Solutions to the 80th William Lowell Putnam Mathematical Competition Saturday, December 7, 2019

Kiran Kedlaya and Lenny Ng

A1 The answer is all nonnegative integers not congruent to 3 or $6(\bmod 9)$. Let X denote the given expression; we first show that we can make X equal to each of the claimed values. Write $B=A+b$ and $C=A+c$, so that

$$
X=\left(b^{2}-b c+c^{2}\right)(3 A+b+c)
$$

By taking $(b, c)=(0,1)$ or $(b, c)=(1,1)$, we obtain respectively $X=3 A+1$ and $X=3 A+2$; consequently, as A varies, we achieve every nonnegative integer not divisible by 3 . By taking $(b, c)=(1,2)$, we obtain $X=9 A+9$; consequently, as A varies, we achieve every positive integer divisible by 9 . We may also achieve $X=0$ by taking $(b, c)=(0,0)$.
In the other direction, X is always nonnegative: either apply the arithmetic mean-geometric mean inequality, or write $b^{2}-b c+c^{2}=(b-c / 2)^{2}+3 c^{2} / 4$ to see that it is nonnegative. It thus only remains to show that if X is a multiple of 3 , then it is a multiple of 9 . Note that $3 A+b+c \equiv b+c(\bmod 3)$ and $b^{2}-b c+c^{2} \equiv(b+c)^{2}$ $(\bmod 3)$; consequently, if X is divisible by 3 , then $b+c$ must be divisible by 3 , so each factor in $X=\left(b^{2}-b c+\right.$ $\left.c^{2}\right)(3 A+b+c)$ is divisible by 3. This proves the claim.
Remark. The factorization of X used above can be written more symmetrically as
$X=(A+B+C)\left(A^{2}+B^{2}+C^{2}-A B-B C-C A\right)$.
One interpretation of the factorization is that X is the determinant of the circulant matrix

$$
\left(\begin{array}{lll}
A & B & C \\
C & A & B \\
B & C & A
\end{array}\right)
$$

which has the vector $(1,1,1)$ as an eigenvector (on either side) with eigenvalue $A+B+C$. The other eigenvalues are $A+\zeta B+\zeta^{2} C$ where ζ is a primitive cube root of unity; in fact, X is the norm form for the ring $\mathbb{Z}[T] /\left(T^{3}-1\right)$, from which it follows directly that the image of X is closed under multiplication. (This is similar to the fact that the image of $A^{2}+B^{2}$, which is the norm form for the ring $\mathbb{Z}[i]$ of Gaussian integers, is closed under multiplication.)
One can also the unique factorization property of the ring $\mathbb{Z}[\zeta]$ of Eisenstein integers as follows. The three factors of X over $\mathbb{Z}\left[\zeta_{3}\right]$ are pairwise congruent modulo $1-\zeta_{3}$; consequently, if X is divisible by 3 , then it is divisible by $\left(1-\zeta_{3}\right)^{3}=-3 \zeta_{3}\left(1-\zeta_{3}\right)$ and hence (because it is a rational integer) by 3^{2}.

A2 Solution 1. Let M and D denote the midpoint of $A B$ and the foot of the altitude from C to $A B$, respectively,
and let r be the inradius of $\triangle A B C$. Since C, G, M are collinear with $C M=3 G M$, the distance from C to line $A B$ is 3 times the distance from G to $A B$, and the latter is r since $I G \| A B$; hence the altitude $C D$ has length $3 r$. By the double angle formula for tangent, $\frac{C D}{D B}=\tan \beta=\frac{3}{4}$, and so $D B=4 r$. Let E be the point where the incircle meets $A B$; then $E B=r / \tan \left(\frac{\beta}{2}\right)=3 r$. It follows that $E D=r$, whence the incircle is tangent to the altitude $C D$. This implies that $D=A, A B C$ is a right triangle, and $\alpha=\frac{\pi}{2}$.
Remark. One can obtain a similar solution by fixing a coordinate system with B at the origin and A on the positive x-axis. Since $\tan \frac{\beta}{2}=\frac{1}{3}$, we may assume without loss of generality that $I=(3,1)$. Then C lies on the intersection of the line $y=3$ (because $C D=3 r$ as above) with the line $y=\frac{3}{4} x$ (because $\tan \beta=\frac{3}{4}$ as above), forcing $C=(4,3)$ and so forth.
Solution 2. Let a, b, c be the lengths of $B C, C A, A B$, respectively. Let r, s, and K denote the inradius, semiperimeter, and area of $\triangle A B C$. By Heron's Formula,

$$
r^{2} s^{2}=K^{2}=s(s-a)(s-b)(s-c)
$$

If $I G$ is parallel to $A B$, then
$\frac{1}{2} r c=\operatorname{area}(\triangle A B I)=\operatorname{area}(\triangle A B G)=\frac{1}{3} K=\frac{1}{3} r s$
and so $c=\frac{a+b}{2}$. Since $s=\frac{3(a+b)}{4}$ and $s-c=\frac{a+b}{4}$, we have $3 r^{2}=(s-a)(s-b)$. Let E be the point at which the incircle meets $A B$; then $s-b=E B=r / \tan \left(\frac{\beta}{2}\right)$ and $s-a=E A=r / \tan \left(\frac{\alpha}{2}\right)$. It follows that $\tan \left(\frac{\alpha}{2}\right) \tan \left(\frac{\beta}{2}\right)=$ $\frac{1}{3}$ and so $\tan \left(\frac{\alpha}{2}\right)=1$. This implies that $\alpha=\frac{\pi}{2}$.
Remark. The equality $c=\frac{a+b}{2}$ can also be derived from the vector representations

$$
G=\frac{A+B+C}{3}, \quad I=\frac{a A+b B+c C}{a+b+c} .
$$

Solution 3. (by Catalin Zara) It is straightforward to check that a right triangle with $A C=3, A B=4, B C=5$ works. For example, in a coordinate system with $A=$ $(0,0), B=(4,0), C=(0,3)$, we have

$$
G=\left(\frac{4}{3}, 1\right), \quad I=(1,1)
$$

and for $D=(1,0)$,

$$
\tan \frac{\beta}{2}=\frac{I D}{B D}=\frac{1}{3}
$$

It thus suffices to suggest that this example is unique up to similarity.
Let C^{\prime} be the foot of the angle bisector at C. Then

$$
\frac{C I}{I C^{\prime}}=\frac{C A+C B}{A B}
$$

and so $I G$ is parallel to $A B$ if and only if $C A+C B=$ $2 A B$. We may assume without loss of generality that A and B are fixed, in which case this condition restricts C to an ellipse with foci at A and B. Since the angle β is also fixed, up to symmetry C is further restricted to a half-line starting at B; this intersects the ellipse in a unique point.
Remark. Given that $C A+C B=2 A B$, one can also recover the ratio of side lengths using the law of cosines.

A3 The answer is $M=2019^{-1 / 2019}$. For any choices of b_{0}, \ldots, b_{2019} as specified, AM-GM gives

$$
\mu \geq\left|z_{1} \cdots z_{2019}\right|^{1 / 2019}=\left|b_{0} / b_{2019}\right|^{1 / 2019} \geq 2019^{-1 / 2019}
$$

To see that this is best possible, consider b_{0}, \ldots, b_{2019} given by $b_{k}=2019^{k / 2019}$ for all k. Then

$$
P\left(z / 2019^{1 / 2019}\right)=\sum_{k=0}^{2019} z^{k}=\frac{z^{2020}-1}{z-1}
$$

has all of its roots on the unit circle. It follows that all of the roots of $P(z)$ have modulus $2019^{-1 / 2019}$, and so $\mu=2019^{-1 / 2019}$ in this case.

A4 The answer is no. Let $g: \mathbb{R} \rightarrow \mathbb{R}$ be any continuous function with $g(t+2)=g(t)$ for all t and $\int_{0}^{2} g(t) d t=0$ (for instance, $g(t)=\sin (\pi t)$). Define $f(x, y, z)=g(z)$. We claim that for any sphere S of radius $1, \iint_{S} f d S=0$.
Indeed, let S be the unit sphere centered at $\left(x_{0}, y_{0}, z_{0}\right)$. We can parametrize S by $S(\phi, \theta)=\left(x_{0}, y_{0}, z_{0}\right)+$ $(\sin \phi \cos \theta, \sin \phi \sin \theta, \cos \phi)$ for $\phi \in[0, \pi]$ and $\theta \in$ $[0,2 \pi]$. Then we have

$$
\begin{aligned}
\iint_{S} f(x, y, z) d S & =\int_{0}^{\pi} \int_{0}^{2 \pi} f(S(\phi, \theta))\left\|\frac{\partial S}{\partial \phi} \times \frac{\partial S}{\partial \theta}\right\| d \theta d \phi \\
& =\int_{0}^{\pi} \int_{0}^{2 \pi} g\left(z_{0}+\cos \phi\right) \sin \phi d \theta d \phi \\
& =2 \pi \int_{-1}^{1} g\left(z_{0}+t\right) d t
\end{aligned}
$$

where we have used the substitution $t=\cos \phi$; but this last integral is 0 for any z_{0} by construction.

Remark. The solution recovers the famous observation of Archimedes that the surface area of a spherical cap is linear in the height of the cap. In place of spherical coordinates, one may also compute $\iint_{S} f(x, y, z) d S$ by computing the integral over a ball of radius r, then computing the derivative with respect to r and evaluating at $r=1$.

Noam Elkies points out that a similar result holds in \mathbb{R}^{n} for any n. Also, there exist nonzero continuous functions on \mathbb{R}^{n} whose integral over any unit ball vanishes; this implies certain negative results about image reconstruction.

A5 The answer is $\frac{p-1}{2}$. Define the operator $D=x \frac{d}{d x}$, where $\frac{d}{d x}$ indicates formal differentiation of polynomials. For n as in the problem statement, we have $q(x)=(x-1)^{n} r(x)$ for some polynomial $r(x)$ in \mathbb{F}_{p} not divisible by $x-1$. For $m=0, \ldots, n$, by the product rule we have
$\left(D^{m} q\right)(x) \equiv n^{m} x^{m}(x-1)^{n-m} r(x) \quad\left(\bmod (x-1)^{n-m+1}\right)$.
Since $r(1) \neq 0$ and $n \not \equiv 0(\bmod p)$ (because $n \leq$ $\operatorname{deg}(q)=p-1$), we may identify n as the smallest nonnegative integer for which $\left(D^{n} q\right)(1) \neq 0$.
Now note that $q=D^{(p-1) / 2} s$ for
$s(x)=1+x+\cdots+x^{p-1}=\frac{x^{p}-1}{x-1}=(x-1)^{p-1}$
since $(x-1)^{p}=x^{p}-1$ in $\mathbb{F}_{p}[x]$. By the same logic as above, $\left(D^{n} s\right)(1)=0$ for $n=0, \ldots, p-2$ but not for $n=p-1$. This implies the claimed result.
Remark. One may also finish by checking directly that for any positive integer m,

$$
\sum_{k=1}^{p-1} k^{m} \equiv\left\{\begin{array}{lll}
-1 & (\bmod p) & \text { if }(p-1) \mid m \\
0 & (\bmod p) & \text { otherwise }
\end{array}\right.
$$

If $(p-1) \mid m$, then $k^{m} \equiv 1(\bmod p)$ by the little Fermat theorem, and so the sum is congruent to $p-1 \equiv-1$ $(\bmod p)$. Otherwise, for any primitive root $\ell \bmod p$, multiplying the sum by ℓ^{m} permutes the terms modulo p and hence does not change the sum modulo p; since $\ell^{n} \not \equiv 1(\bmod p)$, this is only possible if the sum is zero modulo p.

A6 Solution 1. (by Harm Derksen) We assume that $\limsup \sin _{x \rightarrow 0^{+}} x^{r}\left|g^{\prime \prime}(x)\right|<\infty$ and deduce that $\lim _{x \rightarrow 0^{+}} g^{\prime}(x)=0$. Note that

$$
\limsup _{x \rightarrow 0^{+}} x^{r} \sup \left\{\left|g^{\prime \prime}(\xi)\right|: \xi \in[x / 2, x]\right\}<\infty .
$$

Suppose for the moment that there exists a function h on $(0,1)$ which is positive, nondecreasing, and satisfies

$$
\lim _{x \rightarrow 0^{+}} \frac{g(x)}{h(x)}=\lim _{x \rightarrow 0^{+}} \frac{h(x)}{x^{r}}=0
$$

For some $c>0, h(x)<x^{r}<x$ for $x \in(0, c)$. By Taylor's theorem with remainder, we can find a function ξ on $(0, c)$ such that $\xi(x) \in[x-h(x), x]$ and
$g(x-h(x))=g(x)-g^{\prime}(x) h(x)+\frac{1}{2} g^{\prime \prime}(\xi(x)) h(x)^{2}$.

We can thus express $g^{\prime}(x)$ as
$\frac{g(x)}{h(x)}+\frac{1}{2} x^{r} g^{\prime \prime}(\xi(x)) \frac{h(x)}{x^{r}}-\frac{g(x-h(x))}{h(x-h(x))} \frac{h(x-h(x))}{h(x)}$.
As $x \rightarrow 0^{+}, g(x) / h(x), g(x-h(x)) / h(x-h(x))$, and $h(x) / x^{r}$ tend to 0 , while $x^{r} g^{\prime \prime}(\xi(x))$ remains bounded (because $\xi(x) \geq x-h(x) \geq x-x^{r} \geq x / 2$ for x small) and $h(x-h(x)) / h(x)$ is bounded in $(0,1]$. Hence $\lim _{x \rightarrow 0^{+}} g^{\prime}(x)=0$ as desired.
It thus only remains to produce a function h with the desired properties; this amounts to "inserting" a function between $g(x)$ and x^{r} while taking care to ensure the positive and nondecreasing properties. One of many options is $h(x)=x^{r} \sqrt{f(x)}$ where

$$
f(x)=\sup \left\{\left|z^{-r} g(z)\right|: z \in(0, x)\right\},
$$

so that

$$
\frac{h(x)}{x^{r}}=\sqrt{f(x)}, \quad \frac{g(x)}{h(x)}=\sqrt{f(x)} x^{-r} g(x)
$$

Solution 2. We argue by contradiction. Assume that $\limsup x_{x \rightarrow 0^{+}} x^{r}\left|g^{\prime \prime}(x)\right|<\infty$, so that there is an M such that $\left|g^{\prime \prime}(x)\right|<M x^{-r}$ for all x; and that $\lim _{x \rightarrow 0^{+}} g^{\prime}(x) \neq 0$, so that there is an $\varepsilon_{0}>0$ and a sequence $x_{n} \rightarrow 0$ with $\left|g^{\prime}\left(x_{n}\right)\right|>\varepsilon_{0}$ for all n.
Now let $\varepsilon>0$ be arbitrary. Since $\lim _{x \rightarrow 0^{+}} g(x) x^{-r}=0$, there is a $\delta>0$ for which $|g(x)|<\varepsilon x^{r}$ for all $x<\delta$. Choose n sufficiently large that $\frac{\varepsilon_{0} x_{n}^{r}}{2 M}<x_{n}$ and $x_{n}<\delta / 2$; then $x_{n}+\frac{\varepsilon_{0} x_{n}^{r}}{2 M}<2 x_{n}<\delta$. In addition, we have $\left|g^{\prime}(x)\right|>$ $\varepsilon_{0} / 2$ for all $x \in\left[x_{n}, x_{n}+\frac{\varepsilon_{0} x_{n}^{r}}{2 M}\right]$ since $\left|g^{\prime}\left(x_{n}\right)\right|>\varepsilon_{0}$ and $\left|g^{\prime \prime}(x)\right|<M x^{-r} \leq M x_{n}^{-r}$ in this range. It follows that

$$
\begin{aligned}
\frac{\varepsilon_{0}^{2}}{2} \frac{x_{n}^{r}}{2 M} & <\left|g\left(x_{n}+\frac{\varepsilon_{0} x_{n}^{r}}{2 M}\right)-g\left(x_{n}\right)\right| \\
& \leq\left|g\left(x_{n}+\frac{\varepsilon_{0} x_{n}^{r}}{2 M}\right)\right|+\left|g\left(x_{n}\right)\right| \\
& <\varepsilon\left(\left(x_{n}+\frac{\varepsilon_{0} x_{n}^{r}}{2 M}\right)^{r}+x_{n}^{r}\right) \\
& <\varepsilon\left(1+2^{r}\right) x_{n}^{r}
\end{aligned}
$$

whence $4 M\left(1+2^{r}\right) \varepsilon>\varepsilon_{0}^{2}$. Since $\varepsilon>0$ is arbitrary and M, r, ε_{0} are fixed, this gives the desired contradiction.
Remark. Harm Derksen points out that the "or" in the problem need not be exclusive. For example, take

$$
g(x)= \begin{cases}x^{5} \sin \left(x^{-3}\right) & x \in(0,1] \\ 0 & x=0\end{cases}
$$

Then for $x \in(0,1)$,

$$
\begin{aligned}
g^{\prime}(x) & =5 x^{4} \sin \left(x^{-3}\right)-3 x \cos \left(x^{-3}\right) \\
g^{\prime \prime}(x) & =\left(20 x^{3}-9 x^{-3}\right) \sin \left(x^{-3}\right)-18 \cos \left(x^{-3}\right)
\end{aligned}
$$

For $r=2, \lim _{x \rightarrow 0^{+}} x^{-r} g(x)=\lim _{x \rightarrow 0^{+}} x^{3} \sin \left(x^{-3}\right)=0$, $\lim _{x \rightarrow 0^{+}} g^{\prime}(x)=0$ and $x^{r} g^{\prime \prime}(x)=\left(20 x^{5}-\right.$ $\left.9 x^{-1}\right) \sin \left(x^{-3}\right)-18 x^{2} \cos \left(x^{-3}\right)$ is unbounded as $x \rightarrow 0^{+}$. (Note that $g^{\prime}(x)$ is not differentiable at $x=0$.)

B1 The answer is $5 n+1$.
We first determine the set P_{n}. Let Q_{n} be the set of points in \mathbb{Z}^{2} of the form $\left(0, \pm 2^{k}\right)$ or $\left(\pm 2^{k}, 0\right)$ for some $k \leq n$. Let R_{n} be the set of points in \mathbb{Z}^{2} of the form $\left(\pm 2^{k}, \pm 2^{k}\right)$ for some $k \leq n$ (the two signs being chosen independently). We prove by induction on n that

$$
P_{n}=\{(0,0)\} \cup Q_{\lfloor n / 2\rfloor} \cup R_{\lfloor(n-1) / 2\rfloor} .
$$

We take as base cases the straightforward computations

$$
\begin{aligned}
P_{0} & =\{(0,0),(\pm 1,0),(0, \pm 1)\} \\
P_{1} & =P_{0} \cup\{(\pm 1, \pm 1)\}
\end{aligned}
$$

For $n \geq 2$, it is clear that $\{(0,0)\} \cup Q_{\lfloor n / 2\rfloor} \cup R_{\lfloor(n-1) / 2\rfloor} \subseteq$ P_{n}, so it remains to prove the reverse inclusion. For $(x, y) \in P_{n}$, note that $x^{2}+y^{2} \equiv 0(\bmod 4) ;$ since every perfect square is congruent to either 0 or 1 modulo 4 , x and y must both be even. Consequently, $(x / 2, y / 2) \in$ P_{n-2}, so we may appeal to the induction hypothesis to conclude.

We next identify all of the squares with vertices in P_{n}. In the following discussion, let (a, b) and (c, d) be two opposite vertices of a square, so that the other two vertices are

$$
\left(\frac{a-b+c+d}{2}, \frac{a+b-c+d}{2}\right)
$$

and

$$
\left(\frac{a+b+c-d}{2}, \frac{-a+b+c+d}{2}\right) .
$$

- Suppose that $(a, b)=(0,0)$. Then (c, d) may be any element of P_{n} not contained in P_{0}. The number of such squares is $4 n$.
- Suppose that $(a, b),(c, d) \in Q_{k}$ for some k. There is one such square with vertices

$$
\left\{\left(0,2^{k}\right),\left(0,2^{-k}\right),\left(2^{k}, 0\right),\left(2^{-k}, 0\right)\right\}
$$

for $k=0, \ldots,\left\lfloor\frac{n}{2}\right\rfloor$, for a total of $\left\lfloor\frac{n}{2}\right\rfloor+1$. To show that there are no others, by symmetry it suffices to rule out the existence of a square with opposite vertices $(a, 0)$ and $(c, 0)$ where $a>|c|$. The other two vertices of this square would be $((a+c) / 2,(a-c) / 2)$ and $((a+c) / 2,(-a+c) / 2)$. These cannot belong to any Q_{k}, or be equal to $(0,0)$, because $|a+c|,|a-c| \geq a-|c|>0$ by the triangle inequality. These also cannot belong to any R_{k} because $(a+|c|) / 2>(a-|c|) / 2$. (One can also phrase this argument in geometric terms.)

- Suppose that $(a, b),(c, d) \in R_{k}$ for some k. There is one such square with vertices

$$
\left\{\left(2^{k}, 2^{k}\right),\left(2^{k},-2^{k}\right),\left(-2^{k}, 2^{k}\right),\left(-2^{k},-2^{k}\right)\right\}
$$

for $k=0, \ldots,\left\lfloor\frac{n-1}{2}\right\rfloor$, for a total of $\left\lfloor\frac{n+1}{2}\right\rfloor$. To show that there are no others, we may reduce to the previous case: rotating by an angle of $\frac{\pi}{4}$ and then
rescaling by a factor of $\sqrt{2}$ would yield a square with two opposite vertices in some Q_{k} not centered at $(0,0)$, which we have already ruled out.

- It remains to show that we cannot have $(a, b) \in$ Q_{k} and $(c, d) \in R_{k}$ for some k. By symmetry, we may reduce to the case where $(a, b)=\left(0,2^{k}\right)$ and $(c, d)=\left(2^{\ell}, \pm 2^{\ell}\right)$. If $d>0$, then the third vertex $\left(2^{k-1}, 2^{k-1}+2^{\ell}\right)$ is impossible. If $d<0$, then the third vertex $\left(-2^{k-1}, 2^{k-1}-2^{\ell}\right)$ is impossible.

Summing up, we obtain

$$
4 n+\left\lfloor\frac{n}{2}\right\rfloor+1+\left\lfloor\frac{n+1}{2}\right\rfloor=5 n+1
$$

squares, proving the claim.
Remark. Given the computation of P_{n}, we can alternatively show that the number of squares with vertices in P_{n} is $5 n+1$ as follows. Since this is clearly true for $n=1$, it suffices to show that for $n \geq 2$, there are exactly 5 squares with vertices in P_{n}, at least one of which is not in P_{n-1}. Note that the convex hull of P_{n} is a square S whose four vertices are the four points in $P_{n} \backslash P_{n-1}$. If v is one of these points, then a square with a vertex at v can only lie in S if its two sides containing v are in line with the two sides of S containing v. It follows that there are exactly two squares with a vertex at v and all vertices in P_{n} : the square corresponding to S itself, and a square whose vertex diagonally opposite to v is the origin. Taking the union over the four points in $P_{n} \backslash P_{n-1}$ gives a total of 5 squares, as desired.

B2 The answer is $\frac{8}{\pi^{3}}$.
Solution 1. By the double angle and sum-product identities for cosine, we have

$$
\begin{aligned}
2 \cos ^{2}\left(\frac{(k-1) \pi}{2 n}\right)-2 \cos ^{2}\left(\frac{k \pi}{2 n}\right) & =\cos \left(\frac{(k-1) \pi}{n}\right)-\cos \left(\frac{k \pi}{n}\right) \\
& =2 \sin \left(\frac{(2 k-1) \pi}{2 n}\right) \sin \left(\frac{\pi}{2 n}\right)
\end{aligned}
$$

and it follows that the summand in a_{n} can be written as

$$
\frac{1}{\sin \left(\frac{\pi}{2 n}\right)}\left(-\frac{1}{\cos ^{2}\left(\frac{(k-1) \pi}{2 n}\right)}+\frac{1}{\cos ^{2}\left(\frac{k \pi}{2 n}\right)}\right)
$$

Thus the sum telescopes and we find that

$$
a_{n}=\frac{1}{\sin \left(\frac{\pi}{2 n}\right)}\left(-1+\frac{1}{\cos ^{2}\left(\frac{(n-1) \pi}{2 n}\right)}\right)=-\frac{1}{\sin \left(\frac{\pi}{2 n}\right)}+\frac{1}{\sin ^{3}\left(\frac{\pi}{2 n}\right)}
$$

Finally, since $\lim _{x \rightarrow 0} \frac{\sin x}{x}=1$, we have $\lim _{n \rightarrow \infty}\left(n \sin \frac{\pi}{2 n}\right)=\frac{\pi}{2}$, and thus $\lim _{n \rightarrow \infty} \frac{a_{n}}{n^{3}}=\frac{8}{\pi^{3}}$.
Solution 2. We first substitute $n-k$ for k to obtain

$$
a_{n}=\sum_{k=1}^{n-1} \frac{\sin \left(\frac{(2 k+1) \pi}{2 n}\right)}{\sin ^{2}\left(\frac{(k+1) \pi}{2 n}\right) \sin ^{2}\left(\frac{k \pi}{2 n}\right)}
$$

We then use the estimate

$$
\frac{\sin x}{x}=1+O\left(x^{2}\right) \quad(x \in[0, \pi])
$$

to rewrite the summand as

$$
\frac{\left(\frac{(2 k-1) \pi}{2 n}\right)}{\left(\frac{(k+1) \pi}{2 n}\right)^{2}\left(\frac{k \pi}{2 n}\right)^{2}}\left(1+O\left(\frac{k^{2}}{n^{2}}\right)\right)
$$

which simplifies to

$$
\frac{8(2 k-1) n^{3}}{k^{2}(k+1)^{2} \pi^{3}}+O\left(\frac{n}{k}\right)
$$

Consequently,

$$
\begin{aligned}
\frac{a_{n}}{n^{3}} & =\sum_{k=1}^{n-1}\left(\frac{8(2 k-1)}{k^{2}(k+1)^{2} \pi^{3}}+O\left(\frac{1}{k n^{2}}\right)\right) \\
& =\frac{8}{\pi^{3}} \sum_{k=1}^{n-1} \frac{(2 k-1)}{k^{2}(k+1)^{2}}+O\left(\frac{\log n}{n^{2}}\right)
\end{aligned}
$$

Finally, note that
$\sum_{k=1}^{n-1} \frac{(2 k-1)}{k^{2}(k+1)^{2}}=\sum_{k=1}^{n-1}\left(\frac{1}{k^{2}}-\frac{1}{(k+1)^{2}}\right)=1-\frac{1}{n^{2}}$
converges to 1 , and so $\lim _{n \rightarrow \infty} \frac{a_{n}}{n^{3}}=\frac{8}{\pi^{3}}$.
B3 Solution 1. We first note that P corresponds to the linear transformation on \mathbb{R}^{n} given by reflection in the hyperplane perpendicular to $u: P(u)=-u$, and for any v with $\langle u, v\rangle=0, P(v)=v$. In particular, P is an orthogonal matrix of determinant -1 .

We next claim that if Q is an $n \times n$ orthogonal matrix that does not have 1 as an eigenvalue, then $\operatorname{det} Q=$ $(-1)^{n}$. To see this, recall that the roots of the characteristic polynomial $p(t)=\operatorname{det}(t I-Q)$ all lie on the unit circle in \mathbb{C}, and all non-real roots occur in conjugate pairs ($p(t)$ has real coefficients, and orthogonality implies that $p(t)= \pm t^{n} p\left(t^{-1}\right)$). The product of each conjugate pair of roots is 1 ; thus $\operatorname{det} Q=(-1)^{k}$ where k is the multiplicity of -1 as a root of $p(t)$. Since 1 is not a root and all other roots appear in conjugate pairs, k and n have the same parity, and so $\operatorname{det} Q=(-1)^{n}$.
Finally, if neither of the orthogonal matrices Q nor $P Q$ has 1 as an eigenvalue, then $\operatorname{det} Q=\operatorname{det}(P Q)=(-1)^{n}$, contradicting the fact that $\operatorname{det} P=-1$. The result follows.
Remark. It can be shown that any $n \times n$ orthogonal matrix Q can be written as a product of at most n hyperplane reflections (Householder matrices). If equality occurs, then $\operatorname{det}(Q)=(-1)^{n}$; if equality does not occur, then Q has 1 as an eigenvalue. Consequently, equality fails for one of Q and $P Q$, and that matrix has 1 as an eigenvalue.

Sucharit Sarkar suggests the following topological interpretation: an orthogonal matrix without 1 as an eigenvalue induces a fixed-point-free map from the ($n-1$)-sphere to itself, and the degree of such a map must be $(-1)^{n}$.
Solution 2. This solution uses the (reverse) Cayley transform: if Q is an orthogonal matrix not having 1 as an eigenvalue, then

$$
A=(I-Q)(I+Q)^{-1}
$$

is a skew-symmetric matrix (that is, $A^{T}=-A$).
Suppose then that Q does not have 1 as an eigenvalue. Let V be the orthogonal complement of u in \mathbb{R}^{n}. On one hand, for $v \in V$,

$$
(I-Q)^{-1}(I-Q P) v=(I-Q)^{-1}(I-Q) v=v
$$

On the other hand,

$$
(I-Q)^{-1}(I-Q P) u=(I-Q)^{-1}(I+Q) u=A u
$$

and $\langle u, A u\rangle=\left\langle A^{T} u, u\right\rangle=\langle-A u, u\rangle$, so $A u \in V$. Put $w=(1-A) u$; then $(1-Q P) w=0$, so $Q P$ has 1 as an eigenvalue, and the same for $P Q$ because $P Q$ and $Q P$ have the same characteristic polynomial.
Remark. The Cayley transform is the following construction: if A is a skew-symmetric matrix, then $I+A$ is invertible and

$$
Q=(I-A)(I+A)^{-1}
$$

is an orthogonal matrix.
Remark. (by Steven Klee) A related argument is to compute $\operatorname{det}(P Q-I)$ using the matrix determinant lemma: if A is an invertible $n \times n$ matrix and v, w are $1 \times n$ column vectors, then

$$
\operatorname{det}\left(A+v w^{T}\right)=\operatorname{det}(A)\left(1+w^{T} A^{-1} v\right)
$$

This reduces to the case $A=I$, in which case it again comes down to the fact that the product of two square matrices (in this case, obtained from v and w by padding with zeroes) retains the same characteristic polynomial when the factors are reversed.

B4 Solution 1. We compute that $m(f)=2 \ln 2-\frac{1}{2}$. Label the given differential equations by (1) and (2). If we write, e.g., $x \frac{\partial}{\partial x}(1)$ for the result of differentiating (1) by x and multiplying the resulting equation by x, then the combination $x \frac{\partial}{\partial x}(1)+y \frac{\partial}{\partial y}(1)-(1)-(2)$ gives the equation $2 x y f_{x y}=x y \ln (x y)+x y$, whence $f_{x y}=$ $\frac{1}{2}(\ln (x)+\ln (y)+1)$.
Now we observe that

$$
\begin{aligned}
& f(s+1, s+1)-f(s+1, s)-f(s, s+1)+f(s, s) \\
& =\int_{s}^{s+1} \int_{s}^{s+1} f_{x y} d y d x \\
& =\frac{1}{2} \int_{s}^{s+1} \int_{s}^{s+1}(\ln (x)+\ln (y)+1) d y d x \\
& =\frac{1}{2}+\int_{s}^{s+1} \ln (x) d x .
\end{aligned}
$$

Since $\ln (x)$ is increasing, $\int_{s}^{s+1} \ln (x) d x$ is an increasing function of s, and so it is minimized over $s \in[1, \infty)$ when $s=1$. We conclude that

$$
m(f)=\frac{1}{2}+\int_{1}^{2} \ln (x) d x=2 \ln 2-\frac{1}{2}
$$

independent of f.
Remark. The phrasing of the question suggests that solvers were not expected to prove that \mathscr{F} is nonempty, even though this is necessary to make the definition of $m(f)$ logically meaningful. Existence will be explicitly established in the next solution.

Solution 2. We first verify that

$$
f(x, y)=\frac{1}{2}(x y \ln (x y)-x y)
$$

is an element of \mathscr{F}, by computing that

$$
\begin{gathered}
x f_{x}=y f_{y}=\frac{1}{2} x y \ln (x y) \\
x^{2} f_{x x}=y^{2} f_{y y}=x y
\end{gathered}
$$

(See the following remark for motivation for this guess.)
We next show that the only elements of \mathscr{F} are $f+$ $a \ln (x / y)+b$ where a, b are constants. Suppose that $f+g$ is a second element of \mathscr{F}. As in the first solution, we deduce that $g_{x y}=0$; this implies that $g(x, y)=$ $u(x)+v(y)$ for some twice continuously differentiable functions u and v. We also have $x g_{x}+y g_{y}=0$, which now asserts that $x g_{x}=-y g_{y}$ is equal to some constant a. This yields that $g=a \ln (x / y)+b$ as desired.
We next observe that
$g(s+1, s+1)-g(s+1, s)-g(s, s+1)+g(s, s)=0$,
so $m(f)=m(f+g)$. It thus remains to compute $m(f)$. To do this, we verify that

$$
f(s+1, s+1)-f(s+1, s)-f(s, s+1)+f(s, s)
$$

is nondecreasing in s by computing its derivative to be $\ln (s+1)-\ln (s)$ (either directly or using the integral representation from the first solution). We thus minimize by taking $s=1$ as in the first solution.
Remark. One way to make a correct guess for f is to notice that the given equations are both symmetric in x and y and posit that f should also be symmetric. Any symmetric function of x and y can be written in terms of the variables $u=x+y$ and $v=x y$, so in principle we could translate the equations into those variables and solve. However, before trying this, we observe that $x y$ appears explicitly in the equations, so it is reasonable to make a first guess of the form $f(x, y)=h(x y)$. For such a choice, we have

$$
x f_{x}+y f_{y}=2 x y h^{\prime}=x y \ln (x y)
$$

which forces us to set $h(t)=\frac{1}{2}(t \ln (t)-t)$.

B5 Solution 1. We prove that $(j, k)=(2019,1010)$ is a valid solution. More generally, let $p(x)$ be the polynomial of degree N such that $p(2 n+1)=F_{2 n+1}$ for $0 \leq$ $n \leq N$. We will show that $p(2 N+3)=F_{2 N+3}-F_{N+2}$.
Define a sequence of polynomials $p_{0}(x), \ldots, p_{N}(x)$ by $p_{0}(x)=p(x)$ and $p_{k}(x)=p_{k-1}(x)-p_{k-1}(x+2)$ for $k \geq$ 1. Then by induction on k, it is the case that $p_{k}(2 n+$ 1) $=F_{2 n+1+k}$ for $0 \leq n \leq N-k$, and also that p_{k} has degree (at most) $N-k$ for $k \geq 1$. Thus $p_{N}(x)=F_{N+1}$ since $p_{N}(1)=F_{N+1}$ and p_{N} is constant.
We now claim that for $0 \leq k \leq N, p_{N-k}(2 k+3)=$ $\sum_{j=0}^{k} F_{N+1+j}$. We prove this again by induction on k : for the induction step, we have

$$
\begin{aligned}
p_{N-k}(2 k+3) & =p_{N-k}(2 k+1)+p_{N-k+1}(2 k+1) \\
& =F_{N+1+k}+\sum_{j=0}^{k-1} F_{N+1+j}
\end{aligned}
$$

Thus we have $p(2 N+3)=p_{0}(2 N+3)=\sum_{j=0}^{N} F_{N+1+j}$. Now one final induction shows that $\sum_{j=1}^{m} F_{j}=F_{m+2}-1$, and so $p(2 N+3)=F_{2 N+3}-F_{N+2}$, as claimed. In the case $N=1008$, we thus have $p(2019)=F_{2019}-F_{1010}$.
Solution 2. This solution uses the Lagrange interpolation formula: given x_{0}, \ldots, x_{n} and y_{0}, \ldots, y_{n}, the unique polynomial P of degree at most n satisfying $P\left(x_{i}\right)=y_{i}$ for $i=0, \ldots, n$ is

$$
\sum_{i=0}^{n} P\left(x_{i}\right) \prod_{j \neq i} \frac{x-x_{j}}{x_{i}-x_{j}}=
$$

Write

$$
F_{n}=\frac{1}{\sqrt{5}}\left(\alpha^{n}-\beta^{-n}\right), \quad \alpha=\frac{1+\sqrt{5}}{2}, \beta=\frac{1-\sqrt{5}}{2}
$$

For $\gamma \in \mathbb{R}$, let $p_{\gamma}(x)$ be the unique polynomial of degree at most 1008 satisfying

$$
p_{1}(2 n+1)=\gamma^{2 n+1}, p_{2}(2 n+1)=\gamma^{2 n+1}(n=0, \ldots, 1008)
$$

then $p(x)=\frac{1}{\sqrt{5}}\left(p_{\alpha}(x)-p_{\beta}(x)\right)$.
By Lagrange interpolation,

$$
\begin{aligned}
p_{\gamma}(2019) & =\sum_{n=0}^{1008} \gamma^{2 n+1} \prod_{0 \leq j \leq 1008, j \neq n} \frac{2019-(2 j+1)}{(2 n+1)-(2 j+1)} \\
& =\sum_{n=0}^{1008} \gamma^{2 n+1} \prod_{0 \leq j \leq 1008, j \neq n} \frac{1009-j}{n-j} \\
& =\sum_{n=0}^{1008} \gamma^{2 n+1}(-1)^{1008-n}\binom{1009}{n} \\
& =-\gamma\left(\left(\gamma^{2}-1\right)^{1009}-\left(\gamma^{2}\right)^{1009}\right) .
\end{aligned}
$$

For $\gamma \in\{\alpha, \beta\}$ we have $\gamma^{2}=\gamma+1$ and so

$$
p_{\gamma}(2019)=\gamma^{2019}-\gamma^{1010}
$$

We thus deduce that $p(x)=F_{2019}-F_{1010}$ as claimed.
Remark. Karl Mahlburg suggests the following variant of this. As above, use Lagrange interpolation to write

$$
p(2019)=\sum_{j=0}^{1008}\binom{1009}{j} F_{j}
$$

it will thus suffice to verify (by substiting $j \mapsto 1009-j$) that

$$
\sum_{j=0}^{1009}\binom{1009}{j} F_{j+1}=F_{2019}
$$

This identity has the following combinatorial interpretation. Recall that F_{n+1} counts the number of ways to tile a $1 \times n$ rectangle with 1×1 squares and 1×2 dominoes (see below). In any such tiling with $n=2018$, let j be the number of squares among the first 1009 tiles. These can be ordered in $\binom{1009}{j}$ ways, and the remaining $2018-j-2(1009-j)=j$ squares can be tiled in F_{j+1} ways.
As an aside, this interpretation of F_{n+1} is the oldest known interpretation of the Fibonacci sequence, long predating Fibonacci himself. In ancient Sanskrit, syllables were classified as long or short, and a long syllable was considered to be twice as long as a short syllable; consequently, the number of syllable patterns of total length n equals F_{n+1}.
Remark. It is not difficult to show that the solution $(j, k)=(2019,2010)$ is unique (in positive integers). First, note that to have $F_{j}-F_{k}>0$, we must have $k<j$. If $j<2019$, then
$F_{2019}-F_{1010}=F_{2018}+F_{2017}-F_{1010}>F_{j}>F_{j}-F_{k}$.
If $j>2020$, then
$F_{j}-F_{k} \geq F_{j}-F_{j-1}=F_{j-2} \geq F_{2019}>F_{2019}-F_{1010}$.
Since $j=2019$ obviously forces $k=1010$, the only other possible solution would be with $j=2020$. But then
$\left(F_{j}-F_{k}\right)-\left(F_{2019}-F_{1010}\right)=\left(F_{2018}-F_{k}\right)+F_{1010}$
which is negative for $k=2019$ (it equals $F_{1010}-F_{2017}$) and positive for $k \leq 2018$.

B6 Such a set exists for every n. To construct an example, define the function $f: \mathbb{Z}^{n} \rightarrow \mathbb{Z} /(2 n+1) \mathbb{Z}$ by
$f\left(x_{1}, \ldots, x_{n}\right)=x_{1}+2 x_{2}+\cdots+n x_{n} \quad(\bmod 2 n+1)$,
then let S be the preimage of 0 .
To check condition (1), note that if $p \in S$ and q is a neighbor of p differing only in coordinate i, then

$$
f(q)=f(p) \pm i \equiv \pm i \quad(\bmod 2 n+1)
$$

and so $q \notin S$.
To check condition (2), note that if $p \in \mathbb{Z}^{n}$ is not in S, then there exists a unique choice of $i \in\{1, \ldots, n\}$ such that $f(p)$ is congruent to one of $+i$ or $-i$ modulo $2 n+$ 1. The unique neighbor q of p in S is then obtained by either subtracting 1 from, or adding 1 to, the i-th coordinate of p.

Remark. According to Art of Problem Solving (thread c6h366290), this problem was a 1985 IMO submission from Czechoslovakia. For an application to steganography, see: J. Fridrich and P. Lisoněk, Grid colorings in steganography, IEEE Transactions on Information Theory 53 (2007), 1547-1549.

