
Solutions to the 78th William Lowell Putnam Mathematical Competition
Saturday, December 2, 2017

Kiran Kedlaya and Lenny Ng

A1 We claim that the positive integers not in S are 1 and all
multiples of 5. If S consists of all other natural numbers,
then S satisfies the given conditions: note that the only
perfect squares not in S are 1 and numbers of the form
(5k)2 for some positive integer k, and it readily follows
that both (b) and (c) hold.

Now suppose that T is another set of positive integers
satisfying (a), (b), and (c). Note from (b) and (c) that if
n ∈ T then n+ 5 ∈ T , and so T satisfies the following
property:

(d) if n ∈ T , then n+5k ∈ T for all k ≥ 0.

The following must then be in T , with implications la-
beled by conditions (b) through (d):

2 c⇒ 49 c⇒ 542 d⇒ 562 b⇒ 56 d⇒ 121 b⇒ 11

11 d⇒ 16 b⇒ 4 d⇒ 9 b⇒ 3

16 d⇒ 36 b⇒ 6

Since 2,3,4,6 ∈ T , by (d) S⊆ T , and so S is smallest.

A2 First solution. Define Pn(x) for P0(x) = 1, P1(x) = x,
and Pn(x) = xPn−1(x)−Pn−2(x). We claim that Pn(x) =
Qn(x) for all n ≥ 0; since Pn(x) clearly is a polynomial
with integer coefficients for all n, this will imply the
desired result.

Since {Pn} and {Qn} are uniquely determined by their
respective recurrence relations and the initial conditions
P0,P1 or Q0,Q1, it suffices to check that {Pn} satis-
fies the same recurrence as Q: that is, (Pn−1(x))2 −
Pn(x)Pn−2(x) = 1 for all n ≥ 2. Here is one proof of
this: for n≥ 1, define the 2×2 matrices

Mn =

(
Pn−1(x) Pn(x)
Pn−2(x) Pn−1(x)

)
, T =

(
x −1
1 0

)
with P−1(x) = 0 (this value being consistent with the
recurrence). Then det(T ) = 1 and T Mn = Mn+1, so by
induction on n we have

(Pn−1(x))2−Pn(x)Pn−2(x) = det(Mn) = det(M1) = 1.

Remark: A similar argument shows that any second-
order linear recurrent sequence also satisfies a quadratic
second-order recurrence relation. A familiar example
is the identity Fn−1Fn+1 − F2

n = (−1)n for Fn the n-
th Fibonacci number. More examples come from var-
ious classes of orthogonal polynomials, including the
Chebyshev polynomials mentioned below.

Second solution. We establish directly that Qn(x) =
xQn−1(x)−Qn−2(x), which again suffices. From the
equation

1 = Qn−1(x)2−Qn(x)Qn−2(x) = Qn(x)2−Qn+1(x)Qn−1(x)

we deduce that

Qn−1(x)(Qn−1(x)+Qn+1(x)) = Qn(x)(Qn(x)+Qn−2(x)).

Since deg(Qn(x)) = n by an obvious induction, the
polynomials Qn(x) are all nonzero. We may thus
rewrite the previous equation as

Qn+1(x)+Qn−1(x)
Qn(x)

=
Qn(x)+Qn−2(x)

Qn−1(x)
,

meaning that the rational functions Qn(x)+Qn−2(x)
Qn−1(x)

are all
equal to a constant value. By taking n = 2 and comput-
ing from the definition that Q2(x) = x2−1, we find the
constant value to be x; this yields the desired recurrence.

Remark: By induction, one may also obtain the ex-
plicit formula

Qn(x) =
bn/2c

∑
k=0

(−1)k
(

n− k
k

)
xn−2k.

Remark: In light of the explicit formula for Qn(x),
Karl Mahlburg suggests the following bijective inter-
pretation of the identity Qn−1(x)2−Qn(x)Qn−2(x) = 1.
Consider the set Cn of integer compositions of n with
all parts 1 or 2; these are ordered tuples (c1, . . . ,ck) such
that c1+ · · ·+ck = n and ci ∈ {1,2} for all i. For a given
composition c, let o(c) and d(c) denote the number of
1’s and 2’s, respectively. Define the generating function

Rn(x) = ∑
c∈Cn

xo(c);

then Rn(x) = ∑ j
(n− j

j

)
xn−2 j, so that Qn(x) =

i−n/2Rn(ix). (The polynomials Rn(x) are some-
times called Fibonacci polynomials; they satisfy
Rn(1) = Fn. This interpretation of Fn as the cardinality
of Cn first arose in the study of Sanskrit prosody,
specifically the analysis of a line of verse as a sequence
of long and short syllables, at least 500 years prior to
the work of Fibonacci.)

The original identity is equivalent to the identity

Rn+1(x)Rn−1(x)−Rn(x)2 = (−1)n−1.
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This follows because if we identify the composition c
with a tiling of a 1× n rectangle by 1× 1 squares and
1× 2 dominoes, it is almost a bijection to place two
tilings of length n on top of each other, offset by one
square, and hinge at the first possible point (which is
the first square in either). This only fails when both
tilings are all dominoes, which gives the term (−1)n−1.

Remark: This problem appeared on the
2012 India National Math Olympiad; see
https://artofproblemsolving.com/community/
c6h1219629. Another problem based on the same idea
is problem A2 from the 1993 Putnam.

A3 First solution. Extend the definition of In to n = 0, so
that I0 =

∫ b
a f (x)dx > 0. Since

∫ b
a ( f (x)−g(x))dx = 0,

we have

I1− I0 =
∫ b

a

f (x)
g(x)

( f (x)−g(x))dx

=
∫ b

a

( f (x)−g(x))2

g(x)
dx > 0,

where the inequality follows from the fact that the in-
tegrand is a nonnegative continuous function on [a,b]
that is not identically 0. Now for n ≥ 0, the Cauchy–
Schwarz inequality gives

InIn+2 =

(∫ b

a

( f (x))n+1

(g(x))n dx
)(∫ b

a

( f (x))n+3

(g(x))n+2 dx
)

≥
(∫ b

a

( f (x))n+2

(g(x))n+1 dx
)2

= I2
n+1.

It follows that the sequence {In+1/In}∞
n=0 is nondecreas-

ing. Since I1/I0 > 1, this implies that In+1 > In for
all n; also, In/I0 = ∏

n−1
k=0(Ik+1/Ik) ≥ (I1/I0)

n, and so
limn→∞ In = ∞ since I1/I0 > 1 and I0 > 0.

Remark: Noam Elkies suggests the following vari-
ant of the previous solution, which eliminates the need
to separately check that I1 > I0. First, the proof that
InIn+2 ≥ I2

n+1 applies also for n = −1 under the con-
vention that I−1 =

∫ b
a g(x)dx (as in the fourth solution

below). Second, this equality must be strict for each
n ≥ −1: otherwise, the equality condition in Cauchy–
Schwarz would imply that g(x) = c f (x) identically for
some c > 0, and the equality

∫ b
a f (x)dx =

∫ b
a g(x)dx

would then force c = 1, contrary to assumption. Con-
sequently, the sequence In+1/In is strictly increasing;
since I0/I−1 = 1, it follows that for n ≥ 0, we again
have In+1/In ≥ I1/I0 > 1 and so on.

Second solution. (from Art of Problem Solving, user

MSTang) Since
∫ b

a ( f (x)−g(x))dx = 0, we have

In+1− In =
∫ b

a

(
( f (x))n+2

(g(x))n+1 −
( f (x))n+1

(g(x))n

)
dx

=
∫ b

a

( f (x))n+1

(g(x))n+1 ( f (x)−g(x))dx

=
∫ b

a

(
( f (x))n+1

(g(x))n+1 −1
)
( f (x)−g(x))dx

=
∫ b

a

( f (x)−g(x))2(( f (x))n + · · ·+g(x)n)

(g(x))n+1 dx.

The integrand is continuous, nonnegative, and not iden-
tically zero; hence In+1− In > 0.

To prove that limn→∞ In = ∞, note that we cannot
have f (x) ≤ g(x) identically, as then the equality∫ b

a f (x)dx =
∫ b

a g(x)dx would imply f (x) = g(x) iden-
tically. That is, there exists some t ∈ [a,b] such that
f (t) > g(t). By continuity, there exist a quantity c > 1
and an interval J = [t0, t1] in [a,b] such that f (x)≥ cg(x)
for all x ∈ J. We then have

In ≥
∫ t1

t0

( f (x))n+1

(g(x))n dx≥ cn
∫ t1

t0
f (x)dx;

since f (x)> 0 everywhere, we have
∫ t1

t0 f (x)dx > 0 and
hence In is bounded below by a quantity which tends to
∞.

Remark: One can also give a variation of the second
half of the solution which shows directly that In+1 −
In ≥ cnd for some c > 1,d > 0, thus proving both asser-
tions at once.

Third solution. (from David Savitt, via Art of Problem
Solving) Extend the definition of In to all real n, and
note that

I−1 =
∫ b

a
g(x)dx =

∫ b

a
f (x)dx = I0.

By writing

In =
∫ b

a
exp((n+1) log f (x)−n logg(x))dx,

we see that the integrand is a strictly convex function of
n, as then is In. It follows that In is strictly increasing
and unbounded for n≥ 1.

Fourth solution. (by David Rusin) Again, extend the
definition of In to n =−1. Now note that for n≥ 0 and
x ∈ [a,b], we have

( f (x)−g(x))

((
f (x)
g(x)

)n+1

−
(

f (x)
g(x)

)n
)
≥ 0

because both factors have the same sign (depending
on the comparison between f (x) and g(x)); moreover,
equality only occurs when f (x) = g(x). Since f and g
are not identically equal, we deduce that

In+1− In > In− In−1
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and so in particular

In+1− In ≥ I1− I0 > I0− I−1 = 0.

This proves both claims.

Remark: This problem appeared in 2005 on
an undergraduate math olympiad in Brazil. See
https://artofproblemsolving.com/community/
c7h57686p354392 for discussion.

A4 First solution. Let a1, . . . ,a2N be the scores in non-
decreasing order, and define the sums si = ∑

i+N
j=i+1 a j

for i = 0, . . . ,N. Then s0 ≤ ·· · ≤ sN and s0 + sN =
∑

2N
j=1 a j = 7.4(2N), so s0 ≤ 7.4N ≤ sN . Let i be the

largest index for which si ≤ 7.4N; note that we can-
not have i = N, as otherwise s0 = sN = 7.4N and hence
a1 = · · · = a2N = 7.4, contradiction. Then 7.4N− si <
si+1− si = ai+N+1−ai and so

ai < si +ai+N+1−7.4N ≤ ai+N+1;

since all possible scores occur, this means that we can
find N scores with sum 7.4N by taking ai+1, . . . ,ai+N+1
and omitting one occurrence of the value si +ai+N+1−
7.4N.

Remark: David Savitt (via Art of Problem Solving)
points out that a similar argument applies provided that
there are an even number of students, the total score is
even, and the achieved scores form a block of consecu-
tive integers.

Second solution. We first claim that for any integer m
with 15 ≤ m ≤ 40, we can find five distinct elements
of the set {1,2, . . . ,10} whose sum is m. Indeed, for
0≤ k ≤ 4 and 1≤ `≤ 6, we have(

k

∑
j=1

j

)
+(k+ `)+

(
10

∑
j=k+7

j

)
= 34−5k+ `,

and for fixed k this takes all values from 35−5k to 40−
5k inclusive; then as k ranges from 0 to 4, this takes all
values from 15 to 40 inclusive.

Now suppose that the scores are a1, . . . ,a2N , where we
order the scores so that ak = k for k≤ 10 and the subse-
quence a11,a12, . . . ,a2N is nondecreasing. For 1 ≤ k ≤
N − 4, define Sk = ∑

k+N+4
j=k+10 a j. Note that for each k,

Sk+1−Sk = ak+N+5−ak+10 and so 0≤ Sk+1−Sk ≤ 10.
Thus S1, . . . ,SN−4 is a nondecreasing sequence of inte-
gers where each term is at most 10 more than the previ-
ous one. On the other hand, we have

S1 +SN−4 =
2N

∑
j=11

a j

= (7.4)(2N)−
10

∑
j=1

a j

= (7.4)(2N)−55,

whence S1 ≤ 7.4N−27.5≤ SN−4. It follows that there
is some k such that Sk ∈ [7.4N− 40,7.4N− 15], since
this interval has length 25 and 7.4N−27.5 lies inside it.

For this value of k, note that both Sk and 7.4N are inte-
gers (the latter since the sum of all scores in the class is
the integer (7.4)(2N) and so N must be divisible by 5).
Thus there is an integer m with 15≤ m≤ 40 for which
Sk = 7.4N−m. By our first claim, we can choose five
scores from a1, . . . ,a10 whose sum is m. When we add
these to the sum of the N−5 scores ak+10, . . . ,ak+N+4,
we get precisely 7.4N. We have now found N scores
whose sum is 7.4N and thus whose average is 7.4.

Third solution. It will suffices to show that given any
partition of the students into two groups of N, if the
sums are not equal we can bring them closer together by
swapping one pair of students between the two groups.
To state this symbolically, let S be the set of students
and, for any subset T of S, let ΣT denote the sum of
the scores of the students in T ; we then show that if
S = A∪B is a partition into two N-element sets with
ΣA > ΣB, then there exist students a ∈ A,B ∈ B such
that the sets

A′ = A\{a}∪{b}, B′ = A\{b}∪{a}

satisfy

0≤ ΣA′−ΣB′ < ΣA−ΣB.

In fact, this argument will apply at the same level of
generality as in the remark following the first solution.

To prove the claim, let a1, . . . ,an be the scores in A and
let b1, . . . ,bn be the scores in B (in any order). Since
ΣA−ΣB≡ ΣS (mod 2) and the latter is even, we must
have ΣA− ΣB ≥ 2. In particular, there must exist in-
dices i, j ∈ {1, . . . ,n} such that ai > b j. Consequently,
if we sort the sequence a1, . . . ,an,b1, . . . ,bn into nonde-
creasing order, it must be the case that some term b j is
followed by some term ai. Moreover, since the achieved
scores form a range of consecutive integers, we must in
fact have ai = b j + 1. Consequently, if we take a = ai,
b = b j, we then have ΣA′−Σ′B = ΣA−ΣB− 2, which
proves the claim.

A5 First solution. Let an,bn,cn be the probabilities that
players A, B, C, respectively, will win the game. We
compute these by induction on n, starting with the val-
ues

a1 = 1, b1 = 0, c1 = 0.

If player A draws card k, then the resulting game state
is that of a deck of k− 1 cards with the players taking
turns in the order B,C,A,B, . . . . In this state, the proba-
bilities that players A,B,C will win are ck−1,ak−1,bk−1
provided that we adopt the convention that

a0 = 0, b0 = 0, c0 = 1.
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We thus have

an =
1
n

n

∑
k=1

ck−1, bn =
1
n

n

∑
k=1

ak−1, cn =
1
n

n

∑
k=1

bk−1.

Put

xn = an−bn, yn = bn− cn, zn = cn−an;

we then have

xn+1 =
n

n+1
xn +

1
n+1

zn,

yn+1 =
n

n+1
yn +

1
n+1

xn,

zn+1 =
n

n+1
zn +

1
n+1

yn.

Note that if an+1 = bn+1 = cn+1 = 0, then

xn =−nzn = n2yn =−n3xn = n4zn

and so xn = zn = 0, or in other words an = bn = cn. By
induction on n, we deduce that an,bn,cn cannot all be
equal. That is, the quantities xn,yn,zn add up to zero
and at most one of them vanishes; consequently, the
quantity rn =

√
x2

n + y2
n + z2

n is always positive and the
quantities

x′n =
xn

rn
, y′n =

yn

rn
, z′n =

zn

rn

form the coordinates of a point Pn on a fixed circle C in
R3.

Let P′n be the point (zn,xn,yn) obtained from Pn by a
clockwise rotation of angle 2π

3 . The point Pn+1 then lies
on the ray through the origin passing through the point
dividing the chord from Pn to P′n in the ratio 1 : n. The
(clockwise) arc from Pn to Pn+1 therefore has a measure
of

arctan

√
3

2n−1
=

√
3

2n−1
+O(n−3);

these measures form a null sequence whose sum di-
verges. It follows that any arc of C contains infinitely
many of the Pn; taking a suitably short arc around the
point (

√
2

2 ,0,−
√

2
2 ), we deduce that for infinitely many

n, A has the highest winning probability, and similarly
for B and C.

Remark: From the previous analysis, we also deduce
that

rn+1

rn
=

√
n2−n+1

n+1
= 1− 3

2(n+1)
+O(n−2),

from which it follows that rn ∼ cn−3/2 for some c > 0.

Second solution. (by Noam Elkies) In this approach,
we instead compute the probability pn(m) that the game
ends after exactly m turns (the winner being determined

by the residue of m mod 3). We use the convention that
p0(0) = 1, p0(m) = 0 for m > 0. Define the generating
function Pn(X) = ∑

n
m=0 pn(m)xm. We will establish that

Pn(X) =
X(X +1) · · ·(X +n−1)

n!

(which may be guessed by computing pn(m) for small
n by hand). There are several ways to do this; for in-
stance, this follows from the recursion

Pn(X) =
1
n

XPn−1(X)+
(n−1)

n
Pn−1(X).

(In this recursion, the first term corresponds to condi-
tional probabilities given that the first card drawn is
n, and the second term corresponds to the remaining
cases.)

Let ω be a primitive cube root of 1. With notation as in
the first solution, we have

Pn(ω) = an +bnω + cnω;

combining this with the explicit formula for Pn(X) and
the observation that

arg(w+n) = arctan

√
3

2n−1

recovers the geometric description of an,bn,cn given in
the first solution (as well as the remark following the
first solution).

Third solution. For this argument, we use the auxiliary
quantities

a′n = an−
1
3
, b′n = bn−

1
3
, c′n = cn−

1
3

;

these satisfy the relations

a′n =
1
n

n

∑
k=1

c′k−1, b′n =
1
n

n

∑
k=1

a′k−1, c′n =
1
n

n

∑
k=1

b′k−1

as well as

a′n+1 = a′n +
1

n+1
(c′n−a′n)

b′n+1 = b′n +
1

n+1
(a′n−b′n)

c′n+1 = c′n +
1

n+1
(b′n− c′n).

We now show that ∑
∞
n=1 a′n cannot diverge to +∞ (and

likewise for ∑
∞
n=1 b′n and ∑

∞
n=1 c′n by similar reasoning).

Suppose the contrary; then there exists some ε > 0
and some n0 > 0 such that ∑

n
k=1 a′k ≥ ε for all n ≥ n0.

For n > n0, we have b′n ≥ ε; this in turn implies that
∑

∞
n=1 b′n diverges to +∞. Continuing around the cir-

cle, we deduce that for n sufficiently large, all three of
a′n,b

′
n,c
′
n are positive; but this contradicts the identity
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a′n + b′n + c′n = 0. We thus conclude that ∑
∞
n=1 a′n does

not diverge to +∞; in particular, liminfn→∞ a′n ≤ 0.

By the same token, we may see that ∑
∞
n=1 a′n cannot con-

verge to a positive limit L (and likewise for ∑
∞
n=1 b′n and

∑
∞
n=1 c′n by similar reasoning). Namely, this would im-

ply that b′n ≥ L/2 for n sufficiently large, contradicting
the previous argument.

By similar reasoning, ∑
∞
n=1 a′n cannot diverge to −∞ or

converge to a negative limit L (and likewise for ∑
∞
n=1 b′n

and ∑
∞
n=1 c′n by similar reasoning).

We next establish that there are infinitely many n for
which a′n > 0 (and likewise for b′n and c′n by similar
reasoning). Suppose to the contrary that for n suffi-
ciently large, we have a′n ≤ 0. By the previous argu-
ments, the sum ∑

∞
n=1 a′n cannot diverge to ∞ or con-

verge to a nonzero limit; it must therefore converge
to 0. In particular, for n sufficiently large, we have
b′n = ∑

n
k=1 a′k−1 ≥ 0. Iterating the construction, we see

that for n sufficiently large, we must have c′n≤ 0, a′n≥ 0,
b′n ≤ 0, and c′n ≥ 0. As a result, for n sufficiently large
we must have a′n = b′n = c′n = 0; but we may rule this
out as in the original solution.

By similar reasoning, we may deduce that there are in-
finitely many n for which a′n < 0 (and likewise for b′n
and c′n by similar reasoning). We now continue us-
ing a suggestion of Jon Atkins. Define the values of
the sequence xn according to the relative comparison of
a′n,b

′
n,c
′
n (using the fact that these cannot all be equal):

xn = 1 : a′n ≤ b′n < c′n
xn = 2 : b′n ≤ c′n < a′n
xn = 3 : c′n ≤ a′n < b′n
xn = 4 : a′n < c′n ≤ b′n
xn = 5 : b′n < a′n ≤ c′n
xn = 6 : c′n < b′n ≤ a′n.

We consider these values as states and say that there is
a transition from state i to state j, and write i⇒ j, if for
every n≥ 2 with xn = i there exists n′ > n with xn′ = j.
(In all cases when we use this notation, it will in fact be
the case that the first value of n′ > n for which xn′ 6= i
satisfes xn′ = j, but this is not logically necessary for
our final conclusion.)

Suppose that xn = 1. By the earlier discussion, we must
have a′n′ > 0 for some n′ > n, and so we cannot have
xn′ = 1 for all n′ > n. On the other hand, as long as
xn = 1, we have

c′n+1−b′n+1 = c′n−b′n +
1

n+1
(2b′n−a′n− c′n)

=
n−1
n+1

(c′n−b′n)+
1

n+1
(c′n−a′n)> 0

c′n+1−a′n+1 = c′n−a′n +
1

n+1
(a′n +b′n−2c′n)

=
n−1
n+1

(c′n−a′n)+
1

n+1
(b′n−a′n)> 0.

Consequently, for n′ the smallest value for which xn′ 6=
xn, we must have xn′ = 2. By this and two similar argu-
ments, we deduce that

1⇒ 5, 2⇒ 6, 3⇒ 4.

Suppose that xn = 4. By the earlier discussion, we must
have a′n′ < 0 for some n′ > n, and so we cannot have
xn′ = 4 for all n′ > n. On the other hand, as long as
xn = 4, we have

b′n+1−a′n+1 = b′n−a′n +
1

n+1
(2a′n−b′n− c′n)

=
n−1
n+1

(b′n−a′n)+
1

n+1
(b′n− c′n)> 0

c′n+1−a′n+1 = c′n−a′n +
1

n+1
(a′n +b′n−2c′n)

=
n−1
n+1

(c′n−a′n)+
1

n+1
(b′n−a′n)> 0.

Consequently, for n′ the smallest value for which xn′ 6=
xn, we must have xn′ = 1. By this and two similar argu-
ments, we deduce that

4⇒ 1, 5⇒ 2, 6⇒ 3.

Combining, we obtain

1⇒ 5⇒ 2⇒ 6⇒ 3⇒ 4⇒ 1

and hence the desired result.

A6 The number of such colorings is 220310 =
61917364224.

First solution: Identify the three colors red, white, and
blue with (in some order) the elements of the field F3 of
three elements (i.e., the ring of integers mod 3). The set
of colorings may then be identified with the F3-vector
space FE

3 generated by the set E of edges. Let F be
the set of faces, and let FF

3 be the F3-vector space on
the basis F ; we may then define a linear transformation
T : FE

3 → FF
3 taking a coloring to the vector whose com-

ponent corresponding to a given face equals the sum of
the three edges of that face. The colorings we wish to
count are the ones whose images under T consist of vec-
tors with no zero components.

We now show that T is surjective. (There are many pos-
sible approaches to this step; for instance, see the fol-
lowing remark.) Let Γ be the dual graph of the icosa-
hedron, that is, Γ has vertex set F and two elements of
F are adjacent in Γ if they share an edge in the icosa-
hedron. The graph Γ admits a hamiltonian path, that is,
there exists an ordering f1, . . . , f20 of the faces such that
any two consecutive faces are adjacent in Γ. For exam-
ple, such an ordering can be constructed with f1, . . . , f5
being the five faces sharing a vertex of the icosahedron
and f16, . . . , f20 being the five faces sharing the antipo-
dal vertex.

For i = 1, . . . ,19, let ei be the common edge of fi and
fi+1; these are obviously all distinct. By prescribing
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components for e1, . . . ,e19 in turn and setting the oth-
ers to zero, we can construct an element of FE

3 whose
image under T matches any given vector of FF

3 in the
components of f1, . . . , f19. The vectors in FF

3 obtained
in this way thus form a 19-dimensional subspace; this
subspace may also be described as the vectors for which
the components of f1, . . . , f19 have the same sum as the
components of f2, . . . , f20.

By performing a mirror reflection, we can construct a
second hamiltonian path g1, . . . ,g20 with the property
that

g1 = f1,g2 = f5,g3 = f4,g4 = f3,g5 = f2.

Repeating the previous construction, we obtain a differ-
ent 19-dimensional subspace of FF

3 which is contained
in the image of T . This implies that T is surjective, as
asserted earlier.

Since T is a surjective homomorphism from a 30-
dimensional vector space to a 20-dimensional vector
space, it has a 10-dimensional kernel. Each of the 220

elements of FF
3 with no zero components is then the im-

age of exactly 310 colorings of the desired form, yield-
ing the result.

Remark: There are many ways to check that T is sur-
jective. One of the simplest is the following (from Art
of Problem Solving, user Ravi12346): form a vector in
FE with components 2,1,2,1,2 at the five edges around
some vertex and all other components 0. This maps to
a vector in FF with only a single nonzero component;
by symmetry, every standard basis vector of FF arises
in this way.

Second solution: (from Bill Huang, via Art of Problem
Solving user superpi83) Let v and w be two antipodal
vertices of the icosahedron. Let Sv (resp. Sw) be the set
of five edges incident to v (resp. w). Let Tv (resp. Tw) be
the set of five edges of the pentagon formed by the op-
posite endpoints of the five edges in Sv (resp. Sw). Let U
be the set of the ten remaining edges of the icosahedron.

Consider any one of the 310 possible colorings of U .
The edges of Tv ∪U form the boundaries of five faces
with no edges in common; thus each edge of Tv can be
colored in one of two ways consistent with the given
condition, and similarly for Tw. That is, there are 310210

possible colorings of Tv ∪ Tw ∪U consistent with the
given condition.

To complete the count, it suffices to check that there are
exactly 25 ways to color Sv consistent with any given
coloring of Tv. Using the linear-algebraic interpretation
from the first solution, this follows by observing that
(by the previous remark) the map from FSv

3 to the F3-
vector space on the faces incident to v is surjective, and
hence an isomorphism for dimensional reasons. A di-
rect combinatorial proof is also possible.

B1 Recall that L1 and L2 intersect if and only if they are not
parallel. In one direction, suppose that L1 and L2 inter-
sect. Then for any P and λ , the dilation (homothety) of

the plane by a factor of λ with center P carries L1 to
another line parallel to L1 and hence not parallel to L2.
Let A2 be the unique intersection of L2 with the image
of L1, and let A1 be the point on L1 whose image under
the dilation is A2; then

−→
PA2 = λ

−→
PA1.

In the other direction, suppose that L1 and L2 are par-
allel. Let P be any point in the region between L1 and
L2 and take λ = 1. Then for any point A1 on L1 and
any point A2 on L2, the vectors

−→
PA1 and

−→
PA2 have com-

ponents perpendicular to L1 pointing in opposite direc-
tions; in particular, the two vectors cannot be equal.

Reinterpretation: (by Karl Mahlburg) In terms of vec-
tors, we may find vectors ~v1,~v2 and scalars c1,c2 such
that Li = {~x ∈ R2 : ~vi ·~x = ci}. The condition in the
problem amounts to finding a vector ~w and a scalar t
such that P+~w ∈ L1,P+λw ∈ L2; this comes down to
solving the linear system

~v1 · (P+~w) = c1

~v2 · (P+λ~w) = c2

which is nondegenerate and solvable for all λ if and
only if~v1,~v2 are linearly independent.

B2 We prove that the smallest value of a is 16.

Note that the expression for N can be rewritten as
k(2a + k− 1)/2, so that 2N = k(2a + k− 1). In this
expression, k > 1 by requirement; k < 2a+ k− 1 be-
cause a > 1; and obviously k and 2a+k−1 have oppo-
site parity. Conversely, for any factorization 2N = mn
with 1 < m < n and m,n of opposite parity, we obtain
an expression of N in the desired form by taking k = m,
a = (n+1−m)/2.

We now note that 2017 is prime. (On the exam, solvers
would have had to verify this by hand. Since 2017 <
452, this can be done by trial division by the primes up
to 43.) For 2N = 2017(2a+ 2016) not to have another
expression of the specified form, it must be the case that
2a + 2016 has no odd divisor greater than 1; that is,
2a+ 2016 must be a power of 2. This first occurs for
2a+2016 = 2048, yielding the claimed result.

Reinterpretation: (by Karl Mahlburg) To avoid N hav-
ing another representation, for k = 2, . . . ,2016, we must
have

N 6≡

{
k/2 k ≡ 0 (mod 2)
0 k ≡ 1 (mod 2).

Consequently, N 6≡ 0 (mod p) for any odd prime p <
2017 and N≡ 0 (mod 1024). Since N must be divisible
by 2017, this again yields the claimed value of a.

B3 Suppose by way of contradiction that f (1/2) is rational.
Then ∑

∞
i=0 ci2−i is the binary expansion of a rational

number, and hence must be eventually periodic; that is,
there exist some integers m,n such that ci = cm+i for all
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i≥ n. We may then write

f (x) =
n−1

∑
i=0

cixi +
xn

1− xm

m−1

∑
i=0

cn+ixi.

Evaluating at x = 2/3, we may equate f (2/3) = 3/2
with

1
3n−1

n−1

∑
i=0

ci2i3n−i−1 +
2n3m

3n+m−1(3m−2m)

m−1

∑
i=0

cn+i2i3m−1−i;

since all terms on the right-hand side have odd denomi-
nator, the same must be true of the sum, a contradiction.

Remark: Greg Marks asks whether the assumption that
f (2/3) = 3/2 further ensures that f (1/2) is transcen-
dental. We do not know of any existing results that
would imply this. However, the following result fol-
lows from a theorem of T. Tanaka (Algebraic indepen-
dence of the values of power series generated by linear
recurrences, Acta Arith. 74 (1996), 177–190), building
upon work of Mahler. Let {an}∞

n=0 be a linear recurrent
sequence of positive integers with characteristic poly-
nomial P. Suppose that P(0),P(1),P(−1) 6= 0 and that
no two distinct roots of P have ratio which is a root
of unity. Then for f (x) = ∑

∞
n=0 xan , the values f (1/2)

and f (2/3) are algebraically independent over Q. (Note
that for f as in the original problem, the condition on
ratios of roots of P fails.)

B4 We prove that the sum equals (log2)2; as usual, we
write logx for the natural logarithm of x instead of lnx.
Note that of the two given expressions of the original
sum, the first is absolutely convergent (the summands
decay as log(x)/x2) but the second one is not; we must
thus be slightly careful when rearranging terms.

First solution. Define ak =
logk

k −
log(k+1)

k+1 . The infinite
sum ∑

∞
k=1 ak converges to 0 since ∑

n
k=1 ak telescopes to

− log(n+1)
n+1 and this converges to 0 as n→ ∞. Note that

ak > 0 for k ≥ 3 since logx
x is a decreasing function of x

for x > e, and so the convergence of ∑
∞
k=1 ak is absolute.

Write S for the desired sum. Then since 3a4k+2 +
2a4k+3 + a4k+4 = (a4k+2 + a4k+4) + 2(a4k+2 + a4k+3),
we have

S =
∞

∑
k=0

(3a4k+2 +2a4k+3 +a4k+4)

=
∞

∑
k=1

a2k +
∞

∑
k=0

2(a4k+2 +a4k+3),

where we are allowed to rearrange the terms in the
infinite sum since ∑ak converges absolutely. Now
2(a4k+2 + a4k+3) = log(4k+2)

2k+1 − log(4k+4)
2k+2 = a2k+1 +

(log2)( 1
2k+1 −

1
2k+2 ), and summing over k gives

∞

∑
k=0

2(a4k+2 +a4k+3) =
∞

∑
k=0

a2k+1 +(log2)
∞

∑
k=1

(−1)k+1

k

=
∞

∑
k=0

a2k+1 +(log2)2.

Finally, we have

S =
∞

∑
k=1

a2k +
∞

∑
k=0

a2k+1 +(log2)2

=
∞

∑
k=1

ak +(log2)2 = (log2)2.

Second solution. We start with the following observa-
tion: for any positive integer n,

d
ds

n−s
∣∣∣∣
s=1

=−(logn)n−s.

(Throughout, we view s as a real parameter, but see the
remark below.) For s > 0, consider the absolutely con-
vergent series

L(s)=
∞

∑
k=0

(3(4k+2)−s−(4k+3)−s−(4k+4)−s−(4k+5)−s);

in the same range we have

L′(s) =
∞

∑
k=0

(
3

log(4k+2)
(4k+2)s −

log(4k+3)
(4k+3)s

+
log(4k+4)
(4k+4)s −

log(4k+5)
(4k+5)s

)
,

so we may interchange the summation with taking the
limit at s = 1 to equate the original sum with −L′(1).

To make further progress, we introduce the Riemann
zeta function ζ (s) = ∑

∞
n=1 n−s, which converges abso-

lutely for s > 1. In that region, we may freely rearrange
sums to write

L(s)+ζ (s) = 1+4(2−s +6−s +10−s + · · ·)
= 1+22−s(1+3−s +5−s + · · ·)
= 1+22−s(ζ (s)−2−s−4−s−·· ·)
= 1+22−s

ζ (s)−22−2s
ζ (s).

In other words, for s > 1, we have

L(s) = 1+ζ (s)(−1+22−s−22−2s).

Now recall that ζ (s)− s
s−1 extends to a C∞ function for

s > 0, e.g., by applying Abel summation to obtain

ζ (s)− s
s−1

= ∑
n=1

n(n−s− (n+1)−s)− s
s−1

= s
∞

∑
n=1

n
∫ n+1

n
x−s−1 dx− s

s−1

=−s
∫

∞

1
(x−bxc)x−s−1 dx.

Also by writing 22−s = 2exp((1− s) log2 and 22−2s =
exp(2(1− s) log2), we may use the exponential series
to compute the Taylor expansion of

f (s) =
−1+22−s−22−2s

s−1
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at s = 1; we get

f (s) =−(log2)2(s−1)2 +O((s−1)3).

Consequently, if we rewrite the previous expression for
L(s) as

L(s) = 1+(s−1)ζ (s) · −1+22−s−22−2s

s−1
,

then we have an equality of C∞ functions for s > 1, and
hence (by continuity) an equality of Taylor series about
s = 1. That is,

L(s) = 1− (log2)2(s−1)+O((s−1)2),

which yields the desired result.

Remark:
The use of series ∑

∞
n=1 cnn−s as functions of a real pa-

rameter s dates back to Euler, who observed that the di-
vergence of ζ (s) as s→ 1 gives a proof of the infinitude
of primes distinct from Euclid’s approach, and Dirich-
let, who upgraded this idea to prove his theorem on the
distribution of primes across arithmetic progressions. It
was Riemann who introduced the idea of viewing these
series as functions of a complex parameter, thus mak-
ing it possible to use the tools of complex analysis (e.g.,
the residue theorem) and leading to the original proof
of the prime number theorem by Hadamard and de la
Vallée Poussin.

In the language of complex analysis, one may handle
the convergence issues in the second solution in a dif-
ferent way: use the preceding calculation to establish
the equality

L(s) = 1+ζ (s)(−1+22−s−22−2s)

for Real(s) > 1, then observe that both sides are holo-
morphic for Real(s) > 0 and so the equality extends to
that larger domain.

B5 The desired integers are (a,b,c) = (9,8,7).

Suppose we have a triangle T = 4ABC with BC = a,
CA = b, AB = c and a > b > c. Say that a line is
an area equalizer if it divides T into two regions of
equal area. A line intersecting T must intersect two of
the three sides of T . First consider a line intersecting
the segments AB at X and BC at Y , and let BX = x,
BY = y. This line is an area equalizer if and only if
xysinB = 2area(4XBY ) = area(4ABC) = 1

2 acsinB,
that is, 2xy = ac. Since x≤ c and y≤ a, the area equal-
izers correspond to values of x,y with xy = ac/2 and
x ∈ [c/2,c]. Such an area equalizer is also an equal-
izer if and only if p/2 = x + y, where p = a + b + c
is the perimeter of T . If we write f (x) = x+ ac/(2x),
then we want to solve f (x) = p/2 for x ∈ [c/2,c]. Now
note that f is convex, f (c/2) = a + c/2 > p/2, and
f (c) = a/2+ c < p/2; it follows that there is exactly
one solution to f (x) = p/2 in [c/2,c]. Similarly, for

equalizers intersecting T on the sides AB and AC, we
want to solve g(x) = p/2 where g(x) = x + bc/(2x)
and x ∈ [c/2,c]; since g is convex and g(c/2) < p/2,
g(c)< p/2, there are no such solutions.

It follows that if T has exactly two equalizers, then it
must have exactly one equalizer intersecting T on the
sides AC and BC. Here we want to solve h(x) = p/2
where h(x) = x+ ab/(2x) and x ∈ [a/2,a]. Now h is
convex and h(a/2)> p/2, h(a)> p/2; thus h(x) = p/2
has exactly one solution x ∈ [a/2,a] if and only if there
is x0 ∈ [a/2,a] with h′(x0) = 0 and h(x0) = p/2. The
first condition implies x0 =

√
ab/2, and then the sec-

ond condition gives 8ab = p2. Note that
√

ab/2 is in
[a/2,a] since a > b and a < b+ c < 2b.

We conclude that T has two equalizers if and only if
8ab = (a+b+c)2. Note that (a,b,c) = (9,8,7) works.
We claim that this is the only possibility when a> b> c
are integers and a ≤ 9. Indeed, the only integers (a,b)
such that 2 ≤ b < a ≤ 9 and 8ab is a perfect square
are (a,b) = (4,2), (6,3), (8,4), (9,2), and (9,8), and
the first four possibilities do not produce triangles since
they do not satisfy a< 2b. This gives the claimed result.

B6 First solution. The desired count is 2016!
1953! − 63! · 2016,

which we compute using the principle of inclusion-
exclusion. As in A2, we use the fact that 2017 is prime;
this means that we can do linear algebra over the field
F2017. In particular, every nonzero homogeneous linear
equation in n variables over F2017 has exactly 2017n−1

solutions.

For π a partition of {0, . . . ,63}, let |π| denote the num-
ber of distinct parts of π , Let π0 denote the partition of
{0, . . . ,63} into 64 singleton parts. Let π1 denote the
partition of {0, . . . ,63} into one 64-element part. For
π,σ two partitions of {0, . . . ,63}, write π|σ if π is a re-
finement of σ (that is, every part in σ is a union of parts
in π). By induction on |π|, we may construct a collec-
tion of integers µπ , one for each π , with the properties
that

∑
π|σ

µπ =

{
1 σ = π0

0 σ 6= π0
.

Define the sequence c0, . . . ,c63 by setting c0 = 1 and
ci = i for i > 1. Let Nπ be the number of ordered 64-
tuples (x0, . . . ,x63) of elements of F2017 such that xi = x j

whenever i and j belong to the same part and ∑
63
i=0 cixi is

divisible by 2017. Then Nπ equals 2017|π|−1 unless for
each part S of π , the sum ∑i∈S ci vanishes; in that case,
Nπ instead equals 2017|π|. Since c0, . . . ,c63 are positive
integers which sum to 1+ 63·64

2 = 2017, the second out-
come only occurs for π = π1. By inclusion-exclusion,
the desired count may be written as

∑
π

µπ Nπ = 2016 ·µπ1 +∑
π

µπ 2017|π|−1.
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Similarly, the number of ordered 64-tuples with no re-
peated elements may be written as

64!
(

2017
64

)
= ∑

π

µπ 2017|π|.

The desired quantity may thus be written as 2016!
1953! +

2016µπ1 .

It remains to compute µπ1 . We adopt an approach sug-
gested by David Savitt: apply inclusion-exclusion to
count distinct 64-tuples in an arbitrary set A. As above,
this yields

|A|(|A|−1) · · ·(|A|−63) = ∑
π

µπ |A||π|.

Viewing both sides as polynomials in |A| and comparing
coefficients in degree 1 yields µπ = −63! and thus the
claimed answer.

Second solution. (from Art of Problem Solving, user
ABCDE) We first prove an auxiliary result.

Lemma. Fix a prime p and define the function f (k) on posi-
tive integers by the conditions

f (1, p) = 0

f (k, p) =
(p−1)!
(p− k)!

− k f (k−1, p) (k > 1).

Then for any positive integers a1, . . . ,ak with a1+ · · ·+ak < p,
there are exactly f (p) solutions to the equation a1x1 + · · ·+
akxk = 0 with x1, . . . ,xk ∈ Fp nonzero and pairwise distinct.

Proof. We check the claim by induction, with the base case
k = 1 being obvious. For the induction step, assume the claim
for k− 1. Let S be the set of k-tuples of distinct elements of
Fp; it consists of p!

(p−k)! elements. This set is stable under the
action of i ∈ Fp by translation:

(x1, . . . ,xk) 7→ (x1 + i, . . . ,xk + i).

Since 0 < a1 · · ·+ ak < p, exactly one element of each orbit
gives a solution of a1x1 + · · ·+ akxk = 0. Each of these solu-
tions contributes to f (k) except for those in which xi = 0 for

some i. Since then x j 6= 0 for all j 6= i, we may apply the in-
duction hypothesis to see that there are f (k− 1, p) solutions
that arise this way for a given i (and these do not overlap).
This proves the claim.

To compute f (k, p) explicitly, it is convenient to work
with the auxiliary function

g(k, p) =
p f (k, p)

k!
;

by the lemma, this satisfies g(1, p) = 0 and

g(k, p) =
(

p
k

)
−g(k−1, p)

=

(
p−1

k

)
+

(
p−1
k−1

)
−g(k−1, p) (k > 1).

By induction on k, we deduce that

g(k, p)−
(

p−1
k

)
= (−1)k−1

(
g(1, p)−

(
p−1

1

))
= (−1)k(p−1)

and hence g(k, p) =
(p−1

k

)
+(−1)k(p−1).

We now set p = 2017 and count the tuples in ques-
tion. Define c0, . . . ,c63 as in the first solution. Since
c0+ · · ·+c63 = p, the translation action of Fp preserves
the set of tuples; we may thus assume without loss of
generality that x0 = 0 and multiply the count by p at the
end. That is, the desired answer is

2017 f (63,2017) = 63!g(63,2017)

= 63!
((

2016
63

)
−2016

)
as claimed.


