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A1 The answer is all nonnegative integers not congruent to
3 or 6 (mod 9). Let X denote the given expression;
we first show that we can make X equal to each of the
claimed values. Write B = A+b and C = A+ c, so that

X = (b2−bc+ c2)(3A+b+ c).

By taking (b,c) = (0,1) or (b,c) = (1,1), we obtain re-
spectively X = 3A+ 1 and X = 3A+ 2; consequently,
as A varies, we achieve every nonnegative integer not
divisible by 3. By taking (b,c) = (1,2), we obtain
X = 9A+ 9; consequently, as A varies, we achieve ev-
ery positive integer divisible by 9. We may also achieve
X = 0 by taking (b,c) = (0,0).

In the other direction, X is always nonnegative: either
apply the arithmetic mean-geometric mean inequality,
or write b2−bc+ c2 = (b− c/2)2 +3c2/4 to see that it
is nonnegative. It thus only remains to show that if X
is a multiple of 3, then it is a multiple of 9. Note that
3A+b+c≡ b+c (mod 3) and b2−bc+c2 ≡ (b+c)2

(mod 3); consequently, if X is divisible by 3, then b+c
must be divisible by 3, so each factor in X = (b2−bc+
c2)(3A+b+c) is divisible by 3. This proves the claim.

Remark. The factorization of X used above can be
written more symmetrically as

X = (A+B+C)(A2 +B2 +C2−AB−BC−CA).

One interpretation of the factorization is that X is the
determinant of the circulant matrixA B C

C A B
B C A


which has the vector (1,1,1) as an eigenvector (on ei-
ther side) with eigenvalue A+B+C. The other eigen-
values are A+ ζ B+ ζ 2C where ζ is a primitive cube
root of unity; in fact, X is the norm form for the ring
Z[T ]/(T 3− 1), from which it follows directly that the
image of X is closed under multiplication. (This is
similar to the fact that the image of A2 +B2, which is
the norm form for the ring Z[i] of Gaussian integers, is
closed under multiplication.)

One can also the unique factorization property of the
ring Z[ζ ] of Eisenstein integers as follows. The three
factors of X over Z[ζ3] are pairwise congruent modulo
1−ζ3; consequently, if X is divisible by 3, then it is di-
visible by (1−ζ3)

3 =−3ζ3(1−ζ3) and hence (because
it is a rational integer) by 32.

A2 Solution 1. Let M and D denote the midpoint of AB
and the foot of the altitude from C to AB, respectively,

and let r be the inradius of 4ABC. Since C,G,M are
collinear with CM = 3GM, the distance from C to line
AB is 3 times the distance from G to AB, and the latter is
r since IG ‖AB; hence the altitude CD has length 3r. By
the double angle formula for tangent, CD

DB = tanβ = 3
4 ,

and so DB = 4r. Let E be the point where the incircle
meets AB; then EB = r/ tan(β

2 ) = 3r. It follows that
ED = r, whence the incircle is tangent to the altitude
CD. This implies that D = A, ABC is a right triangle,
and α = π

2 .

Remark. One can obtain a similar solution by fixing a
coordinate system with B at the origin and A on the pos-
itive x-axis. Since tan β

2 = 1
3 , we may assume without

loss of generality that I = (3,1). Then C lies on the in-
tersection of the line y = 3 (because CD = 3r as above)
with the line y = 3

4 x (because tanβ = 3
4 as above), forc-

ing C = (4,3) and so forth.

Solution 2. Let a,b,c be the lengths of BC,CA,AB,
respectively. Let r, s, and K denote the inradius,
semiperimeter, and area of 4ABC. By Heron’s For-
mula,

r2s2 = K2 = s(s−a)(s−b)(s− c).

If IG is parallel to AB, then

1
2

rc = area(4ABI) = area(4ABG) =
1
3

K =
1
3

rs

and so c = a+b
2 . Since s = 3(a+b)

4 and s− c = a+b
4 , we

have 3r2 = (s− a)(s− b). Let E be the point at which
the incircle meets AB; then s−b = EB = r/ tan(β

2 ) and
s−a= EA= r/ tan(α

2 ). It follows that tan(α

2 ) tan(β

2 ) =
1
3 and so tan(α

2 ) = 1. This implies that α = π

2 .

Remark. The equality c = a+b
2 can also be derived

from the vector representations

G =
A+B+C

3
, I =

aA+bB+ cC
a+b+ c

.

Solution 3. (by Catalin Zara) It is straightforward to
check that a right triangle with AC = 3,AB = 4,BC = 5
works. For example, in a coordinate system with A =
(0,0),B = (4,0),C = (0,3), we have

G =

(
4
3
,1
)
, I = (1,1)

and for D = (1,0),

tan
β

2
=

ID
BD

=
1
3
.
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It thus suffices to suggest that this example is unique up
to similarity.

Let C′ be the foot of the angle bisector at C. Then

CI
IC′

=
CA+CB

AB

and so IG is parallel to AB if and only if CA+CB =
2AB. We may assume without loss of generality that A
and B are fixed, in which case this condition restricts C
to an ellipse with foci at A and B. Since the angle β

is also fixed, up to symmetry C is further restricted to
a half-line starting at B; this intersects the ellipse in a
unique point.

Remark. Given that CA+CB = 2AB, one can also re-
cover the ratio of side lengths using the law of cosines.

A3 The answer is M = 2019−1/2019. For any choices of
b0, . . . ,b2019 as specified, AM-GM gives

µ ≥ |z1 · · ·z2019|1/2019 = |b0/b2019|1/2019 ≥ 2019−1/2019.

To see that this is best possible, consider b0, . . . ,b2019
given by bk = 2019k/2019 for all k. Then

P(z/20191/2019) =
2019

∑
k=0

zk =
z2020−1

z−1

has all of its roots on the unit circle. It follows that all
of the roots of P(z) have modulus 2019−1/2019, and so
µ = 2019−1/2019 in this case.

A4 The answer is no. Let g : R→ R be any continuous
function with g(t +2) = g(t) for all t and

∫ 2
0 g(t)dt = 0

(for instance, g(t) = sin(πt)). Define f (x,y,z) = g(z).
We claim that for any sphere S of radius 1,

∫∫
S f dS = 0.

Indeed, let S be the unit sphere centered at (x0,y0,z0).
We can parametrize S by S(φ ,θ) = (x0,y0,z0) +
(sinφ cosθ ,sinφ sinθ ,cosφ) for φ ∈ [0,π] and θ ∈
[0,2π]. Then we have

∫∫
S

f (x,y,z)dS =
∫

π

0

∫ 2π

0
f (S(φ ,θ))

∥∥∥∥ ∂S
∂φ
× ∂S

∂θ

∥∥∥∥ dθ dφ

=
∫

π

0

∫ 2π

0
g(z0 + cosφ)sinφ dθ dφ

= 2π

∫ 1

−1
g(z0 + t)dt,

where we have used the substitution t = cosφ ; but this
last integral is 0 for any z0 by construction.

Remark. The solution recovers the famous observation
of Archimedes that the surface area of a spherical cap
is linear in the height of the cap. In place of spheri-
cal coordinates, one may also compute

∫∫
S f (x,y,z)dS

by computing the integral over a ball of radius r, then
computing the derivative with respect to r and evaluat-
ing at r = 1.

Noam Elkies points out that a similar result holds in Rn

for any n. Also, there exist nonzero continuous func-
tions on Rn whose integral over any unit ball vanishes;
this implies certain negative results about image recon-
struction.

A5 The answer is p−1
2 . Define the operator D = x d

dx ,
where d

dx indicates formal differentiation of polyno-
mials. For n as in the problem statement, we have
q(x) = (x−1)nr(x) for some polynomial r(x) in Fp not
divisible by x−1. For m = 0, . . . ,n, by the product rule
we have

(Dmq)(x)≡ nmxm(x−1)n−mr(x) (mod (x−1)n−m+1).

Since r(1) 6= 0 and n 6≡ 0 (mod p) (because n ≤
deg(q) = p−1), we may identify n as the smallest non-
negative integer for which (Dnq)(1) 6= 0.

Now note that q = D(p−1)/2s for

s(x) = 1+ x+ · · ·+ xp−1 =
xp−1
x−1

= (x−1)p−1

since (x− 1)p = xp − 1 in Fp[x]. By the same logic
as above, (Dns)(1) = 0 for n = 0, . . . , p− 2 but not for
n = p−1. This implies the claimed result.

Remark. One may also finish by checking directly that
for any positive integer m,

p−1

∑
k=1

km ≡

{
−1 (mod p) if (p−1)|m
0 (mod p) otherwise.

If (p−1)|m, then km ≡ 1 (mod p) by the little Fermat
theorem, and so the sum is congruent to p− 1 ≡ −1
(mod p). Otherwise, for any primitive root ` mod p,
multiplying the sum by `m permutes the terms modulo
p and hence does not change the sum modulo p; since
`n 6≡ 1 (mod p), this is only possible if the sum is zero
modulo p.

A6 Solution 1. (by Harm Derksen) We assume
that limsupx→0+ xr|g′′(x)| < ∞ and deduce that
limx→0+ g′(x) = 0. Note that

limsup
x→0+

xr sup{|g′′(ξ )| : ξ ∈ [x/2,x]}< ∞.

Suppose for the moment that there exists a function h
on (0,1) which is positive, nondecreasing, and satisfies

lim
x→0+

g(x)
h(x)

= lim
x→0+

h(x)
xr = 0.

For some c> 0, h(x)< xr < x for x∈ (0,c). By Taylor’s
theorem with remainder, we can find a function ξ on
(0,c) such that ξ (x) ∈ [x−h(x),x] and

g(x−h(x)) = g(x)−g′(x)h(x)+
1
2

g′′(ξ (x))h(x)2.
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We can thus express g′(x) as

g(x)
h(x)

+
1
2

xrg′′(ξ (x))
h(x)
xr −

g(x−h(x))
h(x−h(x))

h(x−h(x))
h(x)

.

As x → 0+, g(x)/h(x), g(x− h(x))/h(x− h(x)), and
h(x)/xr tend to 0, while xrg′′(ξ (x)) remains bounded
(because ξ (x) ≥ x− h(x) ≥ x− xr ≥ x/2 for x small)
and h(x − h(x))/h(x) is bounded in (0,1]. Hence
limx→0+ g′(x) = 0 as desired.

It thus only remains to produce a function h with the
desired properties; this amounts to “inserting” a func-
tion between g(x) and xr while taking care to ensure the
positive and nondecreasing properties. One of many op-
tions is h(x) = xr

√
f (x) where

f (x) = sup{|z−rg(z)| : z ∈ (0,x)},

so that

h(x)
xr =

√
f (x),

g(x)
h(x)

=
√

f (x)x−rg(x).

Solution 2. We argue by contradiction. Assume that
limsupx→0+ xr|g′′(x)| < ∞, so that there is an M such
that |g′′(x)|<Mx−r for all x; and that limx→0+ g′(x) 6= 0,
so that there is an ε0 > 0 and a sequence xn → 0 with
|g′(xn)|> ε0 for all n.

Now let ε > 0 be arbitrary. Since limx→0+ g(x)x−r = 0,
there is a δ > 0 for which |g(x)| < εxr for all x < δ .
Choose n sufficiently large that ε0xr

n
2M < xn and xn < δ/2;

then xn+
ε0xr

n
2M < 2xn < δ . In addition, we have |g′(x)|>

ε0/2 for all x ∈ [xn,xn +
ε0xr

n
2M ] since |g′(xn)| > ε0 and

|g′′(x)|< Mx−r ≤Mx−r
n in this range. It follows that

ε2
0
2

xr
n

2M
< |g(xn +

ε0xr
n

2M
)−g(xn)|

≤ |g(xn +
ε0xr

n

2M
)|+ |g(xn)|

< ε

(
(xn +

ε0xr
n

2M
)r + xr

n

)
< ε(1+2r)xr

n,

whence 4M(1+2r)ε > ε2
0 . Since ε > 0 is arbitrary and

M,r,ε0 are fixed, this gives the desired contradiction.

Remark. Harm Derksen points out that the “or” in the
problem need not be exclusive. For example, take

g(x) =

{
x5 sin(x−3) x ∈ (0,1]
0 x = 0.

Then for x ∈ (0,1),

g′(x) = 5x4 sin(x−3)−3xcos(x−3)

g′′(x) = (20x3−9x−3)sin(x−3)−18cos(x−3).

For r = 2, limx→0+ x−rg(x) = limx→0+ x3 sin(x−3) = 0,
limx→0+ g′(x) = 0 and xrg′′(x) = (20x5 −
9x−1)sin(x−3) − 18x2 cos(x−3) is unbounded as
x→ 0+. (Note that g′(x) is not differentiable at x = 0.)

B1 The answer is 5n+1.

We first determine the set Pn. Let Qn be the set of points
in Z2 of the form (0,±2k) or (±2k,0) for some k ≤ n.
Let Rn be the set of points in Z2 of the form (±2k,±2k)
for some k ≤ n (the two signs being chosen indepen-
dently). We prove by induction on n that

Pn = {(0,0)}∪Qbn/2c∪Rb(n−1)/2c.

We take as base cases the straightforward computations

P0 = {(0,0),(±1,0),(0,±1)}
P1 = P0∪{(±1,±1)}.

For n≥ 2, it is clear that {(0,0)}∪Qbn/2c∪Rb(n−1)/2c ⊆
Pn, so it remains to prove the reverse inclusion. For
(x,y) ∈ Pn, note that x2 + y2 ≡ 0 (mod 4); since every
perfect square is congruent to either 0 or 1 modulo 4,
x and y must both be even. Consequently, (x/2,y/2) ∈
Pn−2, so we may appeal to the induction hypothesis to
conclude.

We next identify all of the squares with vertices in Pn.
In the following discussion, let (a,b) and (c,d) be two
opposite vertices of a square, so that the other two ver-
tices are(

a−b+ c+d
2

,
a+b− c+d

2

)
and (

a+b+ c−d
2

,
−a+b+ c+d

2

)
.

– Suppose that (a,b) = (0,0). Then (c,d) may be
any element of Pn not contained in P0. The number
of such squares is 4n.

– Suppose that (a,b),(c,d) ∈ Qk for some k. There
is one such square with vertices

{(0,2k),(0,2−k),(2k,0),(2−k,0)}

for k = 0, . . . ,b n
2c, for a total of b n

2c+ 1. To
show that there are no others, by symmetry it suf-
fices to rule out the existence of a square with
opposite vertices (a,0) and (c,0) where a > |c|.
The other two vertices of this square would be
((a+c)/2,(a−c)/2) and ((a+c)/2,(−a+c)/2).
These cannot belong to any Qk, or be equal to
(0,0), because |a+ c|, |a− c| ≥ a−|c|> 0 by the
triangle inequality. These also cannot belong to
any Rk because (a+ |c|)/2> (a−|c|)/2. (One can
also phrase this argument in geometric terms.)

– Suppose that (a,b),(c,d) ∈ Rk for some k. There
is one such square with vertices

{(2k,2k),(2k,−2k),(−2k,2k),(−2k,−2k)}

for k = 0, . . . ,b n−1
2 c, for a total of b n+1

2 c. To show
that there are no others, we may reduce to the pre-
vious case: rotating by an angle of π

4 and then
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rescaling by a factor of
√

2 would yield a square
with two opposite vertices in some Qk not cen-
tered at (0,0), which we have already ruled out.

– It remains to show that we cannot have (a,b) ∈
Qk and (c,d) ∈ Rk for some k. By symmetry, we
may reduce to the case where (a,b) = (0,2k) and
(c,d) = (2`,±2`). If d > 0, then the third vertex
(2k−1,2k−1 +2`) is impossible. If d < 0, then the
third vertex (−2k−1,2k−1−2`) is impossible.

Summing up, we obtain

4n+
⌊n

2

⌋
+1+

⌊
n+1

2

⌋
= 5n+1

squares, proving the claim.

Remark. Given the computation of Pn, we can alter-
natively show that the number of squares with vertices
in Pn is 5n+ 1 as follows. Since this is clearly true for
n = 1, it suffices to show that for n ≥ 2, there are ex-
actly 5 squares with vertices in Pn, at least one of which
is not in Pn−1. Note that the convex hull of Pn is a square
S whose four vertices are the four points in Pn \Pn−1. If
v is one of these points, then a square with a vertex at
v can only lie in S if its two sides containing v are in
line with the two sides of S containing v. It follows that
there are exactly two squares with a vertex at v and all
vertices in Pn: the square corresponding to S itself, and a
square whose vertex diagonally opposite to v is the ori-
gin. Taking the union over the four points in Pn \Pn−1
gives a total of 5 squares, as desired.

B2 The answer is 8
π3 .

Solution 1. By the double angle and sum-product iden-
tities for cosine, we have

2cos2
(
(k−1)π

2n

)
−2cos2

(
kπ

2n

)
= cos

(
(k−1)π

n

)
− cos

(
kπ

n

)
= 2sin

(
(2k−1)π

2n

)
sin
(

π

2n

)
,

and it follows that the summand in an can be written as

1
sin
(

π

2n

)
− 1

cos2
(
(k−1)π

2n

) +
1

cos2
( kπ

2n

)
 .

Thus the sum telescopes and we find that

an =
1

sin
(

π

2n

)
−1+

1

cos2
(
(n−1)π

2n

)
=− 1

sin
(

π

2n

)+ 1
sin3 ( π

2n

) .
Finally, since limx→0

sinx
x = 1, we have

limn→∞

(
nsin π

2n

)
= π

2 , and thus limn→∞
an
n3 = 8

π3 .

Solution 2. We first substitute n− k for k to obtain

an =
n−1

∑
k=1

sin
(
(2k+1)π

2n

)
sin2

(
(k+1)π

2n

)
sin2 ( kπ

2n

) .

We then use the estimate

sinx
x

= 1+O(x2) (x ∈ [0,π])

to rewrite the summand as(
(2k−1)π

2n

)
(
(k+1)π

2n

)2 ( kπ

2n

)2

(
1+O

(
k2

n2

))

which simplifies to

8(2k−1)n3

k2(k+1)2π3 +O
(n

k

)
.

Consequently,

an

n3 =
n−1

∑
k=1

(
8(2k−1)

k2(k+1)2π3 +O
(

1
kn2

))
=

8
π3

n−1

∑
k=1

(2k−1)
k2(k+1)2 +O

(
logn
n2

)
.

Finally, note that

n−1

∑
k=1

(2k−1)
k2(k+1)2 =

n−1

∑
k=1

(
1
k2 −

1
(k+1)2

)
= 1− 1

n2

converges to 1, and so limn→∞
an
n3 = 8

π3 .

B3 Solution 1. We first note that P corresponds to the lin-
ear transformation on Rn given by reflection in the hy-
perplane perpendicular to u: P(u) = −u, and for any v
with 〈u,v〉= 0, P(v) = v. In particular, P is an orthogo-
nal matrix of determinant −1.

We next claim that if Q is an n× n orthogonal matrix
that does not have 1 as an eigenvalue, then detQ =
(−1)n. To see this, recall that the roots of the char-
acteristic polynomial p(t) = det(tI−Q) all lie on the
unit circle in C, and all non-real roots occur in conju-
gate pairs (p(t) has real coefficients, and orthogonality
implies that p(t) = ±tn p(t−1)). The product of each
conjugate pair of roots is 1; thus detQ = (−1)k where
k is the multiplicity of −1 as a root of p(t). Since 1 is
not a root and all other roots appear in conjugate pairs,
k and n have the same parity, and so detQ = (−1)n.

Finally, if neither of the orthogonal matrices Q nor PQ
has 1 as an eigenvalue, then detQ = det(PQ) = (−1)n,
contradicting the fact that detP = −1. The result fol-
lows.

Remark. It can be shown that any n× n orthogonal
matrix Q can be written as a product of at most n hy-
perplane reflections (Householder matrices). If equality
occurs, then det(Q) = (−1)n; if equality does not occur,
then Q has 1 as an eigenvalue. Consequently, equality
fails for one of Q and PQ, and that matrix has 1 as an
eigenvalue.
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Sucharit Sarkar suggests the following topological in-
terpretation: an orthogonal matrix without 1 as an
eigenvalue induces a fixed-point-free map from the
(n− 1)-sphere to itself, and the degree of such a map
must be (−1)n.

Solution 2. This solution uses the (reverse) Cayley
transform: if Q is an orthogonal matrix not having 1
as an eigenvalue, then

A = (I−Q)(I +Q)−1

is a skew-symmetric matrix (that is, AT =−A).

Suppose then that Q does not have 1 as an eigenvalue.
Let V be the orthogonal complement of u in Rn. On one
hand, for v ∈V ,

(I−Q)−1(I−QP)v = (I−Q)−1(I−Q)v = v.

On the other hand,

(I−Q)−1(I−QP)u = (I−Q)−1(I +Q)u = Au

and 〈u,Au〉 = 〈AT u,u〉 = 〈−Au,u〉, so Au ∈ V . Put
w = (1−A)u; then (1−QP)w = 0, so QP has 1 as an
eigenvalue, and the same for PQ because PQ and QP
have the same characteristic polynomial.

Remark. The Cayley transform is the following con-
struction: if A is a skew-symmetric matrix, then I+A is
invertible and

Q = (I−A)(I +A)−1

is an orthogonal matrix.

Remark. (by Steven Klee) A related argument is
to compute det(PQ− I) using the matrix determinant
lemma: if A is an invertible n× n matrix and v,w are
1×n column vectors, then

det(A+ vwT ) = det(A)(1+wT A−1v).

This reduces to the case A = I, in which case it again
comes down to the fact that the product of two square
matrices (in this case, obtained from v and w by padding
with zeroes) retains the same characteristic polynomial
when the factors are reversed.

B4 Solution 1. We compute that m( f ) = 2ln2− 1
2 . La-

bel the given differential equations by (1) and (2). If
we write, e.g., x ∂

∂x (1) for the result of differentiat-
ing (1) by x and multiplying the resulting equation by
x, then the combination x ∂

∂x (1) + y ∂

∂y (1)− (1)− (2)
gives the equation 2xy fxy = xy ln(xy)+xy, whence fxy =
1
2 (ln(x)+ ln(y)+1).

Now we observe that

f (s+1,s+1)− f (s+1,s)− f (s,s+1)+ f (s,s)

=
∫ s+1

s

∫ s+1

s
fxy dydx

=
1
2

∫ s+1

s

∫ s+1

s
(ln(x)+ ln(y)+1)dydx

=
1
2
+
∫ s+1

s
ln(x)dx.

Since ln(x) is increasing,
∫ s+1

s ln(x)dx is an increasing
function of s, and so it is minimized over s ∈ [1,∞)
when s = 1. We conclude that

m( f ) =
1
2
+
∫ 2

1
ln(x)dx = 2ln2− 1

2

independent of f .

Remark. The phrasing of the question suggests that
solvers were not expected to prove that F is nonempty,
even though this is necessary to make the definition of
m( f ) logically meaningful. Existence will be explicitly
established in the next solution.

Solution 2. We first verify that

f (x,y) =
1
2
(xy ln(xy)− xy)

is an element of F , by computing that

x fx = y fy =
1
2

xy ln(xy)

x2 fxx = y2 fyy = xy.

(See the following remark for motivation for this guess.)

We next show that the only elements of F are f +
a ln(x/y) + b where a,b are constants. Suppose that
f + g is a second element of F . As in the first solu-
tion, we deduce that gxy = 0; this implies that g(x,y) =
u(x)+ v(y) for some twice continuously differentiable
functions u and v. We also have xgx + ygy = 0, which
now asserts that xgx = −ygy is equal to some constant
a. This yields that g = a ln(x/y)+b as desired.

We next observe that

g(s+1,s+1)−g(s+1,s)−g(s,s+1)+g(s,s) = 0,

so m( f ) = m( f +g). It thus remains to compute m( f ).
To do this, we verify that

f (s+1,s+1)− f (s+1,s)− f (s,s+1)+ f (s,s)

is nondecreasing in s by computing its derivative to be
ln(s + 1)− ln(s) (either directly or using the integral
representation from the first solution). We thus mini-
mize by taking s = 1 as in the first solution.

Remark. One way to make a correct guess for f is to
notice that the given equations are both symmetric in x
and y and posit that f should also be symmetric. Any
symmetric function of x and y can be written in terms
of the variables u = x+y and v = xy, so in principle we
could translate the equations into those variables and
solve. However, before trying this, we observe that xy
appears explicitly in the equations, so it is reasonable to
make a first guess of the form f (x,y) = h(xy). For such
a choice, we have

x fx + y fy = 2xyh′ = xy ln(xy)

which forces us to set h(t) = 1
2 (t ln(t)− t).
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B5 Solution 1. We prove that ( j,k) = (2019,1010) is a
valid solution. More generally, let p(x) be the polyno-
mial of degree N such that p(2n+ 1) = F2n+1 for 0 ≤
n≤ N. We will show that p(2N +3) = F2N+3−FN+2.

Define a sequence of polynomials p0(x), . . . , pN(x) by
p0(x) = p(x) and pk(x) = pk−1(x)− pk−1(x+2) for k≥
1. Then by induction on k, it is the case that pk(2n+
1) = F2n+1+k for 0 ≤ n ≤ N − k, and also that pk has
degree (at most) N− k for k ≥ 1. Thus pN(x) = FN+1
since pN(1) = FN+1 and pN is constant.

We now claim that for 0 ≤ k ≤ N, pN−k(2k + 3) =
∑

k
j=0 FN+1+ j. We prove this again by induction on k:

for the induction step, we have

pN−k(2k+3) = pN−k(2k+1)+ pN−k+1(2k+1)

= FN+1+k +
k−1

∑
j=0

FN+1+ j.

Thus we have p(2N+3) = p0(2N+3) = ∑
N
j=0 FN+1+ j.

Now one final induction shows that ∑
m
j=1 Fj =Fm+2−1,

and so p(2N + 3) = F2N+3−FN+2, as claimed. In the
case N = 1008, we thus have p(2019) = F2019−F1010.

Solution 2. This solution uses the Lagrange interpola-
tion formula: given x0, . . . ,xn and y0, . . . ,yn, the unique
polynomial P of degree at most n satisfying P(xi) = yi
for i = 0, . . . ,n is

n

∑
i=0

P(xi)∏
j 6=i

x− x j

xi− x j
=

Write

Fn =
1√
5
(αn−β

−n), α =
1+
√

5
2

,β =
1−
√

5
2

.

For γ ∈R, let pγ(x) be the unique polynomial of degree
at most 1008 satisfying

p1(2n+1) = γ
2n+1, p2(2n+1) = γ

2n+1 (n = 0, . . . ,1008);

then p(x) = 1√
5
(pα(x)− pβ (x)).

By Lagrange interpolation,

pγ(2019) =
1008

∑
n=0

γ
2n+1

∏
0≤ j≤1008, j 6=n

2019− (2 j+1)
(2n+1)− (2 j+1)

=
1008

∑
n=0

γ
2n+1

∏
0≤ j≤1008, j 6=n

1009− j
n− j

=
1008

∑
n=0

γ
2n+1(−1)1008−n

(
1009

n

)
=−γ((γ2−1)1009− (γ2)1009).

For γ ∈ {α,β} we have γ2 = γ +1 and so

pγ(2019) = γ
2019− γ

1010.

We thus deduce that p(x) = F2019−F1010 as claimed.

Remark. Karl Mahlburg suggests the following variant
of this. As above, use Lagrange interpolation to write

p(2019) =
1008

∑
j=0

(
1009

j

)
Fj;

it will thus suffice to verify (by substiting j 7→ 1009− j)
that

1009

∑
j=0

(
1009

j

)
Fj+1 = F2019.

This identity has the following combinatorial interpre-
tation. Recall that Fn+1 counts the number of ways to
tile a 1×n rectangle with 1×1 squares and 1×2 domi-
noes (see below). In any such tiling with n = 2018, let
j be the number of squares among the first 1009 tiles.
These can be ordered in

(1009
j

)
ways, and the remaining

2018− j−2(1009− j) = j squares can be tiled in Fj+1
ways.

As an aside, this interpretation of Fn+1 is the oldest
known interpretation of the Fibonacci sequence, long
predating Fibonacci himself. In ancient Sanskrit, sylla-
bles were classified as long or short, and a long syllable
was considered to be twice as long as a short syllable;
consequently, the number of syllable patterns of total
length n equals Fn+1.

Remark. It is not difficult to show that the solution
( j,k) = (2019,2010) is unique (in positive integers).
First, note that to have Fj−Fk > 0, we must have k < j.
If j < 2019, then

F2019−F1010 = F2018 +F2017−F1010 > Fj > Fj−Fk.

If j > 2020, then

Fj−Fk ≥ Fj−Fj−1 = Fj−2 ≥ F2019 > F2019−F1010.

Since j = 2019 obviously forces k = 1010, the only
other possible solution would be with j = 2020. But
then

(Fj−Fk)− (F2019−F1010) = (F2018−Fk)+F1010

which is negative for k = 2019 (it equals F1010−F2017)
and positive for k ≤ 2018.

B6 Such a set exists for every n. To construct an example,
define the function f : Zn→ Z/(2n+1)Z by

f (x1, . . . ,xn) = x1 +2x2 + · · ·+nxn (mod 2n+1),

then let S be the preimage of 0.

To check condition (1), note that if p ∈ S and q is a
neighbor of p differing only in coordinate i, then

f (q) = f (p)± i≡±i (mod 2n+1)
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and so q /∈ S.

To check condition (2), note that if p ∈ Zn is not in S,
then there exists a unique choice of i ∈ {1, . . . ,n} such
that f (p) is congruent to one of +i or −i modulo 2n+
1. The unique neighbor q of p in S is then obtained
by either subtracting 1 from, or adding 1 to, the i-th
coordinate of p.

Remark. According to Art of Problem Solving (thread
c6h366290), this problem was a 1985 IMO submission
from Czechoslovakia. For an application to steganog-
raphy, see: J. Fridrich and P. Lisoněk, Grid colorings in
steganography, IEEE Transactions on Information The-
ory 53 (2007), 1547–1549.


