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A1 If we use the product rule to calculate f ′′n (x), the result
is a sum of terms of two types: terms where two distinct
factors cos(m1x) and cos(m2x) have each been differen-
tiated once, and terms where a single factor cos(mx) has
been differentiated twice. When we evaluate at x = 0,
all terms of the first type vanish since sin(0) = 0, while
the term of the second type involving (cos(mx))′′ be-
comes −m2. Thus

| f ′′n (0)|=

∣∣∣∣∣− n

∑
m=1

m2

∣∣∣∣∣= n(n+1)(2n+1)
6

.

The function g(n) = n(n+1)(2n+1)
6 is increasing for n ∈N

and satisfies g(17) = 1785 and g(18) = 2109. It follows
that the answer is n = 18.

A2 The only other real numbers with this property are
±1/n!. (Note that these are indeed other values than
±1, . . . ,±n because n > 1.)

Define the polynomial q(x) = x2n+2 − x2n p(1/x) =
x2n+2 − (a0x2n + · · ·+ a2n−1x+ 1). The statement that
p(1/x) = x2 is equivalent (for x ̸= 0) to the state-
ment that x is a root of q(x). Thus we know that
±1,±2, . . . ,±n are roots of q(x), and we can write

q(x) = (x2 +ax+b)(x2 −1)(x2 −4) · · ·(x2 −n2)

for some monic quadratic polynomial x2 + ax + b.
Equating the coefficients of x2n+1 and x0 on both sides
gives 0 = a and −1 = (−1)n(n!)2b, respectively. Since
n is even, we have x2 + ax+ b = x2 − (n!)−2. We con-
clude that there are precisely two other real numbers x
such that p(1/x) = x2, and they are ±1/n!.

A3 The answer is r = π

2 , which manifestly is achieved by
setting f (x) = cosx and g(x) = sinx.

First solution. Suppose by way of contradiction that
there exist some f ,g satisfying the stated conditions for
some 0 < r < π

2 . We first note that we can assume that
f (x) ̸= 0 for x ∈ [0,r). Indeed, by continuity, {x |x ≥
0 and f (x) = 0} is a closed subset of [0,∞) and thus has
a minimum element r′ with 0 < r′ ≤ r. After replacing
r by r′, we now have f (x) ̸= 0 for x ∈ [0,r).

Next we note that f (r) = 0 implies g(r) ̸= 0. In-
deed, define the function k : R→ R by k(x) = f (x)2 +
g(x)2. Then |k′(x)| = 2| f (x) f ′(x) + g(x)g′(x))| ≤
4| f (x)g(x)| ≤ 2k(x), where the last inequality fol-
lows from the AM-GM inequality. It follows that∣∣ d

dx (logk(x))
∣∣ ≤ 2 for x ∈ [0,r); since k(x) is continu-

ous at x = r, we conclude that k(r) ̸= 0.

Now define the function h : [0,r) → (−π/2,π/2) by
h(x) = tan−1(g(x)/ f (x)). We compute that

h′(x) =
f (x)g′(x)−g(x) f ′(x)

f (x)2 +g(x)2

and thus

|h′(x)| ≤ | f (x)||g′(x)|+ |g(x)|| f ′(x)|
f (x)2 +g(x)2 ≤ | f (x)|2 + |g(x)|2

f (x)2 +g(x)2 = 1.

Since h(0) = 0, we have |h(x)| ≤ x < r for all x ∈ [0,r).
Since r < π/2 and tan−1 is increasing on (−r,r), we
conclude that |g(x)/ f (x)| is uniformly bounded above
by tanr for all x ∈ [0,r). But this contradicts the fact
that f (r) = 0 and g(r) ̸= 0, since limx→r− g(x)/ f (x) =
∞. This contradiction shows that r < π/2 cannot be
achieved.

Second solution. (by Victor Lie) As in the first solu-
tion, we may assume f (x)> 0 for x ∈ [0,r). Combining
our hypothesis with the fundamental theorem of calcu-
lus, for x > 0 we obtain

| f ′(x)| ≤ |g(x)| ≤
∣∣∣∣∫ x

0
g′(t)dt

∣∣∣∣
≤

∫ x

0
|g′(t)|dt ≤

∫ x

0
| f (t)|dt.

Define F(x) =
∫ x

0 f (t)dt; we then have

f ′(x)+F(x)≥ 0 (x ∈ [0,r]).

Now suppose by way of contradiction that r < π

2 . Then
cosx > 0 for x ∈ [0,r], so

f ′(x)cosx+F(x)cosx ≥ 0 (x ∈ [0,r]).

The left-hand side is the derivative of f (x)cosx +
F(x)sinx. Integrating from x = y to x = r, we obtain

F(r)sinr ≥ f (y)cosy+F(y)siny (y ∈ [0,r]).

We may rearrange to obtain

F(r)sinr sec2 y ≥ f (y)secy+F(y)sinysec2 y (y ∈ [0,r]).

The two sides are the derivatives of F(r)sinr tany and
F(y)secy, respectively. Integrating from y = 0 to y = r
and multiplying by cos2 r, we obtain

F(r)sin2 r ≥ F(r)

which is impossible because F(r)> 0 and 0< sinr < 1.
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A4 The assumption that all vertices of the icosahedron cor-
respond to vectors of the same length forces the center
of the icosahedron to lie at the origin, since the icosa-
hedron is inscribed in a unique sphere. Since scaling
the icosahedron does not change whether or not the
stated conclusion is true, we may choose coordinates so
that the vertices are the cyclic permutations of the vec-
tors (± 1

2 ,±
1
2 φ ,0) where φ = 1+

√
5

2 is the golden ratio.
The subgroup of R3 generated by these vectors contains
G×G×G where G is the subgroup of R generated by
1 and φ . Since φ is irrational, it generates a dense sub-
group of R/Z; hence G is dense in R, and so G×G×G
is dense in R3, proving the claim.

A5 The complex numbers z with this property are

−31010 −1
2

and − 31010 −1
2

±
√

91010 −1
4

i.

We begin by noting that for n ≥ 1, we have the follow-
ing equality of polynomials in a parameter x:

3n−1

∑
k=0

(−2) f (k)xk =
n−1

∏
j=0

(x2·3 j −2x3 j
+1).

This is readily shown by induction on n, using the fact
that for 0 ≤ k ≤ 3n−1 − 1, f (3n−1 + k) = f (k)+ 1 and
f (2 ·3n−1 + k) = f (k).
Now define a “shift” operator S on polynomials in z by
S(p(z)) = p(z+1); then we can define Sm for all m ∈ Z
by Sm(p(z)), and in particular S0 = I is the identity map.
Write

pn(z) :=
3n−1

∑
k=0

(−2) f (k)(z+ k)2n+3

for n ≥ 1; it follows that

pn(z) =
n−1

∏
j=0

(S2·3 j −2S3 j
+ I)z2n+3

= S(3
n−1)/2

n−1

∏
j=0

(S3 j −2I +S−3 j
)z2n+3.

Next observe that for any ℓ, the operator Sℓ− 2I + S−ℓ

acts on polynomials in z in a way that decreases degree
by 2. More precisely, for m ≥ 0, we have

(Sℓ−2I +S−ℓ)zm = (z+ ℓ)m −2zm +(z− ℓ)m

= 2
(

m
2

)
ℓ2zm−2 +2

(
m
4

)
ℓ4zm−4 +O(zm−6).

We use this general calculation to establish the follow-
ing: for any 1 ≤ i ≤ n, there is a nonzero constant Ci
(depending on n and i but not z) such that

i

∏
j=1

(S3n− j −2I +S−3n− j
)z2n+3

=Ci

(
z2n+3−2i + (2n+3−2i)(n+1−i)

6 (∑i
j=1 9n− j)z2n+1−2i

)
+O(z2n−1−2i). (1)

Proving (1) is a straightforward induction on i: the
induction step applies S3n−i−1 − 2I + S−3n−i−1

to the
right hand side of (1), using the general formula for
(Sℓ−2I +S−ℓ)zm.

Now setting i = n in (1), we find that for some Cn,

n−1

∏
j=0

(S3 j −2I +S−3 j
)z2n+3 =Cn

(
z3 +

9n −1
16

z
)
.

The roots of this polynomial are 0 and ±
√

9n−1
4 i, and it

follows that the roots of pn(z) are these three numbers
minus 3n−1

2 . In particular, when n = 1010, we find that
the roots of p1010(z) are as indicated above.

A6 (Communicated by Kai Wang) For all n, Bob has a win-
ning strategy. Note that we can interpret the game play
as building a permutation of {1, . . . ,n}, and the number
of times an integer k is chosen on the k-th turn is exactly
the number of fixed points of this permutation.

For n even, Bob selects the goal “even”. Divide
{1, . . . ,n} into the pairs {1,2},{3,4}, . . . ; each time Al-
ice chooses an integer, Bob follows suit with the other
integer in the same pair. For each pair {2k−1,2k}, we
see that 2k−1 is a fixed point if and only if 2k is, so the
number of fixed points is even.

For n odd, Bob selects the goal “odd”. On the first turn,
if Alice chooses 1 or 2, then Bob chooses the other one
to transpose into the strategy for n− 2 (with no moves
made). We may thus assume hereafter that Alice’s first
move is some k > 2, which Bob counters with 2; at this
point there is exactly one fixed point.

Thereafter, as long as Alice chooses j on the j-th turn
(for j ≥ 3 odd), either j+1 < k, in which case Bob can
choose j+1 to keep the number of fixed points odd; or
j+1 = k, in which case k is even and Bob can choose 1
to transpose into the strategy for n− k (with no moves
made).

Otherwise, at some odd turn j, Alice does not choose j.
At this point, the number of fixed points is odd, and
on each subsequent turn Bob can ensure that neither
his own move nor Alice’s next move does not create
a fixed point: on any turn j for Bob, if j+1 is available
Bob chooses it; otherwise, Bob has at least two choices
available, so he can choose a value other than j.

B1 The number of such configurations is
(m+n−2

m−1

)
.

Initially the unoccupied squares form a path from (1,n)
to (m,1) consisting of m−1 horizontal steps and n−1
vertical steps, and every move preserves this property.
This yields an injective map from the set of reachable
configurations to the set of paths of this form.

Since the number of such paths is evidently
(m+n−2

m−1

)
(as

one can arrange the horizontal and vertical steps in any
order), it will suffice to show that the map we just wrote
down is also surjective; that is, that one can reach any
path of this form by a sequence of moves.
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This is easiest to see by working backwards. Ending
at a given path, if this path is not the initial path, then
it contains at least one sequence of squares of the form
(i, j)→ (i, j−1)→ (i+1, j−1). In this case the square
(i+1, j) must be occupied, so we can undo a move by
replacing this sequence with (i, j) → (i+ 1, j) → (i+
1, j−1).

B2 The minimum is 3.

First solution.

We record the factorization 2023 = 7 ·172. We first rule
out k(n) = 1 and k(n) = 2. If k(n) = 1, then 2023n = 2a

for some a, which clearly cannot happen. If k(n) = 2,
then 2023n = 2a + 2b = 2b(1+ 2a−b) for some a > b.
Then 1+2a−b ≡ 0 (mod 7); but −1 is not a power of 2
mod 7 since every power of 2 is congruent to either 1,
2, or 4 (mod 7).

We now show that there is an n such that k(n) = 3.
It suffices to find a > b > 0 such that 2023 divides
2a + 2b + 1. First note that 22 + 21 + 1 = 7 and 23 ≡ 1
(mod 7); thus if a ≡ 2 (mod 3) and b ≡ 1 (mod 3)
then 7 divides 2a +2b +1. Next, 28 +25 +1 = 172 and
216·17 ≡ 1 (mod 172) by Euler’s Theorem; thus if a ≡ 8
(mod 16 ·17) and b ≡ 5 (mod 16 ·17) then 172 divides
2a +2b +1.

We have reduced the problem to finding a,b such that
a ≡ 2 (mod 3), a ≡ 8 (mod 16 · 17), b ≡ 1 (mod 3),
b ≡ 5 (mod 16 · 17). But by the Chinese Remainder
Theorem, integers a and b solving these equations exist
and are unique mod 3 ·16 ·17. Thus we can find a,b sat-
isfying these congruences; by adding appropriate mul-
tiples of 3 ·16 ·17, we can also ensure that a > b > 1.

Second solution. We rule out k(n) ≤ 2 as in the first
solution. To force k(n) = 3, we first note that 24 ≡ −1
(mod 17) and deduce that 268 ≡ −1 (mod 172). (By
writing 268 = ((24 +1)−1)17 and expanding the bino-
mial, we obtain −1 plus some terms each of which is
divisible by 17.) Since (28 −1)2 is divisible by 172,

0 ≡ 216 −2 ·28 +1 ≡ 216 +2 ·268 ·28 +1

= 277 +216 +1 (mod 172).

On the other hand, since 23 ≡−1 (mod 7),

277 +216 +1 ≡ 22 +21 +1 ≡ 0 (mod 7).

Hence n = (277 + 216 + 1)/2023 is an integer with
k(n) = 3.

Remark. A short computer calculation shows that the
value of n with k(n) = 3 found in the second solution is
the smallest possible. For example, in SageMath, this
reduces to a single command:

assert all((2^a+2^b+1) % 2023 != 0
for a in range(1,77) for b in range(1,a))

B3 The expected value is 2n+2
3 .

Divide the sequence X1, . . . ,Xn into alternating increas-
ing and decreasing segments, with N segments in all.
Note that removing one term cannot increase N: if
the removed term is interior to some segment then the
number remains unchanged, whereas if it separates two
segments then one of those decreases in length by 1
(and possibly disappears). From this it follows that
a(X1, . . . ,Xn) = N + 1: in one direction, the endpoints
of the segments form a zigzag of length N + 1; in the
other, for any zigzag Xi1 , . . . ,Xim , we can view it as a
sequence obtained from X1, . . . ,Xn by removing terms,
so its number of segments (which is manifestly m− 1)
cannot exceed N.
For n ≥ 3, a(X1, . . . ,Xn)−a(X2, . . . ,Xn) is 0 if X1,X2,X3
form a monotone sequence and 1 otherwise. Since the
six possible orderings of X1,X2,X3 are equally likely,

E(a(X1, . . . ,Xn)−a(X1, . . . ,Xn−1)) =
2
3
.

Moreover, we always have a(X1,X2) = 2 because any
sequence of two distinct elements is a zigzag. By lin-
earity of expectation plus induction on n, we obtain
E(a(X1, . . . ,Xn)) =

2n+2
3 as claimed.

B4 The minimum value of T is 29.
Write tn+1 = t0+T and define sk = tk − tk−1 for 1 ≤ k ≤
n+ 1. On [tk−1, tk], we have f ′(t) = k(t − tk−1) and so
f (tk)− f (tk−1) =

k
2 s2

k . Thus if we define

g(s1, . . . ,sn+1) =
n+1

∑
k=1

ks2
k ,

then we want to minimize ∑
n+1
k=1 sk = T (for all pos-

sible values of n) subject to the constraints that
g(s1, . . . ,sn+1) = 4045 and sk ≥ 1 for k ≤ n.
We first note that a minimum value for T is in-
deed achieved. To see this, note that the constraints
g(s1, . . . ,sn+1) = 4045 and sk ≥ 1 place an upper bound
on n. For fixed n, the constraint g(s1, . . . ,sn+1) = 4045
places an upper bound on each sk, whence the set of
(s1, . . . ,sn+1) on which we want to minimize ∑sk is a
compact subset of Rn+1.
Now say that T0 is the minimum value of ∑

n+1
k=1 sk (over

all n and s1, . . . ,sn+1), achieved by (s1, . . . ,sn+1) =
(s0

1, . . . ,s
0
n+1). Observe that there cannot be another

(s1, . . . ,sn′+1) with the same sum, ∑
n′+1
k=1 sk = T0, satis-

fying g(s1, . . . ,sn′+1)> 4045; otherwise, the function f
for (s1, . . . ,sn′+1) would satisfy f (t0 +T0) > 4045 and
there would be some T < T0 such that f (t0+T ) = 4045
by the intermediate value theorem.
We claim that s0

n+1 ≥ 1 and s0
k = 1 for 1 ≤ k ≤ n. If

s0
n+1 < 1 then

g(s0
1, . . . ,s

0
n−1,s

0
n + s0

n+1)−g(s0
1, . . . ,s

0
n−1,s

0
n,s

0
n+1)

= s0
n+1(2ns0

n − s0
n+1)> 0,
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contradicting our observation from the previous para-
graph. Thus s0

n+1 ≥ 1. If s0
k > 1 for some 1 ≤ k ≤ n then

replacing (s0
k ,s

0
n+1) by (1,s0

n+1 + s0
k −1) increases g:

g(s0
1, . . . ,1, . . . ,s

0
n+1 + s0

k −1)−g(s0
1, . . . ,s

0
k , . . . ,s

0
n+1)

= (s0
k −1)((n+1− k)(s0

k +1)+2(n+1)(s0
n+1 −1))> 0,

again contradicting the observation. This establishes
the claim.

Given that s0
k = 1 for 1 ≤ k ≤ n, we have T = s0

n+1 +n
and

g(s0
1, . . . ,s

0
n+1) =

n(n+1)
2

+(n+1)(T −n)2.

Setting this equal to 4045 and solving for T yields

T = n+

√
4045
n+1

− n
2
.

For n = 9 this yields T = 29; it thus suffices to show
that for all n,

n+

√
4045
n+1

− n
2
≥ 29.

This is evident for n ≥ 30. For n ≤ 29, rewrite the claim
as √

4045
n+1

− n
2
≥ 29−n;

we then obtain an equivalent inequality by squaring
both sides:

4045
n+1

− n
2
≥ n2 −58n+841.

Clearing denominators, gathering all terms to one side,
and factoring puts this in the form

(9−n)(n2 − 95
2

n+356)≥ 0.

The quadratic factor Q(n) has a minimum at 95
4 = 23.75

and satisfies Q(8) = 40,Q(10) =−19; it is thus positive
for n ≤ 8 and negative for 10 ≤ n ≤ 29.

B5 The desired property holds if and only if n = 1 or n ≡ 2
(mod 4).

Let σn,m be the permutation of Z/nZ induced by mul-
tiplication by m; the original problem asks for which n
does σn,m always have a square root. For n = 1, σn,m is
the identity permutation and hence has a square root.

We next identify when a general permutation admits a
square root.

Lemma 1. A permutation σ in Sn can be written as the square
of another permutation if and only if for every even positive
integer m, the number of cycles of length m in σ is even.

Proof. We first check the “only if” direction. Suppose that
σ = τ2. Then every cycle of τ of length m remains a cycle in
σ if m is odd, and splits into two cycles of length m/2 if m is
even.

We next check the “if” direction. We may partition the cycles
of σ into individual cycles of odd length and pairs of cycles
of the same even length; then we may argue as above to write
each partition as the square of another permutation.

Suppose now that n > 1 is odd. Write n = pek where p
is an odd prime, k is a positive integer, and gcd(p,k) =
1. By the Chinese remainder theorem, we have a ring
isomorphism

Z/nZ∼= Z/peZ×Z/kZ.

Recall that the group (Z/peZ)× is cyclic; choose m ∈Z
reducing to a generator of (Z/peZ)× and to the identity
in (Z/kZ)×. Then σn,m consists of k cycles (an odd
number) of length pe−1(p− 1) (an even number) plus
some shorter cycles. By Lemma 1, σn,m does not have
a square root.

Suppose next that n ≡ 2 (mod 4). Write n = 2k with k
odd, so that

Z/nZ∼= Z/2Z×Z/kZ.

Then σn,m acts on {0}×Z/kZ and {1}×Z/kZ with the
same cycle structure, so every cycle length occurs an
even number of times. By Lemma 1, σn,m has a square
root.

Finally, suppose that n is divisible by 4. For m = −1,
σn,m consists of two fixed points (0 and n/2) together
with n/2− 1 cycles (an odd number) of length 2 (an
even number). By Lemma 1, σn,m does not have a
square root.

B6 The determinant equals (−1)⌈n/2⌉−12⌈ n
2⌉.

To begin with, we read off the following features of S.

– S is symmetric: Si j = S ji for all i, j, corresponding
to (a,b) 7→ (b,a)).

– S11 = n + 1, corresponding to (a,b) =
(0,n),(1,n−1), . . . ,(n,0).

– If n = 2m is even, then Sm j = 3 for j = 1,m, cor-
responding to (a,b) = (2,0),(1, n

2 j ),(0,
n
j ).

– For n
2 < i ≤ n, Si j = #(Z∩{ n−i

j , n
j }), correspond-

ing to (a,b) = (1, n−i
j ),(0, n

j ).

Let T be the matrix obtained from S by performing row
and column operations as follows: for d = 2, . . . ,n−2,
subtract Snd times row n− 1 from row d and subtract
Snd times column n− 1 from column d; then subtract
row n−1 from row n and column n−1 from column n.
Evidently T is again symmetric and det(T ) = det(S).
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Let us examine row i of T for n
2 < i < n−1:

Ti1 = Si1 −SinS(n−1)1 = 2−1 ·2 = 0

Ti j = Si j −SinS(n−1) j −Sn jSi(n−1)

=

{
1 if j divides n− i
0 otherwise.

(1 < j < n−1)

Ti(n−1) = Si(n−1)−SinS(n−1)(n−1) = 0−1 ·0 = 0

Tin = Sin −SinS(n−1)n −Si(n−1) = 1−1 ·1−0 = 0.

Now recall (e.g., from the expansion of a determinant in
minors) if a matrix contains an entry equal to 1 which is
the unique nonzero entry in either its row or its column,
then we may strike out this entry (meaning striking out
the row and column containing it) at the expense of mul-
tiplying the determinant by a sign. To simplify notation,
we do not renumber rows and columns after performing
this operation.

We next verify that for the matrix T , for i = 2, . . . ,⌊ n
2⌋

in turn, it is valid to strike out (i,n − i) and (n −
i, i) at the cost of multiplying the determinant by -1.
Namely, when we reach the entry (n − i, i), the only
other nonzero entries in this row have the form (n− i, j)
where j > 1 divides n− i, and those entries are in pre-
viously struck columns.

We thus compute det(S) = det(T ) as:

(−1)⌊n/2⌋−1 det

n+1 −1 0
−1 0 1
0 1 0

 for n odd,

(−1)⌊n/2⌋−1 det

n+1 −1 2 0
−1 −1 1 −1
2 1 0 1
0 −1 1 0

 for n even.

In the odd case, we can strike the last two rows and
columns (creating another negation) and then conclude
at once. In the even case, the rows and columns are
labeled 1, n

2 ,n − 1,n; by adding row/column n − 1 to
row/column n

2 , we produce

(−1)⌊n/2⌋ det

n+1 1 2 0
1 1 1 0
2 1 0 1
0 0 1 0


and we can again strike the last two rows and columns
(creating another negation) and then read off the result.

Remark. One can use a similar approach to compute
some related determinants. For example, let J be the
matrix with Ji j = 1 for all i, j. In terms of an indetermi-
nate q, define the matrix T by

Ti j = qSi j .

We then have

det(T − tJ) = (−1)⌈n/2⌉−1q2(τ(n)−1)(q−1)n−1 fn(q, t)
where τ(n) denotes the number of divisors of n and

fn(q, t) =

{
qn−1t +q2 −2t for n odd,
qn−1t +q2 −qt − t for n even.

Taking t = 1 and then dividing by (q−1)n, this yields a
q-deformation of the original matrix S.
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