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A1 Write f (x) = ln(1+x2). We show that y = ax+b inter-
sects y = f (x) in exactly one point if and only if (a,b)
lies in one of the following groups:

– a = b = 0
– |a| ≥ 1, arbitrary b
– 0 < |a| < 1, and b < ln(1− r−)2 − |a|r− or b >

ln(1− r+)2 −|a|r+, where

r± =
1±

√
1−a2

a
.

Since the graph of y = f (x) is symmetric under re-
flection in the y-axis, it suffices to consider the case
a ≥ 0: y = ax+b and y =−ax+b intersect y = f (x) the
same number of times. For a = 0, by the symmetry of
y = f (x) and the fact that f (x)> 0 for all x ̸= 0 implies
that the only line y = b that intersects y = f (x) exactly
once is the line y = 0.

We next observe that on [0,∞), f ′(x) = 2x
1+x2 increases

on [0,1] from f ′(0) = 0 to a maximum at f ′(1) = 1, and
then decreases on [1,∞) with limx→∞ f ′(x) = 0. In par-
ticular, f ′(x) ≤ 1 for all x (including x < 0 since then
f ′(x) < 0) and f ′(x) achieves each value in (0,1) ex-
actly twice on [0,∞).

For a ≥ 1, we claim that any line y = ax + b inter-
sects y = f (x) exactly once. They must intersect at
least once by the intermediate value theorem: for x≪ 0,
ax+b < 0 < f (x), while for x ≫ 0, ax+b > f (x) since

limx→∞
ln(1+x2)

x = 0. On the other hand, they cannot
intersect more than once: for a > 1, this follows from
the mean value theorem, since f ′(x) < a for all x. For
a = 1, suppose that they intersect at two points (x0,y0)
and (x1,y1). Then

1 =
y1 − y0

x1 − x0
=

∫ x1
x0

f ′(x)dx

x1 − x0
< 1

since f ′(x) is continuous and f ′(x) ≤ 1 with equality
only at one point.

Finally we consider 0 < a < 1. The equation f ′(x) =
a has exactly two solutions, at x = r− and x = r+ for
r± as defined above. If we define g(x) = f (x)− ax,
then g′(r±) = 0; g′ is strictly decreasing on (−∞,r−),
strictly increasing on (r−,r+), and strictly decreasing
on (r+,∞); and limx→−∞ g(x) = ∞ while limx→∞ g(x) =
−∞. It follows that g(x) = b has exactly one solution
for b < g(r−) or b > g(r+), exactly three solutions for
g(r−) < b < g(r+), and exactly two solutions for b =
g(r±). That is, y = ax+b intersects y = f (x) in exactly
one point if and only if b < g(r−) or b > g(r+).

A2 The answer is 2n−2. Write p(x) = anxn+ · · ·+a1x+a0
and p(x)2 = b2nx2n + · · ·+ b1x+ b0. Note that b0 = a2

0
and b2n = a2

n. We claim that not all of the remain-
ing 2n − 1 coefficients b1, . . . ,b2n−1 can be negative,
whence the largest possible number of negative coef-
ficients is ≤ 2n−2. Indeed, suppose bi < 0 for 1 ≤ i ≤
2n− 1. Since b1 = 2a0a1, we have a0 ̸= 0. Assume
a0 > 0 (or else replace p(x) by −p(x)). We claim by
induction on i that ai < 0 for 1 ≤ i ≤ n. For i = 1, this
follows from 2a0a1 = b1 < 0. If ai < 0 for 1≤ i≤ k−1,
then

2a0ak = bk −
k−1

∑
i=1

aiak−i < bk < 0

and thus ak < 0, completing the induction step. But now
b2n−1 = 2an−1an > 0, contradiction.

It remains to show that there is a polynomial p(x) such
that p(x)2 has 2n−2 negative coefficients. For example,
we may take

p(x) = n(xn +1)−2(xn−1 + · · ·+ x),

so that

p(x)2 = n2(x2n + xn +1)−2n(xn +1)(xn−1 + · · ·+ x)

+(xn−1 + · · ·+ x)2.

For i ∈ {1, . . . ,n−1,n+1, . . . ,n−1}, the coefficient of
xi in p(x)2 is at most −2n (coming from the cross term)
plus −2n+ 2 (from expanding (xn−1 + · · ·+ x)2), and
hence negative.

A3 First solution. We view the sequence a1,a2, . . . as
lying in F×

p ⊂ Fp. Then the sequence is determined
by the values of a1 and a2, via the recurrence an+2 =
(1+an+1)/an. Using this recurrence, we compute

a3 =
1+a2

a1
, a4 =

1+a1 +a2

a1a2
,

a5 =
1+a1

a2
, a6 = a1, a7 = a2

and thus the sequence is periodic with period 5. The
values for a1 and a2 may thus be any values in F×

p pro-
vided that a1 ̸= p−1, a2 ̸= p−1, and a1 +a2 ̸= p−1.
The number of choices for a1,a2 ∈ {1, . . . , p−2} such
that a1 + a2 ̸= p− 1 is thus (p− 2)2 − (p− 2) = (p−
2)(p−3).

Since p is not a multiple of 5, (p−2)(p−3) is a prod-
uct of two consecutive integers a,a+ 1, where a ̸≡ 2
(mod 5). Now 0 · 1 ≡ 0, 1 · 2 ≡ 2, 3 · 4 ≡ 2, and
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4 · 0 ≡ 0 (mod 5). Thus the number of possible se-
quences a1,a2, . . . is 0 or 2 (mod 5), as desired.
Second solution. Say that a sequence is admissible if
it satisfies the given conditions. As in the first solution,
any admissible sequence is 5-periodic.
Now consider the collection S of possible 5-tuples of
numbers mod p given by (a1,a2,a3,a4,a5) for admis-
sible sequences {an}. Each of these 5-tuples in S
comes from a unique admissible sequence, and there
is a 5-periodic action on S given by cyclic permutation:
(a,b,c,d,e)→ (b,c,d,e,a). This action divides S into
finitely many orbits, and each orbit either consists of 5
distinct tuples (if a,b,c,d,e are not all the same) or 1
tuple (a,a,a,a,a). It follows that the number of admis-
sible sequences is a multiple of 5 plus the number of
constant admissible sequences.
Constant admissible sequences correspond to nonzero
numbers a (mod p) such that a2 ≡ 1 + a (mod p).
Since the quadratic x2 − x− 1 has discriminant 5, for
p > 5 it has either 2 roots (if the discriminant is a
quadratic residue mod p) or 0 roots mod p.

A4 The expected value is 2e1/2 −3.
Extend S to an infinite sum by including zero sum-
mands for i > k. We may then compute the expected
value as the sum of the expected value of the i-th sum-
mand over all i. This summand occurs if and only
if X1, . . . ,Xi−1 ∈ [Xi,1] and X1, . . . ,Xi−1 occur in non-
increasing order. These two events are independent
and occur with respective probabilities (1−Xi)

i−1 and
1

(i−1)! ; the expectation of this summand is therefore

1
2i(i−1)!

∫ 1

0
t(1− t)i−1 dt

=
1

2i(i−1)!

∫ 1

0
((1− t)i−1 − (1− t)i)dt

=
1

2i(i−1)!

(
1
i
− 1

i+1

)
=

1
2i(i+1)!

.

Summing over i, we obtain
∞

∑
i=1

1
2i(i+1)!

= 2
∞

∑
i=2

1
2ii!

= 2
(

e1/2 −1− 1
2

)
.

A5 We show that the number in question equals 290. More
generally, let a(n) (resp. b(n)) be the optimal final score
for Alice (resp. Bob) moving first in a position with n
consecutive squares. We show that

a(n) =
⌊n

7

⌋
+a
(

n−7
⌊n

7

⌋)
,

b(n) =
⌊n

7

⌋
+b
(

n−7
⌊n

7

⌋)
,

and that the values for n ≤ 6 are as follows:

n 0 1 2 3 4 5 6
a(n) 0 1 0 1 2 1 2
b(n) 0 1 0 1 0 1 0

Since 2022 ≡ 6 (mod 7), this will yield a(2022) = 2+
⌊ 2022

7 ⌋= 290.

We proceed by induction, starting with the base cases
n ≤ 6. Since the number of odd intervals never de-
creases, we have a(n),b(n) ≥ n− 2⌊ n

2⌋; by looking at
the possible final positions, we see that equality holds
for n = 0,1,2,3,5. For n = 4,6, Alice moving first can
split the original interval into two odd intervals, guar-
anteeing at least two odd intervals in the final position;
whereas Bob can move to leave behind one or two in-
tervals of length 2, guaranteeing no odd intervals in the
final position.

We now proceed to the induction step. Suppose that
n≥ 7 and the claim is known for all m< n. In particular,
this means that a(m) ≥ b(m); consequently, it does not
change the analysis to allow a player to pass their turn
after the first move, as both players will still have an
optimal strategy which involves never passing.

It will suffice to check that

a(n) = a(n−7)+1, b(n) = b(n−7)+1.

Moving first, Alice can leave behind two intervals of
length 1 and n−3. This shows that

a(n)≥ 1+b(n−3) = a(n−7)+1.

On the other hand, if Alice leaves behind intervals of
length i and n − 2 − i, Bob can choose to play in ei-
ther one of these intervals and then follow Alice’s lead
thereafter (exercising the pass option if Alice makes the
last legal move in one of the intervals). This shows that

a(n)≤ max{min{a(i)+b(n−2− i),
b(i)+a(n−2− i)} : i = 0,1, . . . ,n−2}

= a(n−7)+1.

Moving first, Bob can leave behind two intervals of
lengths 2 and n−4. This shows that

b(n)≤ a(n−4) = b(n−7)+1.

On the other hand, if Bob leaves behind intervals of
length i and n− 2− i, Alice can choose to play in ei-
ther one of these intervals and then follow Bob’s lead
thereafter (again passing as needed). This shows that

b(n)≥ min{max{a(i)+b(n−2− i),
b(i)+a(n−2− i)} : i = 0,1, . . . ,n−2}

= b(n−7)+1.

This completes the induction.

A6 First solution. The largest such m is n. To show that
m ≥ n, we take

x j = cos
(2n+1− j)π

2n+1
( j = 1, . . . ,2n).
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It is apparent that −1 < x1 < · · ·< x2n < 1. The sum of
the lengths of the intervals can be interpreted as

−
2n

∑
j=1

((−1)2n+1− jx j)
2k−1

=−
2n

∑
j=1

(
cos(2n+1− j)

(
π +

π

2n+1

))2k−1

=−
2n

∑
j=1

(
cos

2π(n+1) j
2n+1

)2k−1

.

For ζ = e2πi(n+1)/(2n+1), this becomes

=−
2n

∑
j=1

(
ζ j +ζ− j

2

)2k−1

=− 1
22k−1

2n

∑
j=1

2k−1

∑
l=0

(
2k−1

l

)
ζ

j(2k−1−2l)

=− 1
22k−1

2k−1

∑
l=0

(
2k−1

l

) 2n

∑
j=1

ζ
j(2k−1−2l)

=− 1
22k−1

2k−1

∑
l=0

(
2k−1

l

)
(−1) = 1,

using the fact that ζ 2k−1−2l is a nontrivial root of unity
of order dividing 2n+1.

To show that m ≤ n, we use the following lemma. We
say that a multiset {x1, . . . ,xm} of complex numbers is
inverse-free if there are no two indices 1 ≤ i ≤ j ≤ m
such that xi + x j = 0; this implies in particular that 0
does not occur.

Lemma. Let {x1, . . . ,xm},{y1, . . . ,yn} be two inverse-free
multisets of complex numbers such that

m

∑
i=1

x2k−1
i =

n

∑
i=1

y2k−1
i (k = 1, . . . ,max{m,n}).

Then these two multisets are equal.

Proof. We may assume without loss of generality that m ≤ n.
Form the rational functions

f (z) =
m

∑
i=1

xiz
1− x2

i z2 , g(z) =
n

∑
i=1

yiz
1− y2

i z2 ;

both f (z) and g(z) have total pole order at most 2n. Mean-
while, by expanding in power series around z = 0, we see that
f (z)−g(z) is divisible by z2n+1. Consequently, the two series
are equal.

However, we can uniquely recover the multiset {x1, . . . ,xm}
from f (z): f has poles at {1/x2

1, . . . ,1/x2
m} and the residue of

the pole at z = 1/x2
i uniquely determines both xi (i.e., its sign)

and its multiplicity. Similarly, we may recover {y1, . . . ,yn}
from g(z), so the two multisets must coincide.

Now suppose by way of contradiction that we have an
example showing that m ≥ n+1. We then have

12k−1 +
n

∑
i=1

x2k−1
2i−1 =

n

∑
i=1

x2k−1
2i (k = 1, . . . ,n+1).

By the lemma, this means that the multisets
{1,x1,x3, . . . ,x2n−1} and {x2,x4, . . . ,x2n} become equal
after removing pairs of inverses until this becomes im-
possible. However, of the resulting two multisets, the
first contains 1 and the second does not, yielding the
desired contradiction.

Remark. One can also prove the lemma using the in-
vertibility of the Vandermonde matrix

(x j
i )i=0,...,n; j=0,...,n

for x0, . . . ,xn pairwise distinct (this matrix has determi-
nant ∏0≤i< j≤n(xi − x j) ̸= 0). For a similar argument,
see Proposition 22 of: M. Bhargava, Galois groups
of random integer polynomials and van der Waerden’s
conjecture, arXiv:2111.06507.

Remark. The solution for m = n given above is not
unique (see below). However, it does become unique
if we add the assumption that xi = −x2n+1−i for i =
1, . . . ,2n (i.e., the set of intervals is symmetric around
0).

Second solution. (by Evan Dummit) Define the poly-
nomial

p(x) = (x− x1)(x+ x2) · · ·(x− x2n−1)(x+ x2n)(x+1);

by hypothesis, p(x) has 2n+1 distinct real roots in the
interval [−1,1). Let sk denote the k-th power sum of
p(x); then for any given m, the desired condition is that
s2k−1 = 0 for k = 1, . . . ,m. Let ek denote the k-th ele-
mentary symmetric function of the roots of p(x); that
is,

p(x) = x2n+1 +
2n+1

∑
i=k

(−1)kekx2n+1−k.

By the Girard–Newton identities,

(2k−1)e2k−1 = s1e2k−2 − s2e2k−2 + · · ·− s2ke1;

hence the desired condition implies that e2k−1 = 0 for
k = 1, . . . ,m.

If we had a solution with m = n+1, then the vanishing
of e1, . . . ,e2k+1 would imply that p(x) is an odd poly-
nomial (that is, p(x) = −p(x) for all x), which in turn
would imply that x= 1 is also a root of p. Since we have
already identified 2n+ 1 other roots of p, this yields a
contradiction.

By the same token, a solution with m= n corresponds to
a polynomial p(x) of the form xq(x2)+a for some poly-
nomial q(x) of degree n and some real number a (neces-
sarily equal to q(1)). It will thus suffice to choose q(x)
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so that the resulting polynomial p(x) has roots consist-
ing of −1 plus 2n distinct values in (−1,1). To do this,
start with any polynomial r(x) of degree n with n dis-
tinct positive roots (e.g., r(x) = (x−1) · · ·(x−n)). The
polynomial xr(x2) then has 2n+ 1 distinct real roots;
consequently, for ε > 0 sufficiently small, xr(x2) + ε

also has 2n + 1 distinct real roots. Let −α be the
smallest of these roots (so that α > 0); we then take
q(x) = r(x

√
α) to achieve the desired result.

Remark. Brian Lawrence points out that one can also
produce solutions for m = n by starting with the degen-
erate solution

−an−1, . . . ,−a1,0,a1, . . . ,an−1,1

(where 0 < a1 < · · ·< an−1 < 1 but no other conditions
are imposed) and deforming it using the implicit func-
tion theorem. More precisely, there exists a differen-
tiable parametric solution x1(t), . . . ,x2n(t) with xi(t) =
x2n−i(t) for i = 1, . . . ,n−1 specializing to the previous
solution at t = 0, such that x′i(0) ̸= 0 for i = n, . . . ,2n;
this is because the Jacobian matrix

J = ((2k−1)xi(0)2k−2)i=n,...,2n;k=1,...,n

(interpreting 00 as 1) has the property that every maxi-
mal minor is nonzero (these being scaled Vandermonde
matrices). In particular we may normalize so that
x′2n(0)< 0, and then evaluating at a small positive value
of t gives the desired example.

In the proof that m = n+1 cannot occur, one can simi-
larly use the implicit function theorem (with some care)
to reduce to the case where {|x1|, . . . , |x2n|} has cardi-
nality n+ 1. This can be extended to a complete solu-
tion, but the details are rather involved.

B1 We prove that bkk! is an odd integer for all k ≥ 0.

First solution. Since eP(x) = ∑
∞
n=0

(P(x))n

n! , the number
k!bk is the coefficient of xk in

(P(x))k +
k−1

∑
n=0

k!
n!
(P(x))n.

In particular, b0 = 1 and b1 = a1 are both odd.

Now suppose k ≥ 2; we want to show that bk is odd.
The coefficient of xk in (P(x))k is ak

1. It suffices to show
that the coefficient of xk in k!

n! (P(x))
n is an even integer

for any n < k. For k even or n ≤ k − 2, this follows
immediately from the fact that k!

n! is an even integer. For
k odd and n = k−1, we have

k!
(k−1)!

(P(x))k−1 = k(a1x+a2x2 + · · ·)k−1

= k(ak−1
1 xk−1 +(k−1)ak−2

1 a2xk + · · ·)

and the coefficient of xk is k(k − 1)ak−2
1 a2, which is

again an even integer.

Second solution. Let G be the set of power series of
the form ∑

∞
n=0 cn

xn
n! with c0 = 1,cn ∈ Z; then G forms a

group under formal series multiplication because(
∞

∑
n=0

cn
xn

n!

)(
∞

∑
n=0

dn
xn

n!

)
=

∞

∑
n=0

en
xn

n!

with

en =
n

∑
m=0

(
n
m

)
cmdn−m.

By the same calculation, the subset H of series with
cn ∈ 2Z for all n ≥ 1 is a subgroup of G.

We have e2x ∈ H because 2n

n! ∈ 2Z for all n ≥ 1: the
exponent of 2 in the prime factorization of n! is

∞

∑
i=1

⌊ n
2i

⌋
<

∞

∑
i=1

n
2i = n.

For any integer k ≥ 2, we have exk ∈ H because (nk)!
n! ∈

2Z for all n ≥ 1: this is clear if k = 2,n = 1, and in all
other cases the ratio is divisible by (n+1)(n+2).

We deduce that eP(x)−x ∈ H. By writing eP(x) as ex =
∑

∞
n=0

xn

n! times an element of H, we deduce that k!bk is
odd for all k ≥ 0.

Third solution. (by David Feldman) We interpret eP(x)

using the exponential formula for generating functions.
For each j, choose a set S j consisting of |a j| col-
ors. Then bk is a weighted count over set partitions of
{1, . . . ,k}, with each part of size j assigned a color in
S j, and the weight being (−1)i where i is the number of
parts of any size j for which a j < 0.

Since we are only looking for the parity of bk, we may
dispense with the signs; that is, we may assume a j ≥ 0
for all j and forget about the weights.

Choose an involution on each S j with at most one fixed
point; this induces an involution on the partitions, so to
find the parity of bk we may instead count fixed points
of the involution. That is, we may assume that a j ∈
{0,1}.

Let Tk be the set of set partitions in question with the all-
singletons partition removed; it now suffices to exhibit
a fixed-point-free involution of Tk. To wit, for each par-
tition in Tk, there is a smallest index i ∈ {1, . . . ,k− 1}
for which i and i+1 are not both singletons; we define
an involution by swapping the positions of i and i+1.

B2 The possible values of n are 1 and 7.

Clearly the set S = {0} works. Suppose that S ̸= {0}
is a finite set satisfying the given condition; in par-
ticular, S does not consist of a collection of collinear
vectors, since otherwise {v×w : v,w ∈ S} = {0}. We
claim that S cannot contain any nonzero vector v with
∥v∥ ̸= 1. Suppose otherwise, and let w ∈ S be a vector
not collinear with v. Then S must contain the nonzero
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vector u1 = v × w, as well as the sequence of vec-
tors un defined inductively by un = v × un−1. Since
each un is orthogonal to v by construction, we have
∥un∥= ∥v∥∥un−1∥ and so ∥un∥= ∥v∥n−1∥u1∥. The se-
quence ∥un∥ consists of all distinct numbers and thus S
is infinite, a contradiction. This proves the claim, and
so every nonzero vector in S is a unit vector.

Next note that any pair of vectors v,w∈ S must either be
collinear or orthogonal: by the claim, v,w are both unit
vectors, and if v,w are not collinear then v×w ∈ S must
be a unit vector, whence v ⊥ w. Now choose any pair of
non-collinear vectors v1,v2 ∈ S, and write v3 = v1 × v2.
Then {v1,v2,v3} is an orthonormal basis of R3, and it
follows that all of these vectors are in S: 0, v1, v2, v3,
−v1 = v3×v2, −v2 = v1×v3, and −v3 = v2×v1. On the
other hand, S cannot contain any vector besides these
seven, since any other vector w in S would have to be
simultaneously orthogonal to all of v1,v2,v3.

Thus any set S ̸= {0} satisfying the given condi-
tion must be of the form {0,±v1,±v2,±v3} where
{v1,v2,v3} is an orthonormal basis of R3. It is clear that
any set of this form does satisfy the given condition. We
conclude that the answer is n = 1 or n = 7.

B3 The answer is yes. Let R0,B0 ⊂R+ be the set of red and
blue numbers at the start of the process, and let Rn,Bn
be the set of red and blue numbers after n steps. We
claim that R2 = R+.

We first note that if y ∈ B1, then y/2 ∈ R1. Namely,
the numbers y and 2y must be of opposite colors in the
original coloring, and then 3y/2 must be of the same
color as one of y or 2y.

Now suppose by way of contradiction that x ∈ B2. Then
of the four numbers x,2x,3x,4x, every other number
must be in R1 and the other two must be in B1. By
the previous observation, 2x and 4x cannot both be in
B1; it follows that 2x,4x ∈ R1 and x,3x ∈ B1. By the
previous observation again, x/2 and 3x/2 must both be
in R1, but then x = 3x/2− x/2 is in R2, contradiction.
We conclude that R2 = R+, as desired.

B4 The values of n in question are the multiples of 3 start-
ing with 9. Note that we interpret “distinct” in the prob-
lem statement to mean “pairwise distinct” (i.e., no two
equal). See the remark below.

We first show that such a sequence can only oc-
cur when n is divisible by 3. If d1 and d2 are
the common differences of the arithmetic progressions
{xm,xm+1,xm+2} and {xm+1,xm+2,xm+3} for some m,
then d2 ∈ {d1,2d1,d1/2}. By scaling we may assume
that the smallest common difference that occurs is 1;
in this case, all of the common differences are integers.
By shifting, we may assume that the xi are themselves
all integers. We now observe that any three consecutive
terms in the sequence have pairwise distinct residues
modulo 3, forcing n to be divisible by 3.

We then observe that for any m ≥ 2, we obtain a se-
quence of the desired form of length 3m+ 3 = (2m−
1) + 1 + (m + 1) + 2 by concatenating the arithmetic
progressions

(1,3, . . . ,4m−3,4m−1),
4m−2,(4m,4m−4, . . . ,4,0),2.

We see that no terms are repeated by noting that the
first parenthesized sequence consists of odd numbers;
the second sequence consists of multiples of 4; and the
remaining numbers 2 and 4m− 2 are distinct (because
m ≥ 2) but both congruent to 2 mod 4.

It remains to show that no such sequence occurs with
n = 6. We may assume without loss of generality that
the smallest common difference among the arithmetic
progressions is 1 and occurs for {x1,x2,x3}; by rescal-
ing, shifting, and reversing the sequence as needed, we
may assume that x1 = 0 and (x2,x3) ∈ {(1,2),(2,1)}.
We then have x4 = 3 and

(x5,x6) ∈ {(4,5),(−1,−5),(−1,7),(5,4),(5,7)}.

In none of these cases does {x5,x6,0} form an arith-
metic progression.

Remark. If one interprets “distinct” in the problem
statement to mean “not all equal”, then the problem be-
comes simpler: the same argument as above shows that
n must be a multiple of 3, in which case a suitable rep-
etition of the sequence −1,0,1 works.

B5 First solution. The answer is p ≤ 1/4. We first
show that p > 1/4 does not satisfy the desired con-
dition. For p > 1/3, P(0,1) = 1− 2p < p = P(1,1).
For p = 1/3, it is easily calculated (or follows from
the next calculation) that P(0,1,2) = 1/9 < 2/9 =
P(1,1,2). Now suppose 1/4 < p < 1/3, and consider
(b,a1,a2,a3, . . . ,an) = (1,1,2,4, . . . ,2n−1). The only
solution to

X1 +2X2 + · · ·+2n−1Xn = 0

with X j ∈ {0,±1} is X1 = · · · = Xn = 0; thus
P(0,1,2, . . . ,22n−1) = (1−2p)n. On the other hand, the
solutions to

X1 +2X2 + · · ·+2n−1Xn = 1

with X j ∈ {0,±1} are

(X1,X2, . . . ,Xn) = (1,0, . . . ,0),(−1,1,0, . . . ,0),
(−1,−1,1,0, . . . ,0), . . . ,(−1,−1, . . . ,−1,1),

and so

P(1,1,2, . . . ,2n−1)

= p(1−2p)n−1 + p2(1−2p)n−2 + · · ·+ pn

= p
(1−2p)n − pn

1−3p
.
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It follows that the inequality P(0,1,2, . . . ,2n−1) ≥
P(1,1,2, . . . ,2n−1) is equivalent to

pn+1 ≥ (4p−1)(1−2p)n,

but this is false for sufficiently large n since 4p−1 > 0
and p < 1−2p.

Now suppose p ≤ 1/4; we want to show that
for arbitrary a1, . . . ,an and b ̸= 0, P(0,a1, . . . ,an) ≥
P(b,a1, . . . ,an). Define the polynomial

f (x) = px+ px−1 +1−2p,

and observe that P(b,a1, . . . ,an) is the coefficient of xb

in f (xa1) f (xa2) · · · f (xan). We can write

f (xa1) f (xa2) · · · f (xan) = g(x)g(x−1)

for some real polynomial g: indeed, if we define α =
1−2p+

√
1−4p

2p > 0, then f (x) = p
α
(x+α)(x−1 +α), and

so we can use

g(x) =
( p

α

)n/2
(xa1 +α) · · ·(xan +α).

It now suffices to show that in g(x)g(x−1), the co-
efficient of x0 is at least as large as the coefficient
of xb for any b ̸= 0. Since g(x)g(x−1) is symmetric
upon inverting x, we may assume that b > 0. If we
write g(x) = c0x0 + · · ·+ cmxm, then the coefficients
of x0 and xb in g(x)g(x−1) are c2

0 + c2
1 + · · ·+ c2

m and
c0cb + c1cb+1 + · · ·+ cm−bcm, respectively. But

2(c0cb + c1cb+1 + · · ·+ cm−bcm)

≤ (c2
0 + c2

b)+(c2
1 + c2

b+1)+ · · ·+(c2
m−b + c2

m)

≤ 2(c2
0 + · · ·+ c2

m),

and the result follows.

Second solution. (by Yuval Peres) We check that p ≤
1/4 is necessary as in the first solution. To check that it
is sufficient, we introduce the following concept: for X
a random variable taking finitely many integer values,
define the characteristic function

ϕX (θ) = ∑
ℓ∈Z

P(X = ℓ)eiℓθ

(i.e., the expected value of eiXθ , or the Fourier transform
of the probability measure corresponding to X). We use
two evident properties of these functions:

– If X and Y are independent, then ϕX+Y (θ) =
ϕX (θ)+ϕY (θ).

– For any b ∈ Z,

P(X = b) =
1
2

∫ 2π

0
e−ibθ

ϕX (θ)dθ .

In particular, if ϕX (θ) ≥ 0 for all θ , then P(X =
b)≤ P(X = 0).

For p ≤ 1/4, we have

ϕXk(θ) = (1−2p)+2pcos(θ)≥ 0.

Hence for a1, . . . ,an ∈ Z, the random variable S =
a1X1 + · · ·+anXn satisfies

ϕS(θ) =
n

∏
k=1

ϕakXk(θ) =
n

∏
k=1

ϕXk(akθ)≥ 0.

We may thus conclude that P(S = b)≤ P(S = 0) for any
b ∈ Z, as desired.

B6 The only such functions are the functions f (x) = 1
1+cx

for some c ≥ 0 (the case c = 0 giving the constant func-
tion f (x) = 1). Note that we interpret R+ in the prob-
lem statement to mean the set of positive real numbers,
excluding 0.

For convenience, we reproduce here the given equation:

f (x f (y))+ f (y f (x)) = 1+ f (x+ y) (1)

We first prove that

lim
x→0+

f (x) = 1. (2)

Set

L− = liminf
x→0+

f (x), L+ = limsup
x→0+

f (x).

For any fixed y, we have by (1)

L+ = limsup
x→0+

f (x f (y))

≤ limsup
x→0+

(1+ f (x+ y)) = 1+ f (y)< ∞.

Consequently, x f (x)→ 0 as x → 0+. By (2) with y = x,

2L+ = limsup
x→0+

2 f (x f (x))

= limsup
x→0+

(1+ f (2x)) = 1+L+

2L− = liminf
x→0+

2 f (x f (x))

= liminf
x→0+

(1+ f (2x)) = 1+L−

and so L− = L+ = 1, confirming (2).

We next confirm that

f (x)≥ 1 for all x > 0 =⇒ f (x) = 1 for all x > 0. (3)

Suppose that f (x)≥ 1 for all x > 0. For 0 < c ≤ ∞, put
Sc = sup{ f (x) : 0 < x ≤ c}; for c < ∞, (2) implies that
Sc < ∞. If there exists y > 0 with f (y) > 1, then from
(1) we have f (x+ y)− f (x f (y)) = f (y f (x))− 1 ≥ 0;
hence

Sc = S(c−y) f (y)

(
c ≥ c0 =

y f (y)
f (y)−1

)
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and (since (c−y) f (y)−c0 = f (y)(c−c0)) iterating this
construction shows that S∞ = Sc for any c > c0. In any
case, we deduce that

f (x)≥ 1 for all x > 0 =⇒ S∞ < ∞. (4)

Still assuming that f (x)≥ 1 for all x > 0, note that from
(1) with x = y,

f (x f (x)) =
1
2
(1+ f (2x)).

Since x f (x) → 0 as x → 0+ by (2) and x f (x) → ∞ as
x → ∞, x f (x) takes all positive real values by the inter-
mediate value theorem. We deduce that 2S∞ ≤ 1+ S∞

and hence S∞ = 1; this proves (3).

We may thus assume hereafter that f (x) < 1 for some
x > 0. We next check that

lim
x→∞

f (x) = 0. (5)

Put I = inf{ f (x) : x > 0}< 1, choose ε ∈ (0,(1− I)/2),
and choose y > 0 such that f (y)< I + ε . We then must
have x f (x) ̸= y for all x, or else

1+ I ≤ 1+ f (2x) = 2 f (y)< 2I +2ε,

contradiction. Since x f (x) → 0 as x → 0+ by (2), we
have sup{x f (x) : x > 0} < ∞ by the intermediate value
theorem, yielding (5).

By (2) plus (5), f−1(1/2) is nonempty and compact.
We can now simplify by noting that if f (x) satisfies the
original equation, then so does f (cx) for any c > 0; we
may thus assume that the least element of f−1(1/2) is
1, in which case we must show that f (x) = 1

1+x .

We next show that

lim
x→∞

x f (x) = 1. (6)

For all x > 0, by (1) with y = x,

f (x f (x)) =
1
2
(1+ f (2x))>

1
2
= f (1), (7)

so in particular x f (x) ̸= 1. As in the proof of (5), this
implies that x f (x) < 1 for all x > 0. However, by (5)
and (7) we have f (x f (x))→ 1

2 as x → ∞, yielding (6).

By substituting y 7→ xy in (1),

f (x f (xy))+ f (xy f (x)) = 1+ f (x+ xy).

Taking the limit as x → ∞ and applying (6) yields

f (1/y)+ f (y) = 1. (8)

Combining (1) with (8) yields

f (x f (y)) = f (x+ y)+ f
(

1
y f (x)

)
.

Multiply both sides by x f (y), then take the limit as x →
∞ to obtain

1 = lim
x→∞

x f (y) f (x+ y)+ lim
x→∞

x f (y) f
(

1
y f (x)

)
= f (y)+ lim

x→∞
x f (y)y f (x)

= f (y)+ y f (y)

and solving for f (y) now yields f (y) = 1
1+y , as desired.

Remark. Some variants of the above approach are pos-
sible. For example, once we have (5), we can establish
that f is monotone decreasing as follows. We first check
that

f (x)< 1 for all x > 0. (9)

Suppose by way of contradiction that f (x) = 1 for some
x. By (1),

f (2x)+1 = 2 f (x f (x)) = 2 f (x) = 2

and so f (2x) = 1. It follows that f−1(1) is infinite, con-
tradicting (5).

We next check that

x < y =⇒ f (x)> f (y). (10)

For x < y, by substituting x 7→ y− x in (1) we obtain

1+ f (y) = f (x f (y− x))+ f ((y− x) f (x))
< 1+ f ((y− x) f (x)),

whence f ((y− x) f (x))> f (y). Because (y− x) f (x)→
0 as x → y− and (y−x) f (x)→ y as x → 0+, (y−x) f (x)
takes all values in (0,y) as x varies over (0,y); this
proves (10).
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