The 79th William Lowell Putnam Mathematical Competition
 Saturday, December 1, 2018

A1 Find all ordered pairs (a, b) of positive integers for which

$$
\frac{1}{a}+\frac{1}{b}=\frac{3}{2018}
$$

A2 Let $S_{1}, S_{2}, \ldots, S_{2^{n}-1}$ be the nonempty subsets of $\{1,2, \ldots, n\}$ in some order, and let M be the $\left(2^{n}-1\right) \times$ $\left(2^{n}-1\right)$ matrix whose (i, j) entry is

$$
m_{i j}= \begin{cases}0 & \text { if } S_{i} \cap S_{j}=\emptyset \\ 1 & \text { otherwise }\end{cases}
$$

Calculate the determinant of M.
A3 Determine the greatest possible value of $\sum_{i=1}^{10} \cos \left(3 x_{i}\right)$ for real numbers $x_{1}, x_{2}, \ldots, x_{10}$ satisfying $\sum_{i=1}^{10} \cos \left(x_{i}\right)=$ 0.

A4 Let m and n be positive integers with $\operatorname{gcd}(m, n)=1$, and let

$$
a_{k}=\left\lfloor\frac{m k}{n}\right\rfloor-\left\lfloor\frac{m(k-1)}{n}\right\rfloor
$$

for $k=1,2, \ldots, n$. Suppose that g and h are elements in a group G and that

$$
g h^{a_{1}} g h^{a_{2}} \cdots g h^{a_{n}}=e
$$

where e is the identity element. Show that $g h=h g$. (As usual, $\lfloor x\rfloor$ denotes the greatest integer less than or equal to x.)

A5 Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be an infinitely differentiable function satisfying $f(0)=0, f(1)=1$, and $f(x) \geq 0$ for all $x \in$ \mathbb{R}. Show that there exist a positive integer n and a real number x such that $f^{(n)}(x)<0$.

A6 Suppose that A, B, C, and D are distinct points, no three of which lie on a line, in the Euclidean plane. Show that if the squares of the lengths of the line segments $A B$, $A C, A D, B C, B D$, and $C D$ are rational numbers, then the quotient

$$
\frac{\operatorname{area}(\triangle A B C)}{\operatorname{area}(\triangle A B D)}
$$

is a rational number.
B1 Let \mathscr{P} be the set of vectors defined by

$$
\mathscr{P}=\left\{\left.\binom{a}{b} \right\rvert\, 0 \leq a \leq 2,0 \leq b \leq 100, \text { and } a, b \in \mathbb{Z}\right\}
$$

Find all $\mathbf{v} \in \mathscr{P}$ such that the set $\mathscr{P} \backslash\{\mathbf{v}\}$ obtained by omitting vector \mathbf{v} from \mathscr{P} can be partitioned into two sets of equal size and equal sum.
B2 Let n be a positive integer, and let $f_{n}(z)=n+(n-1) z+$ $(n-2) z^{2}+\cdots+z^{n-1}$. Prove that f_{n} has no roots in the closed unit disk $\{z \in \mathbb{C}:|z| \leq 1\}$.

B3 Find all positive integers $n<10^{100}$ for which simultaneously n divides 2^{n}, $n-1$ divides $2^{n}-1$, and $n-2$ divides $2^{n}-2$.

B4 Given a real number a, we define a sequence by $x_{0}=1$, $x_{1}=x_{2}=a$, and $x_{n+1}=2 x_{n} x_{n-1}-x_{n-2}$ for $n \geq 2$. Prove that if $x_{n}=0$ for some n, then the sequence is periodic.

B5 Let $f=\left(f_{1}, f_{2}\right)$ be a function from \mathbb{R}^{2} to \mathbb{R}^{2} with continuous partial derivatives $\frac{\partial f_{i}}{\partial x_{j}}$ that are positive everywhere. Suppose that

$$
\frac{\partial f_{1}}{\partial x_{1}} \frac{\partial f_{2}}{\partial x_{2}}-\frac{1}{4}\left(\frac{\partial f_{1}}{\partial x_{2}}+\frac{\partial f_{2}}{\partial x_{1}}\right)^{2}>0
$$

everywhere. Prove that f is one-to-one.
B6 Let S be the set of sequences of length 2018 whose terms are in the set $\{1,2,3,4,5,6,10\}$ and sum to 3860 . Prove that the cardinality of S is at most

$$
2^{3860} \cdot\left(\frac{2018}{2048}\right)^{2018}
$$

