark: Here is some conceptual motivation for the
preceding solution. Let V be the set of polynomials
of degree at most 3 vanishing at 0, viewed as a three-
dimensional vector space over R. Let S be the subset
of V consisting of those polynomials P(x) for which
0 ≤ P(x) ≤ 1 for all x ∈ [0,1]; this set is convex and
compact. We may then compute the minimal C as the
maximum value of

∫ 1
0 P(x)dx over all P ∈ S, provided

that the maximum is achieved for some polynomial of
degree exactly 3. (Note that any extremal polynomial
must satisfy maxx∈[0,1] P(x) = 1, as otherwise we could
multiply it by some constant c > 1 so as to increase∫ 1

0 P(x)dx.)

Let f : V →R be the function taking P(x) to
∫ 1

0 P(x)dx.
This function is linear, so we can characterize its ex-
trema on S easily: there exist exactly two level surfaces
for f which are supporting planes for S, and the inter-
sections of these two planes with S are the minima and
the maxima. It is obvious that the unique minimum is
achieved by the zero polynomial, so this accounts for
one of the planes.

It thus suffices to exhibit a single polynomial P(x) ∈ S
such that the level plane of f through P is a support-
ing plane for S. The calculation made in the solution
amounts to verifying that

P(x) = 4x3−8x2 +5x

has this property, by interpolating between the con-
straints P(1/2)≤ 1 and P(1)≤ 1.

This still leaves the matter of correctly guessing the op-
timal polynomial. If one supposes that it should be
extremized both at x = 1 and at an interval value of
the disc, it is forced to have the form P(x) = 1+(x−
1)(cx− 1)2 for some c > 0; the interpolation property
then pins down c uniquely.

Second solution: (by James Merryfield, via AoPS) As
in the first solution, we may assume that P is nonnega-
tive on [0,1] and P(0)= 0. Since P has degree at most 3,
Simpson’s rule for approximating

∫ 1
0 P(x)dx is an exact

formula:∫ 1

0
P(x)dx =

1
6
(P(0)+4P

(
1
2

)
+P(1)).

This immediately yields the claimed inequality for C =
5/6. Again as in the first solution, we obtain an example
showing that this value is best possible.
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B1 Note that the function ex − x is strictly increasing for
x > 0 (because its derivative is ex−1, which is positive
because ex is strictly increasing), and its value at 0 is 1.
By induction on n, we see that xn > 0 for all n.

By exponentiating the equation defining xn+1, we ob-
tain the expression

xn = exn − exn+1 .

We use this equation repeatedly to acquire increasingly
precise information about the sequence {xn}.

– Since xn > 0, we have exn > exn+1 , so xn > xn+1.

– Since the sequence {xn} is decreasing and
bounded below by 0, it converges to some limit
L.

– Taking limits in the equation yields L = eL− eL,
whence L = 0.

– Since L = 0, the sequence {exn} converges to 1.

We now have a telescoping sum:

x0 + · · ·+ xn = (ex0 − ex1)+ · · ·+(exn − exn+1)

= ex0 − exn+1 = e− exn+1 .

By taking limits, we see that the sum x0 + x1 + · · · con-
verges to the value e−1.

B2 We prove that the limit exists for α = 3
4 , β = 4

3 .

For any given positive integer n, the integers which are
closer to n2 than to any other perfect square are the ones
in the interval [n2−n−1,n2+n]. The number of squar-
ish numbers in this interval is 1 + b

√
n−1c+ b

√
nc.

Roughly speaking, this means that

S(N)∼
∫ √N

0
2
√

xdx =
4
3

N3/4.

To make this precise, we use the bounds x−1≤bxc≤ x,
and the upper and lower Riemann sum estimates for the
integral of

√
x, to derive upper and lower bounds on

S(N):

S(N)≥
b
√

Nc−1

∑
n=1

(2
√

n−1−1)

≥
∫ b√Nc−2

0
2
√

xdx−
√

N

≥ 4
3
(
√

N−3)3/2−
√

N

S(N)≤
d
√

Ne

∑
n=1

(2
√

n+1)

≤
∫ d√Ne+1

0
2
√

xdx+
√

N +1

≤ 4
3
(
√

N +2)3/2 +
√

N +1.

Remark: John Rickert points out that when N = n4,
one can turn the previous estimates into exact calcula-
tions to obtain the formula

S(N) =
4
3

(
n3 +

n
2

)
=

4
3

N3/4 +
2
3

N1/4.

For general N, one can then use the estimates

4
3
(N−1)3/4 +

2
3
(N−1)1/4 ≤ S(bN1/4c4)

≤ S(N)

≤ S(dN1/4e4)

≤ 4
3
(N +1)3/4 +

2
3
(N +1)1/4

to obtain the desired limit.

B3 Since S is finite, we can choose three points A,B,C in
S so as to maximize the area of the triangle ABC. Let
A′,B′,C′ be the points in the plane such that A,B,C are
the midpoints of the segments B′C′,C′A′,A′B′; the tri-
angle A′B′C′ is similar to ABC with sides twice as long,
so its area is 4 times that of ABC and hence no greater
than 4.

We claim that this triangle has the desired effect; that
is, every point P of S is contained within the triangle
A′B′C′. (To be precise, the problem statement requires
a triangle of area exactly 4, which need not be the case
for A′B′C′, but this is trivially resolved by scaling up by
a homothety.) To see this, note that since the area of the
triangle PBC is no more than that of ABC, P must lie
in the half-plane bounded by B′C′ containing B and C.
Similarly, P must lie in the half-plane bounded by C′A′

containing C and A, and the half-plane bounded by A′B′

containing A and B. These three half-planes intersect
precisely in the region bounded by the triangle A′B′C′,
proving the claim.

B4 The expected value equals

(2n)!
4nn!

.

First solution:
Write the determinant of A−At as the sum over permu-
tations σ of {1, . . . ,2n} of the product

sgn(σ)
2n

∏
i=1

(A−At)iσ(i) = sgn(σ)
2n

∏
i=1

(Aiσ(i)−Aσ(i)i);

then the expected value of the determinant is the sum
over σ of the expected value of this product, which we
denote by Eσ .

Note that if we partition {1, . . . ,2n} into orbits for the
action of σ , then partition the factors of the product
accordingly, then no entry of A appears in more than
one of these factors; consequently, these factors are in-
dependent random variables. This means that we can
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compute Eσ as the product of the expected values of
the individual factors.

It is obvious that any orbit of size 1 gives rise to the
zero product, and hence the expected value of the cor-
responding factor is zero. For an orbit of size m ≥ 3,
the corresponding factor contains 2m distinct matrix en-
tries, so again we may compute the expected value of
the factor as the product of the expected values of the
individual terms Aiσ(i)−Aσ(i)i. However, the distribu-
tion of this term is symmetric about 0, so its expected
value is 0.

We conclude that Eσ = 0 unless σ acts with n orbits of
size 2. To compute Eσ in this case, assume without loss
of generality that the orbits of σ are {1,2}, . . . ,{2n−
1,2n}; note that sgn(σ) = (−1)n. Then Eσ is the ex-
pected value of ∏

n
i=1−(A(2i−1)2i−A2i(2i−1))

2, which is
(−1)n times the n-th power of the expected value of
(A12−A21)

2. Since A12−A21 takes the values −1,0,1
with probabilities 1

4 ,
1
2 ,

1
4 , its square takes the values 0,1

with probabilities 1
2 ,

1
2 ; we conclude that

Eσ = 2−n.

The permutations σ of this form correspond to un-
ordered partitions of {1, . . . ,2n} into n sets of size 2,
so there are

(2n)!
n!(2!)n

such permutations. Putting this all together yields the
claimed result.

Second solution: (by Manjul Bhargava) Note that the
matrix A−At is skew-symmetric:

(A−At)t = At −A =−(A−At).

The determinant of a 2n× 2n skew-symmetric matrix
M is the square of the Pfaffian of M, which is a polyno-
mial of degree n in the entries of M defined as follows.
Define a perfect matching of {1, . . . ,2n} to be a per-
mutation of {1, . . . ,2n} that is the product of n disjoint
transpositions. Then the Pfaffian of M is given by

∑
α

sgn(α)Mi1, j1 · · ·Min, jn (1)

where the sum is over perfect matchings α =
(i1, j1) · · ·(in, jn), and sgn(α) denotes the sign of the
permutation

(
1 2 3 4 ··· (2n−1) 2n
i1 j1 i2 j2 ··· in jn

)
. The determinant

of M is then the square of (1), i.e.,

det(M) = ∑
α,β

sgn(α)sgn(β )Mi1, j1 · · ·Min, jnMi′1, j
′
1
· · ·Mi′n, j′n

(2)
where the sum is now over ordered pairs

(α = (i1, j1) · · ·(in, jn),β = (i′1, j′1) · · ·(i′n, j′n))

of perfect matchings.

Taking M = A−At , so that Mi j = Ai j −A ji, we wish
to find the expected value of (2); again, this is the sum
of the expected values of each summand in (2). Note
that each Mi j with i < j is an independent random vari-
able taking the values−1,0,1 with probabilities 1

4 ,
1
2 ,

1
4 ,

respectively.

Consider first a summand in (2) with α 6= β . Then some
factor Mi j occurs with exponent 1; since the distribution
of Mi j is symmetric about 0, any such summand has
expected value 0.

Consider next a summand in (2) with α = β . This sum-
mand is a product of distinct factors of the form M2

i j;
from the distributions of the Mi j, we see that the ex-
pected value of each of these terms is 1/2n.

Since the total number of perfect matchings α is
(2n)!/(2nn!), the expected value of (2) is therefore
(2n)!/(2nn!) ·1/2n = (2n)!/(4nn!), as desired.

B5 It is obvious that for any c > 0, the function f (x) = xc

has the desired property; we will prove that conversely,
any function with the desired property has this form for
some c.

Define the function g : (0,∞)→ (0,∞) given by g(x) =
log f (ex); this function has the property that if x,y ∈
(0,∞) and 2x ≤ y ≤ 3x, then 2g(x) ≤ g(y) ≤ 3g(x). It
will suffice to show that there exists c > 0 such that
g(x) = cx for all x > 0.

Similarly, define the function h :R→R given by h(x)=
logg(ex); this function has the property that if x,y ∈ R
and x+ log2≤ y≤ x+ log3, then h(x)+ log2≤ h(y)≤
h(x)+ log3. It will suffice to show that there exists c >
0 such that h(x) = x+c for all x ∈R (as then h(x) = ecx
for all x > 0).

By interchanging the roles of x and y, we may restate the
condition on h as follows: if x− log3 ≤ y ≤ x− log2,
then h(x)− log3≤ h(y)≤ h(x)− log2. This gives us the
cases a+b = 0,1 of the following statement, which we
will establish in full by induction on a+ b, we deduce
the following: for any nonnegative integers a,b, for all
x,y ∈ R such that

x+a log2−b log3≤ y≤ x+a log3−b log2,

we have

h(x)+a log2−b log3≤ h(y)≤ h(x)+a log3−b log2.

To this end, suppose that a+ b > 0 and that the claim
is known for all smaller values of a+ b. In particular,
either a > 0 or b > 0; the two cases are similar, so we
treat only the first one. Define the function

j(t) =
(a+b−1)t−b(log2+ log3)

a+b
,

so that

j(a log2−b log3) = a log2−b log3,
j(a log3−b log2) = (a−1) log3−b log2,

log2≤ t ≤ log3 (t ∈ [a log2−b log3,a log3−b log2]).
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For t ∈ [a log2− b log3,a log3− b log2] and y = x+ t,
we then have

(a−1) log2−b log3≤ h(x+ j(t))−h(x)≤ (a−1) log3−b log2
log2≤ h(y)−h(x+ j(t))≤ log3

and thus the desired inequalities.

Now fix two values x,y ∈ R with x ≤ y. Since log2
and log3 are linearly independent over Q, the fractional
parts of the nonnegative integer multiples of log3/ log2
are dense in [0,1). (This result is due to Kronecker;
a stronger result of Weyl shows that the fractional parts
are uniformly distributed in [0,1).) In particular, for any
ε > 0 and any N > 0, we can find integers a,b > N such
that

y− x < a log3−b log2 < y− x+ ε.

By writing

a log2−b log3 =
log2
log3

(a log3−b log2)

−b
(log3)2− (log2)2

log3
,

we see that this quantity tends to −∞ as N→ ∞; in par-
ticular, for N sufficiently large we have that a log2−
b log3 < y− x. We thus have h(y) ≤ h(x) + a log2−
b log3 < y− x+ ε; since ε > 0 was chosen arbitrarily,
we deduce that h(y)− h(x) ≤ y− x. A similar argu-
ment shows that h(y)− h(x) ≥ y− x; we deduce that
h(y)−h(x) = y−x, or equivalently h(y)−y = h(x)−x.
In other words, the function x 7→ h(x)−x is constant, as
desired.

B6 Let S denote the desired sum. We will prove that S = 1.

First solution: Write

∞

∑
n=0

1
k2n +1

=
1

k+1
+

∞

∑
n=1

1
k2n +1

;

then we may write S = S1 +S2 where

S1 =
∞

∑
k=1

(−1)k−1

k(k+1)

S2 =
∞

∑
k=1

(−1)k−1

k

∞

∑
n=1

1
k2n +1

.

The rearrangement is valid because both S1 and S2 con-
verge absolutely in k, by comparison to ∑1/k2.

To compute S1, note that

N

∑
k=1

(−1)k−1

k(k+1)
=

N

∑
k=1

(−1)k−1
(

1
k
− 1

k+1

)
=−1+

(−1)N

N +1
+2

N

∑
k=1

(−1)k−1

k

converges to 2ln2−1 as N→∞, and so S1 = 2ln2−1.

To compute S2, write 1
k2n+1 = 1

k2n · 1
1+1/(k2n) as the geo-

metric series ∑
∞
m=0

(−1)m

km+12mn+n , whence

S2 =
∞

∑
k=1

∞

∑
n=1

∞

∑
m=0

(−1)k+m−1

km+22mn+n .

(This step requires n ≥ 1, as otherwise the geometric
series would not converge for k = 0.) Now note that
this triple sum converges absolutely: we have

∞

∑
m=0

1
km+22mn+n =

1
k22n ·

1
1− 1

k2n

=
1

k(k2n−1)
≤ 1

k22n−1

and so

∞

∑
k=1

∞

∑
n=1

∞

∑
m=0

1
km+22mn+n ≤

∞

∑
k=1

∞

∑
n=1

1
k22n−1

=
∞

∑
k=1

2
k2 < ∞.

Thus we can rearrange the sum to get

S2 =
∞

∑
m=0

(−1)m

(
∞

∑
n=1

1
2mn+n

)(
∞

∑
k=1

(−1)k−1

km+2

)
.

The sum in n is the geometric series

1
2m+1(1− 1

2m+1 )
=

1
2m+1−1

.

If we write the sum in k as S3, then note that

∞

∑
k=1

1
km+2 = S3 +2

∞

∑
k=1

1
(2k)m+2 = S3 +

1
2m+1

∞

∑
k=1

1
km+2

(where we can rearrange terms in the first equality be-
cause all of the series converge absolutely), and so

S3 =

(
1− 1

2m+1

)
∞

∑
k=1

1
km+2 .

It follows that

S2 =
∞

∑
m=0

(−1)m

2m+1

∞

∑
k=1

1
km+2

=
∞

∑
k=1

1
2k2

∞

∑
m=0

(
− 1

2k

)m

=
∞

∑
k=1

1
k(2k+1)

= 2
∞

∑
k=1

(
1
2k
− 1

2k+1

)
= 2(1− ln2).
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Finally, we have S = S1 +S2 = 1.

Second solution: (by Tewodros Amdeberhan) Since∫ 1
0 xt dx = 1

1+t for any t ≥ 1, we also have

S =
∞

∑
k=1

∞

∑
n=0

(−1)k−1

k

∫ 1

0
xk2n

dx.

Again by absolute convergence, we are free to permute
the integral and the sums:

S =
∫ 1

0
dx

∞

∑
n=0

∞

∑
k=1

(−1)k−1

k
xk2n

=−
∫ 1

0
dx

∞

∑
n=0

log(1+ x2n
).

Due to the uniqueness of binary expansions of nonneg-
ative integers, we have the identity of formal power se-
ries

1
1− x

=
∞

∏
n=0

(1+ x2n
);

the product converges absolutely for 0≤ x < 1. We thus
have

S =−
∫ 1

0
log(1− x)dx

= ((1− x) log(1− x)− (1− x))1
0

= 1.

Third solution: (by Serin Hong) Again using absolute
convergence, we may write

S =
∞

∑
m=2

1
m ∑

k

(−1)k−1

k

where k runs over all positive integers for which m =
k2n+1 for some n. If we write e for the 2-adic valuation
of m−1 and j = (m−1)2−e for the odd part of m−1,
then the values of k are j2i for i = 0, . . . ,e. The inner
sum can thus be evaluated as

1
j
−

e

∑
i=1

1
2i j

=
1

2e j
=

1
m−1

.

We thus have

S =
∞

∑
m=2

1
m(m−1)

=
∞

∑
m=2

(
1

m−1
− 1

m

)
= 1.

Fourth solution: (by Liang Xiao) Let S0 and S1 be the
sums ∑k

1
k ∑

∞
n=0

1
k2n+1 with k running over all odd and

all even positive integers, respectively, so that

S = S0−S1.
In S1, we may write k = 2` to obtain

S1 =
∞

∑
`=1

1
2`

∞

∑
n=0

1
`2n+1 +1

=
1
2
(S0 +S1)−

∞

∑
`=1

1
2`(`+1)

=
1
2
(S0 +S1)−

1
2

because the last sum telescopes; this immediately yields
S = 1.


