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A1 The answer is 578.
Each hop corresponds to adding one of the 12 vectors
(0,±5), (±5,0), (±3,±4), (±4,±3) to the position
of the grasshopper. Since (2021,2021) = 288(3,4) +
288(4,3) + (0,5) + (5,0), the grasshopper can reach
(2021,2021) in 288+288+1+1 = 578 hops.
On the other hand, let z = x+ y denote the sum of the x
and y coordinates of the grasshopper, so that it starts at
z = 0 and ends at z = 4042. Each hop changes the sum
of the x and y coordinates of the grasshopper by at most
7, and 4042 > 577× 7; it follows immediately that the
grasshopper must take more than 577 hops to get from
(0,0) to (2021,2021).
Remark. This solution implicitly uses the distance
function

d((x1,y1),(x2,y2)) = |x1 − x2|+ |y1 − y2|

on the plane, variously called the taxicab metric, the
Manhattan metric, or the L1-norm (or ℓ1-norm).

A2 The limit is e.
First solution. By l’Hôpital’s Rule, we have

lim
r→0

log((x+1)r+1 − xr+1)

r

= lim
r→0

d
dr

log((x+1)r+1 − xr+1)

= lim
r→0

(x+1)r+1 log(x+1)− xr+1 logx
(x+1)r+1 − xr+1

= (x+1) log(x+1)− x logx,

where log denotes natural logarithm. It follows that
g(x) = e(x+1) log(x+1)−x logx = (x+1)x+1

xx . Thus

lim
x→∞

g(x)
x

=

(
lim
x→∞

x+1
x

)
·
(

lim
x→∞

(
1+

1
x

)x)
= 1 · e = e.

Second solution. We first write

lim
x→∞

g(x)
x

= lim
x→∞

lim
r→0

((x+1)r+1 − xr+1)1/r

x

= lim
x→∞

lim
r→0

((r+1)xr +O(xr−1))1/r

x
.

We would like to interchange the order of the limits, but
this requires some justification. Using Taylor’s theorem
with remainder, for x ≥ 1, r ≤ 1 we can bound the error
term O(xr−1) in absolute value by (r + 1)rxr−1. This
means that if we continue to rewrite the orginial limit as

lim
r→0

lim
x→∞

(r+1+O(x−1))1/r,

the error term O(x−1) is bounded in absolute value by
(r + 1)r/x. For x ≥ 1, r ≤ 1 this quantity is bounded
in absolute value by (r+ 1)r, independently of x. This
allows us to continue by interchanging the order of the
limits, obtaining

lim
r→0

lim
x→∞

(r+1+O(x−1))1/r

= lim
r→0

(r+1)1/r

= lim
s→∞

(1+1/s)s = e,

where in the last step we take s = 1/r.

Third solution. (by Clayton Lungstrum) We first ob-
serve that

((x+1)r+1 − xr+1)1/r =

(∫ x+1

x
(r+1)ur du

)1/r

= (r+1)1/r
(∫ x+1

x
ur du

)1/r

.

Since limr→0(r+1)1/r = e, we deduce that

g(x) = e lim
r→0

(∫ x+1

x
ur du

)1/r

.

For r > 0, ur is increasing for x ≤ u ≤ x+1, so

xr ≤
∫ x+1

x
ur du ≤ (x+1)r;

for r < 0, ur is decreasing for x ≤ u ≤ x+1, so

xr ≥
∫ x+1

x
ur du ≥ (x+1)r.

In both cases, we deduce that

x ≤
(∫ x+1

x
ur du

)1/r

≤ x+1;

applying the squeeze theorem to the resulting inequality
e ≤ g(x)

x ≤ e
(
1+ 1

x

)
yields the claimed limit.

A3 The integers N with this property are those of the form
3m2 for some positive integer m.

In one direction, for N = 3m2, the points

(m,m,m),(m,−m,−m),(−m,m,−m),(−m,−m,m)

form the vertices of a regular tetrahedron inscribed in
the sphere x2 + y2 + z2 = N.
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Conversely, suppose that Pi = (xi,yi,zi) for i = 1, . . . ,4
are the vertices of an inscribed regular tetrahedron.
Then the center of this tetrahedron must equal the cen-
ter of the sphere, namely (0,0,0). Consequently, these
four vertices together with Qi = (−xi,−yi,−zi) for i =
1, . . . ,4 form the vertices of an inscribed cube in the
sphere. The side length of this cube is (N/3)1/2, so its
volume is (N/3)3/2; on the other hand, this volume also
equals the determinant of the matrix with row vectors
Q2 −Q1,Q3 −Q1,Q4 −Q1, which is an integer. Hence
(N/3)3 is a perfect square, as then is N/3.

A4 The limit exists and equals
√

2
2 π log2.

We first note that we can interchange x and y to obtain

I(R)=
∫∫

x2+y2≤R2

(
1+2y2

1+ x4 +6x2y2 + y4 − 1+ x2

2+ x4 + y4

)
dxdy.

Averaging the two expressions for I(R) yields

I(R) =
∫∫

x2+y2≤R2
( f (x,y)−g(x,y))dxdy

where

f (x,y) =
1+ x2 + y2

1+ x4 +6x2y2 + y4

g(x,y) =
1+ x2/2+ y2/2

2+ x4 + y4 .

Now note that

f (x,y) = 2g(x+ y,x− y).

We can thus write

I(R) =
∫∫

R2≤x2+y2≤2R2
g(x,y)dxdy.

To compute this integral, we switch to polar coordi-
nates:

I(R) =
∫ R

√
2

R

∫ 2π

0
g(r cosθ ,r sinθ)r dr dθ

=
∫ R

√
2

R

∫ 2π

0

1+ r2/2
2+ r4(1− (sin2 2θ)/2)

r dr dθ .

We rescale r to remove the factor of R from the limits
of integration:

I(R) =
∫ √

2

1

∫ 2π

0

1+R2r2/2
2+R4r4(1− (sin2 2θ)/2)

R2r dr dθ .

Since the integrand is uniformly bounded for R ≫ 0, we

may take the limit over R through the integrals to obtain

lim
R→∞

I(R) =
∫ √

2

1

∫ 2π

0

r2/2
r4(1− (sin2 2θ)/2)

r dr dθ

=
∫ √

2

1

dr
r

∫ 2π

0

1
2− sin2 2θ

dθ

= log
√

2
∫ 2π

0

1
1+ cos2 2θ

dθ

=
1
2

log2
∫ 2π

0

2
3+ cos4θ

dθ .

It thus remains to evaluate∫ 2π

0

2
3+ cos4θ

dθ = 2
∫

π

0

2
3+ cosθ

dθ .

One option for this is to use the half-angle substitution
t = tan(θ/2) to get∫

∞

−∞

4
3(1+ t2)+(1− t2)

dt =
∫

∞

−∞

2
2+ t2 dt

=
√

2arctan
(

x√
2

)∞

−∞

=
√

2π.

Putting this together yields the claimed result.

A5 The values of j in question are those not divisible by
either 42 or 46.
We first check that for p prime,

p−1

∑
n=1

n j ≡ 0 (mod p)⇔ j ̸≡ 0 (mod p−1).

If j ≡ 0 (mod p− 1), then n j ≡ 1 (mod p) for each
n, so ∑

p−1
n=1 n j ≡ p−1 (mod p). If j ̸≡ 0 (mod p−1),

we can pick a primitive root m modulo p, observe that
m j ̸≡ 1 (mod p), and then note that

p−1

∑
n=1

n j ≡
p−1

∑
n=1

(mn) j = m j
p−1

∑
n=1

n j (mod p),

which is only possible if ∑
p−1
n=1 n j ≡ 0 (mod p).

We now note that the prime factorization of 2021 is 43×
47, so it suffices to determine when S( j) is divisible by
each of 43 and 47. We have

S( j)≡ 46
42

∑
n=1

n j (mod 43)

S( j)≡ 42
46

∑
n=1

n j (mod 47).

Since 46 and 42 are coprime to 43 and 47, respectively,
we have

S( j)≡ 0 (mod 43)⇔ j ̸≡ 0 (mod 42)
S( j)≡ 0 (mod 47)⇔ j ̸≡ 0 (mod 46).

This yields the claimed result.
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A6 Yes, it follows that P(2) is a composite integer. (Note:
1 is neither prime nor composite.)
Write P(x) = a0 +a1x+ · · ·+anxn with ai ∈ {0,1} and
an = 1. Let α be an arbitrary root of P. Since P(α) = 0,
α cannot be a positive real number. In addition, if α ̸= 0
then

|1+an−1α
−1|= |an−2α

−2 + · · ·+a0α
−n|

≤ |α|−2 + · · ·+ |α|−n.

If α ̸= 0 and Re(α)≥ 0, then Re(1+an−1α−1)≥ 1 and

1 ≤ |α|−2 + · · ·+ |α|−n <
|α|−2

1−|α|−1 ;

this yields |α|< (1+
√

5)/2.
By the same token, if α ̸= 0 then

|1+an−1α
−1 +an−2α

−2| ≤ |α|−3 + · · ·+ |α|−n.

We deduce from this that Re(α)≤ 3/2 as follows.

– There is nothing to check if Re(α)≤ 0.
– If the argument of α belongs to [−π/4,π/4], then

Re(α−1),Re(α−2)≥ 0, so

1 ≤ |α|−3 + · · ·+ |α|−n <
|α|−3

1−|α|−1 .

Hence |α|−1 is greater than the unique positive
root of x3 + x−1, which is greater than 2/3.

– Otherwise, α has argument in (−π/2,π/4) ∪
(π/4,π/2), so the bound |α| < (1+

√
5)/2 im-

plies that Re(α)< (1+
√

5)/(2
√

2)< 3/2.

By hypothesis, there exists a factorization P(x) =
Q(x)R(x) into two nonconstant integer polynomials,
which we may assume are monic. Q(x+3/2) is a prod-
uct of polynomials, each of the form x−α where α is a
real root of P or of the form(

x+
3
2
−α

)(
x+

3
2
−α

)
= x2 +2Re

(
3
2
−α

)
x+

∣∣∣∣3
2
−α

∣∣∣∣2
where α is a nonreal root of P. It follows that Q(x+
3/2) has positive coefficients; comparing its values at
x = 1/2 and x = −1/2 yields Q(2) > Q(1). We can-
not have Q(1)≤ 0, as otherwise the intermediate value
theorem would imply that Q has a real root in [1,∞);
hence Q(1) ≥ 1 and so Q(2) ≥ 2. Similarly R(2) ≥ 2,
so P(2) = Q(2)R(2) is composite.
Remark. A theorem of Brillhart, Filaseta, and Odlyzko
from 1981 states that if a prime p is written as ∑i aibi

in any base b ≥ 2, the polynomial ∑i aixi is irreducible.
(The case b = 10 is an older result of Cohn.) The solu-
tion given above is taken from: Ram Murty, Prime num-
bers and irreducible polynomials, Amer. Math. Monthly
109 (2002), 452–458). The final step is due to Pólya and
Szegő.

B1 The probability is 2− 6
π

.

Set coordinates so that the original tiling includes the
(filled) square S = {(x,y) : 0 ≤ x,y ≤ 1}. It is then
equivalent to choose the second square by first choosing
a point uniformly at random in S to be the center of the
square, then choosing an angle of rotation uniformly at
random from the interval [0,π/2].

For each θ ∈ [0,π/2], circumscribe a square Sθ around
S with angle of rotation θ relative to S; this square has
side length sinθ + cosθ . Inside Sθ , draw the smaller
square S′

θ
consisting of points at distance greater than

1/2 from each side of Sθ ; this square has side length
sinθ + cosθ −1.

We now verify that a unit square with angle of rotation
θ fails to cover any corners of S if and only if its center
lies in the interior of S′

θ
. In one direction, if one of the

corners of S is covered, then that corner lies on a side of
Sθ which meets the dropped square, so the center of the
dropped square is at distance less than 1/2 from that
side of Sθ . To check the converse, note that there are
two ways to dissect the square Sθ into the square S′

θ
plus

four sinθ × cosθ rectangles. If θ ̸= 0,π/4, then one of
these dissections has the property that each corner P of
S appears as an interior point of a side (not a corner) of
one of the rectangles R. It will suffice to check that if the
center of the dropped square is in R, then the dropped
square covers P; this follows from the fact that sinθ and
cosθ are both at most 1.

It follows that the conditional probability, given that the
angle of rotation is chosen to be θ , that the dropped
square does not cover any corners of S is (sinθ +
cosθ − 1)2. We then compute the original probability
as the integral

2
π

∫
π/2

0
(sinθ + cosθ −1)2 dθ

=
2
π

∫
π/2

0
(2+ sin2θ −2sinθ −2cosθ)dθ

=
2
π

(
2θ − 1

2
cos2θ +2cosθ −2sinθ

)π/2

0

=
2
π
(π +1−2−2) = 2− 6

π
.

Remark: Noam Elkies has some pictures illustrating
this problem: image 1, image 2.

B2 The answer is 2/3.

By AM-GM, we have

2n+1(a1 · · ·an)
1/n =

(
(4a1)(42a2) · · ·(4nan)

)1/n

≤ ∑
n
k=1(4

kak)

n
.

https://abel.math.harvard.edu/~elkies/putnam_b1a.pdf
https://abel.math.harvard.edu/~elkies/putnam_b1.pdf
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Thus

2S ≤
∞

∑
n=1

∑
n
k=1(4

kak)

4n

=
∞

∑
n=1

n

∑
k=1

(4k−nak) =
∞

∑
k=1

∞

∑
n=k

(4k−nak)

=
∞

∑
k=1

4ak

3
=

4
3

and S ≤ 2/3. Equality is achieved when ak =
3
4k for all

k, since in this case 4a1 = 42a2 = · · ·= 4nan for all n.

B3 We prove the given statement.

For any circle S of radius r whose center is at distance
d from the origin, express the integral in polar coordi-
nates s,θ :∫∫
S

ρ =
∫ s2

s1

∫
θ2(s)

θ1(s)
(yhx − xhy)(ssinθ ,scosθ)sdθ ds.

For fixed s, the integral over θ is a line integral of gradh,
which evaluates to h(P2)− h(P1) where P1,P2 are the
endpoints of the endpoints of the arc of the circle of ra-
dius s centered at the origin lying within S . If we now
fix r and d and integrate

∫∫
S ρ over all choices of S

(this amounts to a single integral over an angle in the
range [0,2π]), we may interchange the order of integra-
tion to first integrate over θ , then over the choice of S ,
and at this point we get 0 for every s. We conclude that
the integral of

∫∫
S over all choices of S vanishes; since

the given integral varies continuously in S , by the in-
termediate value theorem there must be some S where
the given integral is 0.

B4 We can check directly that R3 = R4 = 1 are Virahanka–
Fibonacci numbers; henceforth we will assume m ≥ 5.

Denote the product ∏
Fm−1
k=1 kk by A. Note that if Fm is

composite, say Fm = ab for a,b > 1 integers, then A is
divisible by aabb and thus by Fm = ab; it follows that
Rm = 0 = F0 when Fm is composite.

Now suppose that Fm is prime. Since F2n = Fn(Fn+1 +
Fn−1) for all n, Fm is composite if m > 4 is even; thus
we must have that m is odd. Write p = Fm, and use ≡
to denote congruence (mod p). Then we have

A =
p−1

∏
k=1

(p− k)p−k ≡
p−1

∏
k=1

(−k)p−k = (−1)p(p−1)/2
p−1

∏
k=1

kp−k

and consequently

A2 ≡ (−1)p(p−1)/2
p−1

∏
k=1

(kkkp−k)

= (−1)p(p−1)/2((p−1)!)p

≡ (−1)p(p+1)/2,

where the final congruence follows from Wilson’s The-
orem. Now observe that when m is odd, p = Fm must be
congruent to either 1 or 2 (mod 4): this follows from
inspection of the Virahanka–Fibonacci sequence mod
4, which has period 6: 1,1,2,3,1,0,1,1, . . .. It follows
that A2 ≡ (−1)p(p+1)/2 =−1.
On the other hand, by the Kepler–Cassini identity

F2
n = (−1)n+1 +Fn−1Fn+1

with n = m− 1, we have F2
m−1 ≡ (−1)m = −1. Thus

we have 0 ≡ A2−F2
m−1 ≡ (A−Fm−1)(A−Fm−2). Since

p is prime, it must be the case that either A = Fm−1 or
A = Fm−2, and we are done.
Remark. The Kepler–Cassini identity first appears in a
letter of Kepler from 1608. Noam Elkies has scanned
the relevant page of Kepler’s collected works (slightly
NSFW if your boss can read Latin).

B5 For convenience, throughout we work with matrices
over the field of 2 elements. In this language, if there
exists a permutation matrix P such that P−1AP is unipo-
tent (i.e., has 1s on the main diagonal and 0s below
it), then A is very odd: any principal submatrix of A is
conjugate to a principal submatrix of P−1AP, which is
again unipotent and in particular nonsingular. We will
solve the problem by showing that conversely, for any
very odd matrix A, there exists a permutation matrix P
such that P−1AP is unipotent. Since the latter condi-
tion is preserved by taking powers, this will prove the
desired result.
To begin, we may take S = {i} to see that aii = 1. We
next form a (loopless) directed graph on the vertex set
{1, . . . ,n} with an edge from i to j whenever ai j = 1,
and claim that this graph has no cycles. To see this,
suppose the contrary, choose a cycle of minimal length
m ≥ 2, and let i1, . . . , im be the vertices in order. The
minimality of the cycle implies that

ai j ik =

{
1 if k− j ≡ 0 or 1 (mod m)

0 otherwise.

The submatrix corresponding to S = {i1, . . . , im} has
row sum 0 and hence is singular, a contradiction.
We now proceed by induction on n. Since the directed
graph has no cycles, there must be some vertex which
is not the starting point of any edge (e.g., the endpoint
of any path of maximal length). We may conjugate by
a permutation matrix so that this vertex becomes 1. We
now apply the induction hypothesis to the submatrix
corresponding to S = {2, . . . ,n} to conclude.
Remark. A directed graph without cycles, as in our
solution, is commonly called a DAG (directed acyclic
graph). It is a standard fact that a directed graph is a
TAG if and only if there is a linear ordering of its ver-
tices consistent with all edge directions. See for exam-
ple https://en.wikipedia.org/wiki/Directed_
acyclic_graph.

https://people.math.harvard.edu/~elkies/Kepler_XVI_p157.jpg
https://en.wikipedia.org/wiki/Directed_acyclic_graph
https://en.wikipedia.org/wiki/Directed_acyclic_graph
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Remark. An n × n matrix A = (ai j) for which the
value of ai j depends only on i − j (mod n) is called
a circulant matrix. The circulant matrix with first row
(1,1,0, . . . ,0) is an example of an n× n matrix whose
determinant is even, but whose other principal minors
are all odd.

B6 First solution. (based on a suggestion of Noam Elkies)
Let fk(x) be the probability distribution of Xk, the last
number remaining when one repeatedly trims a list of
3k random variables chosen with respect to the uniform
distribution on [0,1]; note that f0(x) = 1 for x ∈ [0,1].
Let Fk(x) =

∫ x
0 fk(t)dt be the cumulative distribution

function; by symmetry, Fk(
1
2 ) =

1
2 . Let µk be the ex-

pected value of Xk − 1
2 ; then µ0 =

1
4 , so it will suffice to

prove that µk ≥ 2
3 µk−1 for k > 0.

By integration by parts and symmetry, we have

µk = 2
∫ 1/2

0

(
1
2
− x

)
fk(x)dx = 2

∫ 1/2

0
Fk(x)dx;

that is, µk computes twice the area under the curve
y = Fk(x) for 0 ≤ x ≤ 1

2 . Since Fk is a monotone func-
tion from [0, 1

2 ] with Fk(0) = 0 and Fk(
1
2 ) =

1
2 , we may

transpose the axes to obtain

µk = 2
∫ 1/2

0

(
1
2
−F−1

k (y)
)

dy. (1)

Since fk(x) is the probability distribution of the median
of three random variables chosen with respect to the dis-
tribution fk−1(x),

fk(x) = 6 fk−1(x)Fk−1(x)(1−Fk−1(x)) (2)

or equivalently

Fk(x) = 3Fk−1(x)2 −2Fk−1(x)3. (3)

By induction, Fk is the k-th iterate of F1(x) = 3x2 −2x3,
so

Fk(x) = Fk−1(F1(x)). (4)

Since f1(t) = 6t(1− t)≤ 3
2 for t ∈ [0, 1

2 ],

1
2
−F1(x) =

∫ 1/2

x
6t(1− t)dt ≤ 3

2

(
1
2
− x

)
;

for y ∈ [0, 1
2 ], we may take x = F−1

k (y) to obtain

1
2
−F−1

k (y)≥ 2
3

(
1
2
−F−1

k−1(y)
)
. (5)

Using (4) and (5), we obtain

µk = 2
∫ 1/2

0

(
1
2
−F−1

k (y)
)

dy

≥ 4
3

∫ 1/2

0

(
1
2
−F−1

k−1(y)
)

dy =
2
3

µk−1

as desired.

Second solution. Retain notation as in the first solution.
Again Fk(

1
2 ) =

1
2 , so (2) implies

fk

(
1
2

)
= 6 fk−1

(
1
2

)
× 1

2
× 1

2
.

By induction on k, we deduce that fk(
1
2 ) = ( 3

2 )
k and

fk(x) is nondecreasing on [0, 1
2 ]. (More precisely, be-

sides (2), the second assertion uses that Fk−1(x) in-
creases from 0 to 1/2 and y 7→ y− y2 is nondecreasing
on [0,1/2].)

The expected value of |Xk − 1
2 | equals

µk = 2
∫ 1/2

0

(
1
2
− x

)
fk(x)dx

= 2
∫ 1/2

0
x fk

(
1
2
− x

)
dx.

Define the function

gk(x) =

{( 3
2

)k
x ∈

[
0, 1

2

( 2
3

)k
]

0 otherwise.

Note that for x ∈ [0,1/2] we have∫ x

0
(gk(t)− fk(1/2− t))dt ≥ 0

with equality at x = 0 or x = 1/2. (On the in-
terval [0,(1/2)(2/3)k] the integrand is nonnegative,
so the function increases from 0; on the interval
[(1/2)(2/3)k,1/2] the integrand is nonpositive, so the
function decreases to 0.) Hence by integration by parts,

µk −2
∫ 1/2

0
xgk(x)dx

=
∫ 1/2

0
2x( fk

(
1
2
− x

)
−gk(x))dx

=
∫ 1/2

0
x2
(∫ x

0
gk(t)−

∫ x

0
fk

(
1
2
− t

)
dt dt

)
dx ≥ 0.

(This can also be interpreted as an instance of the rear-
rangement inequality.)

We now see that

µk ≥ 2
∫ 1/2

0
xgk(x)dx

≥ 2
(

3
2

)k ∫ (1/2)(2/3)k

0
xdx

= 2
(

3
2

)k 1
2

x2
∣∣∣∣(1/2)(2/3)k

0

= 2
(

3
2

)k 1
8

(
2
3

)2k

=
1
4

(
2
3

)k
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as desired.

Remark. For comparison, if we instead take the me-
dian of a list of n numbers, the probability distribution
is given by

P2n+1(x) =
(2n+1)!

n!n!
xn(1− x)n.

The expected value of the absolute difference between

1/2 and the median is

2
∫ 1/2

0
(1/2− x)P2n+1(x)dx = 2−2n−2

(
2n+1

n

)
.

For n= 32021, using Stirling’s approximation this can be
estimated as 1.13(0.577)2021 < 0.25(0.667)2021. This
shows that the trimming procedure produces a quantity
that is on average further away from 1/2 than the me-
dian.
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