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While preparing these solutions, we learned of the Novem-
ber 27 death of Kent Merryfield, who moderated the Put-
nam discussions on the Art of Problem Solving Forums and
thereby contributed directly and indirectly to these solutions
over many years. His presence will be dearly missed.

A1 By clearing denominators and regrouping, we see that
the given equation is equivalent to

(3a−2018)(3b−2018) = 20182.

Each of the factors is congruent to 1 (mod 3). There
are 6 positive factors of 20182 = 22 · 10092 that are
congruent to 1 (mod 3): 1, 22, 1009, 22 · 1009,
10092, 22 · 10092. These lead to the 6 possible pairs:
(a,b) = (673,1358114), (674,340033), (1009,2018),
(2018,1009), (340033,674), and (1358114,673).

As for negative factors, the ones that are congruent to 1
(mod 3) are −2,−2 ·1009,−2 ·10092. However, all of
these lead to pairs where a≤ 0 or b≤ 0.

A2 The answer is 1 if n = 1 and −1 if n > 1. Write Mn
for a (2n− 1)× (2n− 1) matrix of the given form, and
note that detMn does not depend on the ordering of the
subsets: transposing two subsets has the effect of trans-
posing two rows and then transposing two columns in
Mn, and this does not change the determinant.

Clearly detM1 = 1. We claim that for n > 1, detMn =
−(detMn−1)

2, and the desired answer will follow by in-
duction. Let S′1, . . . ,S

′
2n−1−1 denote the nonempty sub-

sets of {1, . . . ,n−1} in any order, with resulting matrix
Mn−1. Let m′i j denote the (i, j) entry of Mn−1. Now or-
der the nonempty subsets S1, . . . ,S2n−1 of {1, . . . ,n} as
follows:

Si =


S′i i≤ 2n−1−1
S′i−2n−1+1∪{n} 2n−1 ≤ i≤ 2n−2
{n} i = 2n−1.

(For example, if S′1, . . . ,S
′
2n−1−1 are ordered in lex-

icographic order as binary strings, then so are
S1, . . . ,S2n−1.) Let Mn be the resulting matrix. Then
we have:

Mn =



0

Mn−1 Mn−1
...
0

1 · · · 1 1

Mn−1
...

. . .
...

...
1 · · · 1 1

0 · · · 0 1 · · · 1 1


.

In Mn, perform the following operations, which do not
change the determinant: subtract the final row from
rows 2n−1 through 2n − 2, and then subtract the final
column from columns 2n−1 through 2n− 2. The result
is the matrix

0

Mn−1 Mn−1
...
0

0 · · · 0 0

Mn−1
...

. . .
...

...
0 · · · 0 0

0 · · · 0 0 · · · 0 1


.

We can remove the final row and column with-
out changing the determinant. Now swap the
first 2n−1 − 1 rows with the final 2n−1 − 1 rows:
this changes the determinant by an overall factor
of (−1)(2

n−1−1)2
= −1. The result is the block-

diagonal matrix

(
Mn−1 0
Mn−1 Mn−1

)
, whose determinant is

(detMn−1)
2. Thus detMn =−(detMn−1)

2 as desired.

A3 The maximum value is 480/49. Since cos(3xi) =
4cos(xi)

3 − 3cos(xi), it is equivalent to maximize
4∑

10
i=1 y3

i for y1, . . . ,y10 ∈ [−1,1] with ∑
10
i=1 yi = 0; note

that this domain is compact, so the maximum value
is guaranteed to exist. For convenience, we establish
something slightly stronger: we maximize 4∑

n
i=1 y3

i for
y1, . . . ,yn ∈ [−1,1] with ∑

n
i=1 yi = 0, where n may be

any even nonnegative integer up to 10, and show that
the maximum is achieved when n = 10.

We first study the effect of varying yi and y j while
fixing their sum. If that sum is s, then the function
y 7→ y3 + (s− y)3 has constant second derivative 6s,
so it is either everywhere convex or everywhere con-
cave. Consequently, if (y1, . . . ,yn) achieves the maxi-
mum, then for any two indices i < j, at least one of the
following must be true:

– one of yi, y j is extremal (i.e., equal to 1 or −1);

– yi = y j < 0 (in which case s< 0 and the local max-
imum is achieved above);

– yi =−y j (in which case s = 0 above).

In the third case, we may discard yi and y j and achieve a
case with smaller n; we may thus assume that this does
not occur. In this case, all of the non-extremal values
are equal to some common value y < 0, and moreover
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we cannot have both 1 and -1. We cannot omit 1, as
otherwise the condition ∑

n
i=1 yi = 0 cannot be achieved;

we must thus have only the terms 1 and y, occurring
with some positive multiplicities a and b adding up to
n. Since a+b = n and a+by = 0, we can solve for y to
obtain y =−a/b; we then have

4
n

∑
i=1

y3
i = a+by3 = 4a

(
1− a2

b2

)
.

Since y > −1, we must have a < b. For fixed a, the
target function increases as b increases, so the optimal
case must occur when a+ b = 10. The possible pairs
(a,b) at this point are

(1,9),(2,8),(3,7),(4,6);

computing the target function for these values yields re-
spectively

32
9
,

15
2
,

480
49

,
80
9
,

yielding 480/49 as the maximum value.

Remark. Using Lagrange multipliers yields a similar
derivation, but with a slight detour required to separate
local minima and maxima. For general n, the above
argument shows that the target function is maximized
when a+b = n.

A4 First solution. We prove the claim by induction on
m+ n. For the base case, suppose that n = 1; we then
have m = 1 and the given equation becomes gh = e.
The claim then reduces to the fact that a one-sided in-
verse in G is also a two-sided inverse. (Because G is
a group, g has an inverse g−1; since gh = e, we have
h = g−1(gh) = g−1e = g−1, so hg = e = gh.)

Suppose now that n > 1. In case m > n, set g̃ = gh,
h̃ = h, and

bk =

⌊
(m−n)k

n

⌋
−
⌊
(m−n)(k−1)

n

⌋
(k = 1, . . . ,n).

then

g̃h̃b1 · · · g̃h̃bn = gha1 · · ·ghan = e,

so the induction hypothesis implies that g̃ and h̃ com-
mute; this implies that g and h commute.

In case m < n, note that ak ∈ {0,1} for all k. Set g̃ =
h−1, h̃ = g−1, and

bl =

⌊
n`
m

⌋
−
⌊

n(`−1)
m

⌋
(`= 1, . . . ,m);

we claim that

g̃h̃b1 · · · g̃h̃bm = (gha1 · · ·ghan)−1 = e,

so the induction hypothesis implies that h̃ and g̃ com-
mute; this implies that g and h commute.

To clarify this last equality, consider a lattice walk start-
ing from (0,0), ending at (n,m), staying below the line
y = mx/n, and keeping as close to this line as possible.
If one follows this walk and records the element g for
each horizontal step and h for each vertical step, one ob-
tains the word gha1 · · ·ghan . Now take this walk, reflect
across the line y = x, rotate by a half-turn, then trans-
late to put the endpoints at (0,0) and (m,n); this is the
analogous walk for the pair (n,m).

Remark. By tracing more carefully through the argu-
ment, one sees in addition that there exists an element k
of G for which g = km,h = k−n.

Second solution. (by Greg Martin) Since gcd(m,n) =
1, there exist integers x,y such that mx+ny= 1; we may
further assume that x ∈ {1, . . . ,n}. We first establish the
identity

ak−x =


ak−1 if k ≡ 0 (mod n)
ak +1 if k ≡ 1 (mod n)
ak otherwise.

Namely, by writing −mx = ny−1, we see that

ak−x =

⌊
m(k− x)

n

⌋
−
⌊

m(k− x−1)
n

⌋
=

⌊
mk+ny−1

n

⌋
−
⌊

m(k−1)+ny−1
n

⌋
=

⌊
mk−1

n

⌋
−
⌊

m(k−1)−1
n

⌋
and so

ak−x−ak =

(⌊
mk−1

n

⌋
−
⌊

mk
n

⌋)
−
(⌊

m(k−1)−1
n

⌋
−
⌊

m(k−1)
n

⌋)
.

The first parenthesized expression equals 1 if n divides
mk, or equivalently n divides k, and 0 otherwise. Sim-
ilarly, the second parenthesized expression equals 1 if
n divides k−1 and 0 otherwise. This proves the stated
identity.

We now use the given relation gha1 · · ·ghan = e to write

ghg−1h−1 = gh(ha1gha2 · · ·ghan−1ghan)h−1

= gha1+1gha2 · · ·ghan−1ghan−1

= gha1−x · · ·ghan−x

= (ghan+1−x · · ·ghan)(gha1 · · ·ghan−x).

The two parenthesized expressions multiply in the
opposite order to gha1 · · ·ghan = e, so they must be
(two-sided) inverses of each other. We deduce that
ghg−1h−1 = e, meaning that g and h commute.

Third solution. (by Sucharit Sarkar) Let T denote the
torus R2/Z2. The line segments from (0,0) to (1,0)
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and from (0,0) to (0,1) are closed loops in T , and we
denote them by g and h respectively. Now let p be the
(image of the) point (ε,−ε) in T for some 0 < ε � 1.
The punctured torus T \ {p} deformation retracts onto
the union of the loops g and h, and so π1(T \{p}), the
fundamental group of T \{p} based at (0,0), is the free
group on two generators, 〈g,h〉.
Let γ and γ̃ denote the following loops based at (0,0)
in T : γ is the image of the line segment from (0,0) to
(n,m) under the projection R2→ T , and γ̃ is the image
of the lattice walk from (0,0) to (n,m), staying just be-
low the line y = mx/n, that was described in the first
solution. There is a straight-line homotopy with fixed
endpoints between the two paths in R2 from (0,0) to
(n,m), the line segment and the lattice walk, and this
homotopy does not pass through any point of the form
(a+ε,b−ε) for a,b ∈ Z by the construction of the lat-
tice walk. It follows that γ and γ̃ are homotopic loops
in T \ {p}. Since the class of γ̃ in π1(T \ {p}) is evi-
dently gha1gha2 · · ·ghan , it follows that the class of γ in
π1(T \{p}) is the same.

Now since gcd(m,n) = 1, there is an element φ ∈
GL2(Z) sending (n,m) to (1,0), which then sends the
line segment from (0,0) to (n,m) to the segment from
(0,0) to (1,0). Then φ induces a homeomorphism of T
sending γ to g, which in turn induces an isomorphism
φ∗ : π1(T \{p})→ π1(T \{φ−1(p)}). Both fundamen-
tal groups are equal to 〈g,h〉, and we conclude that φ∗
sends gha1gha2 · · ·ghan to g. It follows that φ∗ induces
an isomorphism

〈g,h |gha1gha2 · · ·ghan〉 → 〈g,h |g〉 ∼= 〈h〉 ∼= Z.

Since Z is abelian, g and h must commute in
〈g,h |gha1gha2 · · ·ghan〉, whence they must also com-
mute in G.

A5 First solution. Call a function f : R→ R ultraconvex
if f is infinitely differentiable and f (n)(x) ≥ 0 for all
n ≥ 0 and all x ∈ R, where f (0)(x) = f (x); note that if
f is ultraconvex, then so is f ′. Define the set

S = { f : R→ R | f ultraconvex and f (0) = 0}.

For f ∈ S, we must have f (x) = 0 for all x < 0: if
f (x0)> 0 for some x0 < 0, then by the mean value theo-
rem there exists x ∈ (0,x0) for which f ′(x) = f (x0)

x0
< 0.

In particular, f ′(0) = 0, so f ′ ∈ S also.

We show by induction that for all n≥ 0,

f (x)≤ f (n)(1)
n!

xn ( f ∈ S,x ∈ [0,1]).

We induct with base case n = 0, which holds because
any f ∈ S is nondecreasing. Given the claim for n = m,
we apply the induction hypothesis to f ′ ∈ S to see that

f ′(t)≤ f (n+1)(1)
n!

tn (t ∈ [0,1]),

then integrate both sides from 0 to x to conclude.

Now for f ∈ S, we have 0≤ f (1)≤ f (n)(1)
n! for all n≥ 0.

On the other hand, by Taylor’s theorem with remainder,

f (x)≥
n

∑
k=0

f (k)(1)
k!

(x−1)k (x≥ 1).

Applying this with x = 2, we obtain f (2)≥∑
n
k=0

f (k)(1)
k!

for all n; this implies that limn→∞
f (n)(1)

n! = 0. Since

f (1)≤ f (n)(1)
n! , we must have f (1) = 0.

For f ∈ S, we proved earlier that f (x) = 0 for all x≤ 0,
as well as for x = 1. Since the function g(x) = f (cx) is
also ultraconvex for c > 0, we also have f (x) = 0 for all
x > 0; hence f is identically zero.

To sum up, if f : R → R is infinitely differentiable,
f (0) = 0, and f (1) = 1, then f cannot be ultraconvex.
This implies the desired result.

Variant. (by Yakov Berchenko-Kogan) Another way to
show that any f ∈ S is identically zero is to show that
for f ∈ S and k a positive integer,

f (x)≤ x
k

f ′(x) (x≥ 0).

We prove this by induction on k. For the base case k= 1,
note that f ′′(x)≥ 0 implies that f ′ is nondecreasing. For
x≥ 0, we thus have

f (x) =
∫ x

0
f ′(t)dt ≤

∫ x

0
f ′(x)dt = x f ′(x).

To pass from k to k+1, apply the induction hypothesis
to f ′ and integrate by parts to obtain

k f (x) =
∫ x

0
k f ′(t)dt

≤
∫ x

0
t f ′′(t)dt

= x f ′(x)−
∫ x

0
f ′(t)dt = x f ′(x)− f (x).

Remark. Noam Elkies points out that one can refine
the argument to show that if f is ultraconvex, then it is
analytic (i.e., it is represented by an entire Taylor series
about any point, as opposed to a function like f (x) =
e−1/x2

whose Taylor series at 0 is identically zero); he
attributes the following argument to Peter Shalen. Let
gn(x) = ∑

n
k=0

1
k! f (k)(0)xk be the n-th order Taylor poly-

nomial of f . By Taylor’s theorem with remainder (a/k/a
Lagrange’s theorem), f (x)− gn(x) is everywhere non-
negative; consequently, for all x ≥ 0, the Taylor series
∑

∞
n=0

1
n! f (n)(0)xn converges and is bounded above by f .

But since f (n+1)(x) is nondecreasing, Lagrange’s the-
orem also implies that f (x)− gn(x) ≤ 1

(n+1)! f (n+1)(x);
for fixed x≥ 0, the right side tends to 0 as n→∞. Hence
f is represented by its Taylor series for x≥ 0, and so is



4

analytic for x > 0; by replacing f (x) with f (x− c), we
may conclude that f is everywhere analytic.

Remark. We record some properties of the class of
ultraconvex functions.

– Any nonnegative constant function is ultraconvex.
The exponential function is ultraconvex.

– If f is ultraconvex, then f ′ is ultracon-
vex. Conversely, if f ′ is ultraconvex and
liminfx→−∞ f (x)≥ 0, then f is ultraconvex.

– The class of ultraconvex functions is closed under
addition, multiplication, and composition.

Second solution. (by Zachary Chase) In this solution,
we use Bernstein’s theorem on monotone functions. To
state this result, we say that a function f : [0,∞)→ R is
totally monotone if f is continuous, f is infinitely differ-
entiable on (0,∞), and (−1)n f (n)(x) is nonnegative for
all positive integers n and all x > 0. For such a function,
Bernstein’s theorem asserts that there is a nonnegative
finite Borel measure µ on [0,∞) such that

f (x) =
∫

∞

0
e−txdµ(t) (x≥ 0).

For f as in the problem statement, for any M > 0, the
restriction of f (M − x) to [0,∞) is totally monotone,
so Bernstein’s theorem provides a Borel measure µ for
which f (M− x) =

∫
∞

0 e−txdµ(t) for all x ≥ 0. Taking
x = M, we see that

∫
∞

0 e−Mtdµ(t) = f (0) = 0; since µ

is a nonnegative measure, it must be identically zero.
Hence f (x) is identically zero for x ≤M; varying over
all M, we deduce the desired result.

Third solution. (from Art of Problem Solving user
chronondecay) In this solution, we only consider the
behavior of f on [0,1]. We first establish the following
result. Let f : (0,1)→ R be a function such that for
each positive integer n, f (n)(x) is nonnegative on (0,1),
tends to 0 as x→ 0+, and tends to some limit as x→ 1−.
Then for each nonnegative integer n, f (x)x−n is nonde-
creasing on (0,1).

To prove the claimed result, we proceed by induction on
n, the case n = 0 being a consequence of the assump-
tion that f ′(x) is nonnegative on (0,1). Given the claim
for some n ≥ 0, note that since f ′ also satisfies the hy-
potheses of the problem, f ′(x)x−n is also nondecreasing
on (0,1). Choose c ∈ (0,1) and consider the function

g(x) =
f ′(c)
cn xn (x ∈ [0,1)).

For x ∈ (0,c), f ′(x)x−n ≤ f ′(c)c−n, so f ′(x) ≤ g(x);
similarly, for x ∈ (c,1), f ′(x) ≥ g(x). It follows that
if f ′(c)> 0, then∫ 1

c f ′(x)dx∫ c
0 f ′(x)dx

≥
∫ 1

c g(x)dx∫ c
0 g(x)dx

⇒
∫ c

0 f ′(x)dx∫ 1
0 f ′(x)dx

≤
∫ c

0 g(x)dx∫ 1
0 g(x)dx

and so f (c)/ f (1) ≤ cn+1. (Here for convenience, we
extend f continuously to [0,1].) That is, f (c)/cn+1 ≤
f (1) for all c ∈ (0,1). For any b ∈ (0,1), we may apply
the same logic to the function f (bx) to deduce that if
f ′(c)> 0, then f (bc)/cn+1 ≤ f (b), or equivalently

f (bc)
(bc)n+1 ≤

f (b)
bn+1 .

This yields the claim unless f ′ is identically 0 on (0,1),
but in that case the claim is obvious anyway.

We now apply the claim to show that for f as in the
problem statement, it cannot be the case that f (n)(x) is
nonnegative on (0,1) for all n. Suppose the contrary;
then for any fixed x ∈ (0,1), we may apply the previous
claim with arbitrarily large n to deduce that f (x) = 0.
By continuity, we also then have f (1) = 0, a contradic-
tion.

Fourth solution. (by Alexander Karabegov) As in the
first solution, we may see that f (n)(0)= 0 for all n. Con-
sequently, for all n we have

f (x) =
1

(n−1)!

∫ x

0
(x− t)n−1 f (n)(t)dt (x ∈ R)

and hence∫ 1

0
f (x)dx =

1
n!

∫ 1

0
(1− t)n f (n)(t)dt.

Suppose now that f is infinitely differentiable, f (1) =
1, and f (n)(x)≥ 0 for all n and all x ∈ [0,1]. Then∫ 1

0
f (x)dx =

1
n
· 1
(n−1)!

∫ 1

0
(1− t)n f (n)(t)dt

≤ 1
n
· 1
(n−1)!

∫ 1

0
(1− t)n−1 f (n)(t)dt

=
1
n

f (1) =
1
n
.

Since this holds for all n, we have
∫ 1

0 f (x)dx = 0, and
so f (x) = 0 for x ∈ [0,1]; this yields the desired contra-
diction.

A6 First solution. Choose a Cartesian coordinate sys-
tem with origin at the midpoint of AB and positive x-
axis containing A. By the condition on AB, we have
A = (

√
a,0), B = (−

√
a,0) for some positive rational

number a. Let (x1,y1) and (x2,y2) be the respective co-
ordinates of C and D; by computing the lengths of the
segments AC,BC,AD,BD,CD, we see that the quanti-
ties

(x1−
√

a)2 + y2
1, (x1 +

√
a)2 + y2

1,

(x2−
√

a)2 + y2
2, (x2 +

√
a)2 + y2

2,

(x1− x2)
2 +(y1− y2)

2
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are all rational numbers. By adding and subtracting the
first two quantities, and similarly for the next two, we
see that the quantities

x2
1 + y2

1, x1
√

a, x2
2 + y2

2, x2
√

a

are rational numbers. Since a is a rational number, so
then are

x2
1 =

(x1
√

a)2

a

x2
2 =

(x2
√

a)2

a

x1x2 =
(x1
√

a)(x2
√

a)
a

y2
1 = (x2

1 + y2
1)− x2

1

y2
2 = (x2

2 + y2
2)− x2

2.

Now note that the quantity

(x1− x2)
2 +(y1− y2)

2 = x2
1−2x1x2 + x2

2 + y2
1−2y1y2 + y2

2

is known to be rational, as is every summand on the
right except −2y1y2; thus y1y2 is also rational. Since y2

1
is also rational, so then is y1/y2 = (y1y2)/(y2

1); since

area(4ABC) =
√

ay1, area(4ABD) =
√

ay2,

this yields the desired result.

Second solution. (by Manjul Bhargava) Let b,c,d be
the vectors AB,AC,AD viewed as column vectors. The
desired ratio is given by

det(b,c)
det(b,d)

=
det(b,c)T det(b,c)
det(b,c)T det(b,d)

= det

(
b ·b b · c
c ·b c · c

)
det

(
b ·b b ·d
c ·b c ·d

)−1

.

The square of the length of AB is b ·b, so this quantity is
rational. The square of the lengths of AC and BC are c ·c
and (c−b) · (c−b) = b ·b+c ·c−2b ·c, so b ·c = c ·b
is rational. Similarly, using AD and BD, we deduce that
d ·d and b ·d is rational; then using CD, we deduce that
c ·d is rational.

Third solution. (by David Rusin) Recall that Heron’s
formula (for the area of a triangle in terms of its side
length) admits the following three-dimensional ana-
logue due to Piero della Francesca: if V denotes the
volume of a tetrahedron with vertices A,B,C,D ∈ R3,
then

288V 2 = det


0 AB2 AC2 AD2 1

AB2 0 BC2 BD2 1
AC2 BC2 0 CD2 1
AD2 BD2 CD2 0 1

1 1 1 1 0



In particular, the determinant vanishes if and only if
A,B,C,D are coplanar. From the identity

64(4Area(4ABC)2Area(4ABD)2−9AB2V 2)

= (AB4−AB2(AC2 +AD2 +BC2 +BD2−2CD2)

+(AC2−BC2)(AD2−BD2))2

we see that Area(4ABC)Area(4ABD) is rational;
since each of the areas has rational square, we deduce
the claim.

Fourth solution. (by Greg Martin) Define the signed
angles α = ∠BAC,β = ∠BAD,γ = ∠CAD, so that α +
γ = β . By the Law of Cosines,

2AB ·AC cosα = AB2 +AC2−BC2 ∈Q
2AB ·ADcosβ = AB2 +AD2−BD2 ∈Q
2AC ·ADcosγ = AC2 +AD2−CD2 ∈Q.

In particular, (2AB ·AC cosα)2 ∈Q, and so cos2 α ∈Q
and sin2

α = 1−cos2 α ∈Q, and similarly for the other
two angles.

Applying the addition formula to cosβ , we deduce that

2AB ·ADcosα cosγ−2AB ·ADsinα sinγ ∈Q.

The first of these terms equals

(2AB ·AC cosα)(2AB ·AC cosα)

AC2 ∈Q,

so the second term must also be rational. But now

Area(4ABC)

Area(4ACD)
=

AB ·AC sinα

AC ·ADsinγ

=
2AB ·ADsinα sinγ

2AD2 sin2
γ

∈Q

as desired.

Remark. Derek Smith observes that this result is
Proposition 1 of: M. Knopf, J. Milzman, D. Smith, D.
Zhu and D. Zirlin, Lattice embeddings of planar point
sets, Discrete and Computational Geometry 56 (2016),
693–710.

Remark. It is worth pointing out that it is indeed possi-
ble to choose points A,B,C,D satisfying the conditions
of the problem; one can even ensure that the lengths
of all four segments are themselves rational. For ex-
ample, it was originally observed by Euler that one can
find an infinite set of points on the unit circle whose
pairwise distances are all rational numbers. One way to
see this is to apply the linear fractional transformation
f (z) = z+i

z−i to the Riemann sphere to carry the real axis
(plus ∞) to the unit circle, then compute that

| f (z1)− f (z2)|=
2|z1− z2||

|(z1− i)(z2− i)|
.
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Let S be the set of rational numbers z for which 2(z2+1)
is a perfect square; the set f (S) has the desired property
provided that it is infinite. That can be checked in var-
ious ways; for instance, the equation 2(x2 +1) = (2y)2

equates to x2 − 2y2 = −1 (a modified Brahmagupta-
Pell equation), which has infinitely many solutions even
over the integers:

x+ y
√

2 = (1+
√

2)2n+1.

B1 The answer is the collection of vectors (1,b) where 0≤
b ≤ 100 and b is even. (For ease of typography, we
write tuples instead of column vectors.)

First we show that if P \ {v} can be partitioned into
subsets S1 and S2 of equal size and equal sum, then v
must be of the form (1,b) where b is even. For a finite
nonempty set S of vectors in Z2, let Σ(S) denote the
sum of the vectors in S. Since the average x- and y-
coordinates in P are 1 and 50, respectively, and there
are 3 ·101 elements in P , we have

Σ(P) = 303 · (1,50) = (303,15150).

On the other hand,

Σ(P) = v+Σ(S1)+Σ(S2) = v+2Σ(S1).

By parity considerations, the entries of v must be odd
and even, respectively, and thus v is of the claimed
form.

Next suppose v = (1,b) where b is even. Note that
P \{(1,50)} can be partitioned into 151 pairs of (dis-
tinct) vectors (x,y) and (2− x,100− y), each sum-
ming to (2,100). If b 6= 50 then three of these
pairs are {(1,b),(1,100−b)},{(2,b),(0,100−b)}, and
{(2,25 + b/2),(0,75− b/2)}. Of the remaining 148
pairs, assign half of them to S1 and half to S2, and
then complete the partition of P \ {v} by assign-
ing (0,100− b), (2,25 + b/2), and (1,50) to S1 and
(1,100− b), (2,b), and (0,75− b/2) to S2. (Note that
the three vectors assigned to each of S1 and S2 have the
same sum (3,175− b/2).) By construction, S1 and S2
have the same number of elements, and Σ(S1) = Σ(S2).

For b = 50, this construction does not work be-
cause (1,b) = (100 − b), but a slight variation can
be made. In this case, three of the pairs in P \
{(1,50)} are {(2,50),(0,50)}, {(1,51),(1,49)}, and
{(0,49),(2,51)}. Assign half of the other 148 pairs
to S1 and half to S2, and complete the partition of
P \ {(1,50)} by assigning (2,50), (1,51), and (0,49)
to S1 and (0,50), (1,49), and (2,51) to S2.

B2 First solution. Note first that fn(1) > 0, so 1 is not a
root of fn. Next, note that

(z−1) fn(z) = zn + · · ·+ z−n;

however, for |z| ≤ 1, we have |zn + · · ·+ z| ≤ n by the
triangle inequality; equality can only occur if z, . . . ,zn

have norm 1 and the same argument, which only hap-
pens for z = 1. Thus there can be no root of fn with
|z| ≤ 1.

Second solution. (by Karl Mahlburg) Define the poly-
nomial

gn(z) = nzn−1 + · · ·+2z+1

and note that zn−1gn(z−1) = fn(z). Since fn(0) 6= 0, to
prove the claim it is equivalent to show that gn has no
roots in the region |z| ≥ 1.

Now note that gn(z) = h′n(z) for

hn(z) = zn + · · ·+ z+1,

a polynomial with roots e2πi j/(n+1) for j = 0, . . . ,n. By
the Gauss-Lucas theorem, the roots of gn lie in the con-
vex hull of the roots of hn, and moreover cannot be
vertices of the convex hull because hn has no repeated
roots. This implies the claim.

Remark. Yet another approach is to use the Eneström-
Kakeya theorem: if Pn(z) = a0 + · · ·+anzn is a polyno-
mial with real coefficients satisfying |an| ≥ · · · ≥ |a0|>
0, then the roots of Pn(z) all satisfy |z| ≤ 1. Namely, ap-
plying this to the polynomial gn(z/c) for c = n/(n−1)
shows that the roots of gn all satisfy |z| ≤ 1/c.

Remark. For a related problem, see problem A5 from
the 2014 Putnam competition.

B3 The values of n with this property are 22` for ` =
1,2,4,8. First, note that n divides 2n if and only if n
is itself a power of 2; we may thus write n = 2m and
note that if n < 10100, then

2m = n < 10100 < (103)34 < (210)34 = 2340.

Moreover, the case m = 0 does not lead to a solution
because for n = 1, n−1 = 0 does not divide 2n−1 = 1;
we may thus assume 1≤ m≤ 340.

Next, note that modulo n− 1 = 2m− 1, the powers of
2 cycle with period m (the terms 20, . . . ,2m−1 remain
the same upon reduction, and then the next term repeats
the initial 1); consequently, n− 1 divides 2n− 1 if and
only if m divides n, which happens if and only if m is a
power of 2. Write m = 2` and note that 2` < 340 < 512,
so ` < 9. The case ` = 0 does not lead to a solution
because for n = 2, n−2 = 0 does not divide 2n−2 = 2;
we may thus assume 1≤ `≤ 8.

Finally, note that n− 2 = 2m− 2 divides 2n− 2 if and
only if 2m−1− 1 divides 2n−1− 1. By the same logic
as the previous paragraph, this happens if and only if
m− 1 divides n− 1, that is, if 2` − 1 divides 2m − 1.
This in turn happens if and only if ` divides m = 2`,
which happens if and only if ` is a power of 2. The
values allowed by the bound ` < 9 are `= 1,2,4,8; for
these values, m≤ 28 = 256 and

n = 2m ≤ 2256 ≤ (23)86 < 1086 < 10100,

so the solutions listed do satisfy the original inequality.
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B4 We first rule out the case |a|> 1. In this case, we prove
that |xn+1| ≥ |xn| for all n, meaning that we cannot have
xn = 0. We proceed by induction; the claim is true for
n = 0,1 by hypothesis. To prove the claim for n ≥ 2,
write

|xn+1|= |2xnxn−1− xn−2|
≥ 2|xn||xn−1|− |xn−2|
≥ |xn|(2|xn−1|−1)≥ |xn|,

where the last step follows from |xn−1| ≥ |xn−2| ≥ · · · ≥
|x0|= 1.

We may thus assume hereafter that |a| ≤ 1. We can
then write a = cosb for some b∈ [0,π]. Let {Fn} be the
Fibonacci sequence, defined as usual by F1 = F2 = 1
and Fn+1 = Fn +Fn−1. We show by induction that

xn = cos(Fnb) (n≥ 0).

Indeed, this is true for n = 0,1,2; given that it is true for
n≤ m, then

2xmxm−1 = 2cos(Fmb)cos(Fm−1b)
= cos((Fm−Fm−1)b)+ cos((Fm +Fm−1)b)
= cos(Fm−2b)+ cos(Fm+1b)

and so xm+1 = 2xmxm−1 − xm−2 = cos(Fm+1b). This
completes the induction.

Since xn = cos(Fnb), if xn = 0 for some n then Fnb =
k
2 π for some odd integer k. In particular, we can write
b = c

d (2π) where c = k and d = 4Fn are integers.

Let xn denote the pair (Fn,Fn+1), where each entry in
this pair is viewed as an element of Z/dZ. Since there
are only finitely many possibilities for xn, there must
be some n2 > n1 such that xn1 = xn2 . Now xn uniquely
determines both xn+1 and xn−1, and it follows that the
sequence {xn} is periodic: for ` = n2− n1, xn+` = xn
for all n≥ 0. In particular, Fn+` ≡ Fn (mod d) for all n.
But then Fn+`c

d − Fnc
d is an integer, and so

xn+` = cos
(

Fn+`c
d

(2π)

)
= cos

(
Fnc
d

(2π)

)
= xn

for all n. Thus the sequence {xn} is periodic, as desired.

Remark. Karl Mahlburg points out that one can moti-
vate the previous solution by computing the terms

x2 = 2a2−1,x3 = 4a3−3a,x4 = 16a5−20a3 +5a

and recognizing these as the Chebyshev polynomials
T2,T3,T5. (Note that T3 was used in the solution of prob-
lem A3.)

Remark. It is not necessary to handle the case |a| > 1
separately; the cosine function extends to a surjective
analytic function on C and continues to satisfy the addi-
tion formula, so one can write a = cosb for some b ∈C
and then proceed as above.

B5 Let (a1,a2) and (a′1,a
′
2) be distinct points in R2;

we want to show that f (a1,a2) 6= f (a′1,a
′
2). Write

(v1,v2) = (a′1,a
′
2)− (a1,a2), and let γ(t) = (a1,a2) +

t(v1,v2), t ∈ [0,1], be the path between (a1,a2) and
(a′1,a

′
2). Define a real-valued function g by g(t) =

(v1,v2) · f (γ(t)). By the Chain Rule,

f ′(γ(t)) =

(
∂ f1/∂x1 ∂ f1/∂x2

∂ f2/∂x1 ∂ f2/∂x2

)(
v1

v2

)
.

Abbreviate ∂ fi/∂x j by fi j; then

g′(t) =
(

v1 v2

)( f11 f12

f21 f22

)(
v1

v2

)
= f11v2

1 +( f12 + f21)v1v2 + f22v2
2

= f11

(
v1 +

f12 + f21

2 f11
v2

)2

+
4 f11 f22− ( f12 + f21)

2

4 f11
v2

2

≥ 0

since f11 and f11 f22− ( f12 + f21)
2/4 are positive by as-

sumption. Since the only way that equality could hold
is if v1 and v2 are both 0, we in fact have g′(t) > 0 for
all t. But if f (a1,a2) = f (a′1,a

′
2), then g(0) = g(1), a

contradiction.

Remark. A similar argument shows more generally
that f : Rn → Rn is injective if at all points in Rn, the
Jacobian matrix D f satisfies the following property: the
quadratic form associated to the bilinear form with ma-
trix D f (or the symmetrized bilinear form with matrix
(D f +(D f )T )/2) is positive definite. In the setting of
the problem, the symmetrized matrix is(

f11 ( f12 + f21)/2
( f12 + f21)/2 f22

)
,

and this is positive definite if and only if f11 and the
determinant of the matrix are both positive (Sylvester’s
criterion). Note that the assumptions that f12, f21 > 0
are unnecessary for the argument; it is also easy to
see that the hypotheses f11, f12 > 0 are also superflu-
ous. (The assumption f11 f22− ( f12 + f21)

2 > 0 implies
f11 f22 > 0, so both are nonzero and of the same sign;
by continuity, this common sign must be constant over
all of R2. If it is negative, then apply the same logic to
(− f1,− f2).)

B6 (by Manjul Bhargava) Let a(k,n) denote the num-
ber of sequences of length k taken from the set
{1,2,3,4,5,6,10} and having sum n. We prove that

a(k,n)< 2n
(

2018
2048

)k

by double induction on n+ k and n− k. The claim is
clearly true when n− k ≤ 0 and in particular when n =
k = 1, the smallest case for n+ k.
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We categorize the sequences counted by a(k,n) by
whether they end in 1,2,3,4,5,6,10; removing the last
term of such a sequence yields a sequence counted
by a(k− 1,n− 1),a(k− 1,n− 2),a(k− 1,n− 3),a(k−
1,n−4),a(k−1,n−5),a(k−1,n−6),a(k−1,n−10),
respectively. Therefore,

a(k,n) = a(k−1,n−1)+ · · ·
+a(k−1,n−6)+a(k−1,n−10)

< (2n−1 + · · ·+2n−6 +2n−10)

(
2018
2048

)k−1

= 2n
(

1
2
+ · · ·+ 1

64
+

1
1024

)(
2018
2048

)k−1

= 2n
(

1009
1024

)(
2018
2048

)k−1

= 2n
(

2018
2048

)k

where we used directly the induction hypothesis to ob-
tain the inequality on the second line. The case k =
2018,n = 3860 yields the desired result.

Remark. K. Soundararajan suggests the following rein-
terpretation of this argument. The quantity a(k,n) can
be interpreted as the coefficient of xn in (x+ x2 + · · ·+
x6 +x10)k. Since this polynomial has nonnegative coef-
ficients, for any x, we have

a(k,n)xn < (x+ x2 + · · ·+ x6 + x10)k.

Substituting x = 1
2 yields the bound stated above.

On a related note, Alexander Givental suggests that the
value n = 3860 (which is otherwise irrelevant to the
problem) may have been chosen for the following rea-
son: as a function of x, the upper bound x−n(x+ x2 +
· · ·+ x6 + x10)k is minimized when

x(1+2x+ · · ·+6x5 + x9)

x+ x2 + · · ·+ x6 + x10 =
n
k
.

In order for this to hold for x = 1/2, k = 2018, one must
take n = 3860.

Remark. For purposes of comparison, the stated bound
is about 101149, while the trivial upper bound given by
counting all sequences of length 2018 of positive inte-
gers that sum to 3860 is(

3859
2017

)
∼ 101158.

The latter can be easily derived by a “stars and bars”
argument: visualize each sequence of this form by rep-
resenting the value n by n stars and inserting a bar be-
tween adjacent terms of the sequence. The resulting
string of symbols consists of one star at the beginning,
2017 bar-star combinations, and 3860-2018 more stars.
Using a computer, it is practical to compute the exact
cardinality of S by finding the coefficient of x3860 in (x+
x2+ · · ·+x6+x10)2018. For example, this can be done in
Sage in a couple of seconds as follows. (The truncation
is truncated modulo x4000 for efficiency.)

sage: P.<x> = PowerSeriesRing(ZZ, 4000)
sage: f = (x + x^2 + x^3 + x^4 + \
....: x^5 + x^6 + x^10)^2018
sage: m = list(f)[3860]
sage: N(m)
8.04809122940636e1146

This computation shows that the upper bound of the
problem differs from the true value by a factor of about
150.


