A1 Determine all possible values of the expression
\[A^3 + B^3 + C^3 - 3ABC \]
where \(A, B, \) and \(C \) are nonnegative integers.

A2 In the triangle \(\triangle ABC \), let \(G \) be the centroid, and let \(I \) be the center of the inscribed circle. Let \(\alpha \) and \(\beta \) be the angles at the vertices \(A \) and \(B \), respectively. Suppose that the segment \(IG \) is parallel to \(AB \) and that \(\beta = \frac{2 \tan^{-1}(1/3)}{1} \). Find \(\alpha \).

A3 Given real numbers \(b_0, b_1, \ldots, b_{2019} \) with \(b_{2019} \neq 0 \), let \(z_1, z_2, \ldots, z_{2019} \) be the roots in the complex plane of the polynomial
\[P(z) = \sum_{k=0}^{2019} b_k z^k. \]
Let \(\mu = (|z_1| + \cdots + |z_{2019}|)/2019 \) be the average of the distances from \(z_1, z_2, \ldots, z_{2019} \) to the origin. Determine the largest constant \(M \) such that \(\mu \geq M \) for all choices of \(b_0, b_1, \ldots, b_{2019} \) that satisfy
\[1 \leq b_0 < b_1 < b_2 < \cdots < b_{2019} \leq 2019. \]

A4 Let \(f \) be a continuous real-valued function on \(\mathbb{R}^3 \). Suppose that for every sphere \(S \) of radius 1, the integral of \(f(x, y, z) \) over the surface of \(S \) equals 0. Must \(f(x, y, z) \) be identically 0?

A5 Let \(p \) be an odd prime number, and let \(\mathbb{F}_p \) denote the field of integers modulo \(p \). Let \(\mathbb{F}_p[x] \) be the ring of polynomials over \(\mathbb{F}_p \), and let \(q(x) \in \mathbb{F}_p[x] \) be given by
\[q(x) = \sum_{k=1}^{p-1} a_k x^k, \]
where
\[a_k = k^{(p-1)/2} \mod p. \]
Find the greatest nonnegative integer \(n \) such that \((x - 1)^n \) divides \(q(x) \) in \(\mathbb{F}_p[x] \).

A6 Let \(g \) be a real-valued function that is continuous on the closed interval \([0, 1]\) and twice differentiable on the open interval \((0, 1)\). Suppose that for some real number \(r > 1 \),
\[\lim_{x \to 0^+} \frac{g(x)}{x^r} = 0. \]
Prove that either
\[\lim_{x \to 0^+} g'(x) = 0 \quad \text{or} \quad \limsup_{x \to 0^+} |g''(x)| = \infty. \]

B1 Denote by \(\mathbb{Z}^2 \) the set of all points \((x, y)\) in the plane with integer coordinates. For each integer \(n \geq 0 \), let \(P_n \) be the subset of \(\mathbb{Z}^2 \) consisting of the points \((0, 0)\) together with all points \((x, y)\) such that \(x^2 + y^2 = 2^k \) for some integer \(k \leq n \). Determine, as a function of \(n \), the number of four-point subsets of \(P_n \) whose elements are the vertices of a square.

B2 For all \(n \geq 1 \), let
\[a_n = \sum_{k=1}^{n-1} \sin \left(\frac{(2k-1)\pi}{2n} \right) \frac{k}{\cos^2 \left(\frac{(k-1)\pi}{2n} \right) \cos^2 \left(\frac{k\pi}{2n} \right)}. \]
Determine
\[\lim_{n \to \infty} \frac{a_n}{n^3}. \]

B3 Let \(Q \) be an \(n \times n \) real orthogonal matrix, and let \(u \in \mathbb{R}^n \) be a unit column vector (that is, \(u^T u = 1 \)). Let \(P = I - 2uu^T \), where \(I \) is the \(n \times n \) identity matrix. Show that if 1 is not an eigenvalue of \(Q \), then 1 is an eigenvalue of \(PQ \).

B4 Let \(F \) be the set of functions \(f(x, y) \) that are twice continuously differentiable for \(x \geq 1, y \geq 1 \) and that satisfy the following two equations (where subscripts denote partial derivatives):
\[\begin{align*}
xf_x + yf_y &= xy \ln(xy), \\
x^2f_{xx} + y^2f_{yy} &= xy.
\end{align*} \]
For each \(f \in F \), let
\[m(f) = \min_{x \geq 1} (f(s + 1, s + 1) - f(s + 1, s) - f(s, s + 1) + f(s, s)). \]
Determine \(m(f) \), and show that it is independent of the choice of \(f \).

B5 Let \(F_m \) be the \(m \)th Fibonacci number, defined by \(F_1 = F_2 = 1 \) and \(F_m = F_{m-1} + F_{m-2} \) for all \(m \geq 3 \). Let \(p(x) \) be the polynomial of degree 1008 such that \(p(2n+1) = F_{2n+1} \) for \(n = 0, 1, 2, \ldots, 1008 \). Find integers \(j \) and \(k \) such that \(p(2019) = F_j - F_k \).

B6 Let \(\mathbb{Z}^n \) be the integer lattice in \(\mathbb{R}^n \). Two points in \(\mathbb{Z}^n \) are called neighbors if they differ by exactly 1 in one coordinate and are equal in all other coordinates. For which integers \(n \geq 1 \) does there exist a set of points \(S \subset \mathbb{Z}^n \) satisfying the following two conditions?

1. If \(p \) is in \(S \), then none of the neighbors of \(p \) is in \(S \).
2. If \(p \in \mathbb{Z}^n \) is not in \(S \), then exactly one of the neighbors of \(p \) is in \(S \).