The 79th William Lowell Putnam Mathematical Competition Saturday, December 1, 2018

A1 Find all ordered pairs (a,b) of positive integers for which

$$\frac{1}{a} + \frac{1}{b} = \frac{3}{2018}.$$

A2 Let $S_1, S_2, \ldots, S_{2^n-1}$ be the nonempty subsets of $\{1, 2, \ldots, n\}$ in some order, and let *M* be the $(2^n - 1) \times (2^n - 1)$ matrix whose (i, j) entry is

$$m_{ij} = \begin{cases} 0 & \text{if } S_i \cap S_j = \emptyset\\ 1 & \text{otherwise.} \end{cases}$$

Calculate the determinant of M.

- A3 Determine the greatest possible value of $\sum_{i=1}^{10} \cos(3x_i)$ for real numbers x_1, x_2, \dots, x_{10} satisfying $\sum_{i=1}^{10} \cos(x_i) = 0$.
- A4 Let *m* and *n* be positive integers with gcd(m, n) = 1, and let

$$a_k = \left\lfloor \frac{mk}{n} \right\rfloor - \left\lfloor \frac{m(k-1)}{n} \right\rfloor$$

for k = 1, 2, ..., n. Suppose that g and h are elements in a group G and that

$$gh^{a_1}gh^{a_2}\cdots gh^{a_n}=e$$

where *e* is the identity element. Show that gh = hg. (As usual, $\lfloor x \rfloor$ denotes the greatest integer less than or equal to *x*.)

- A5 Let $f : \mathbb{R} \to \mathbb{R}$ be an infinitely differentiable function satisfying f(0) = 0, f(1) = 1, and $f(x) \ge 0$ for all $x \in \mathbb{R}$. Show that there exist a positive integer *n* and a real number *x* such that $f^{(n)}(x) < 0$.
- A6 Suppose that *A*, *B*, *C*, and *D* are distinct points, no three of which lie on a line, in the Euclidean plane. Show that if the squares of the lengths of the line segments *AB*, *AC*, *AD*, *BC*, *BD*, and *CD* are rational numbers, then the quotient

$$\frac{\operatorname{area}(\triangle ABC)}{\operatorname{area}(\triangle ABD)}$$

is a rational number.

B1 Let \mathscr{P} be the set of vectors defined by

$$\mathscr{P} = \left\{ \begin{pmatrix} a \\ b \end{pmatrix} \middle| 0 \le a \le 2, 0 \le b \le 100, \text{ and } a, b \in \mathbb{Z} \right\}.$$

Find all $\mathbf{v} \in \mathscr{P}$ such that the set $\mathscr{P} \setminus \{\mathbf{v}\}$ obtained by omitting vector \mathbf{v} from \mathscr{P} can be partitioned into two sets of equal size and equal sum.

- B2 Let *n* be a positive integer, and let $f_n(z) = n + (n-1)z + (n-2)z^2 + \cdots + z^{n-1}$. Prove that f_n has no roots in the closed unit disk $\{z \in \mathbb{C} : |z| \le 1\}$.
- B3 Find all positive integers $n < 10^{100}$ for which simultaneously *n* divides 2^n , n-1 divides $2^n 1$, and n-2 divides $2^n 2$.
- B4 Given a real number *a*, we define a sequence by $x_0 = 1$, $x_1 = x_2 = a$, and $x_{n+1} = 2x_nx_{n-1} x_{n-2}$ for $n \ge 2$. Prove that if $x_n = 0$ for some *n*, then the sequence is periodic.
- B5 Let $f = (f_1, f_2)$ be a function from \mathbb{R}^2 to \mathbb{R}^2 with continuous partial derivatives $\frac{\partial f_i}{\partial x_j}$ that are positive everywhere. Suppose that

$$\frac{\partial f_1}{\partial x_1}\frac{\partial f_2}{\partial x_2} - \frac{1}{4}\left(\frac{\partial f_1}{\partial x_2} + \frac{\partial f_2}{\partial x_1}\right)^2 > 0$$

everywhere. Prove that f is one-to-one.

B6 Let *S* be the set of sequences of length 2018 whose terms are in the set $\{1, 2, 3, 4, 5, 6, 10\}$ and sum to 3860. Prove that the cardinality of *S* is at most

$$2^{3860} \cdot \left(\frac{2018}{2048}\right)^{2018}$$