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A1 The answer is n = 1. When n = 1, (a,b,c) = (1,2,2) is
a solution to the given equation. We claim that there are
no solutions when n ≥ 2.

For n = 2, suppose that we have a solution to 2a2 +
3b2 = 4c2 with a,b,c ∈ N. By dividing each of a,b,c
by gcd(a,b,c), we obtain another solution; thus we
can assume that gcd(a,b,c) = 1. Note that we have
a2 + c2 ≡ 0 (mod 3), and that only 0 and 1 are per-
fect squares mod 3; thus we must have a2 ≡ c2 ≡ 0
(mod 3). But then a,c are both multiples of 3; it follows
from b2 = 12(c/3)2−6(a/3)2 that b is a multiple of 3 as
well, contradicting our assumption that gcd(a,b,c) = 1.

For n ≥ 3, suppose that 2an + 3bn = 4cn. As in the
previous case, we can assume gcd(a,b,c) = 1. Since
3bn = 4cn − 2an, b must be even. We can then write
an + 2n−1 · 3(b/2)n = 2cn, and so a must be even.
Then 2n−1(a/2)n + 2n−2 · 3(b/2)n = cn, and c must be
even as well. This contradicts our assumption that
gcd(a,b,c) = 1.

A2 The answer is p(x) = ±x+ c for any c ∈ R. Note that
any such polynomial works: if p(x) = x+c then p(x)−
x = c, while if p(x) =−x+ c then p(p(x))− x = 0. We
will show that in fact these are the only polynomials
p(x) such that p(p(x))− x is divisible by r(x)2, where
r(x) = p(x)− x.

First solution. Suppose that p(p(x))− x is divisible by
r(x)2. Then

x ≡ p(p(x))
= p(x+ r(x))

≡ p(x)+ p′(x)r(x) (mod r(x)2).

In other words, r(x)(1 + p′(x)) is divisible by r(x)2.
From this, it follows that either r(x) = 0 or 1+ p′(x)
is divisible by r(x). In the first case, we have p(x) = x.
In the second case, if 1+ p′(x) = 0 then p(x) =−x+ c
for some constant c; otherwise, we have

deg(p)−1 = deg(1+ p′(x))≥ deg(r)

and this is only possible if p(x) = x+ c for some con-
stant c.

Second solution. Suppose that p(p(x))− x is divisible

by r(x)2. Then

0 ≡ d
dx

(p(p(x))− x)

= p′(x)p′(p(x))−1

≡ p′(x)2 −1

= (p′(x)+1)(p′(x)−1)

= r′(x)(r′(x)+2) (mod r(x)).

If α is a root of r(x) of some multiplicity m, then the
multiplicity of α as a root of r′(x) is m − 1. Conse-
quently, every root of r(x) must be a root of r′(x)+ 2;
in particular such a root cannot also be a root of r′(x),
so every root of r(x) is simple. Putting this together, we
deduce that r(x) divides r′(x)+ 2. If r(x) is constant,
then p(x) = x+ c for some c. Otherwise, deg(r′(x)+
2) < deg(r(x)) and so r′(x) + 2 must be zero; then
r(x) =−2x+ c for some c, whence p(x) =−x+ c.

A3 Yes, such a,b,c,d exist: we take

(a,b) = (2,1), (c,d) = (1,2).

We will represent T as an 3 × n array (3 rows, n
columns) of integers in which each of 1, . . . ,3n occurs
exactly once and the rows and columns are strictly in-
creasing; we will specialize to n = 2024 at the end.

We first note that T (1,1) = 1 and 2∈ {T (1,2),T (2,1)}.
From this, it follows that T (2,1) < T (1,2) if and only
if T (2,1) = 2.

We next recall a restricted form of the hook length for-
mula (see the first remark for a short proof of this re-
stricted version and the second remark for the state-
ment of the general formula). Consider more gener-
ally an array consisting of (up to) three rows of lengths
n1 ≥ n2 ≥ n3 ≥ 0, aligned at the left. Let f (n1,n2,n3) be
the number of ways to fill this array with a permutation
of the numbers 1, . . . ,n1 + n2 + n3 in such a way that
each row increases from left to right and each column
increases from top to bottom. The hook length formula
then shows that f (n1,n2,n3) equals

(n1 −n2 +1)(n1 −n3 +2)(n2 −n3 +1)(n1 +n2 +n3)!
(n1 +2)!(n2 +1)!n3!

.

We then note that if T (2,1) = 2, we obtain a array with
row lengths n,n−1,n−1 by removing 1 and 2, relabel-
ing each remaining i as 3n+1− i, and reflecting in both
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axes. The probability that T (2,1)< T (1,2) is thus

f (n,n−1,n−1)
f (n,n,n)

=
(2)(3)(n+1)n

(1)(2)(3n)(3n−1)

=
n+1

3n−1
=

1
3
+

4
9n−3

;

this is always greater than 1
3 , and for n = 2024 it is vis-

ibly less than 2
3 .

Remark. We prove the claimed formula for
f (n1,n2,n3) by induction on n1 + n2 + n3. To begin
with, if n2 = n3 = 0, then the desired count is indeed
f (n1,0,0) = 1. Next, suppose n2 > 0,n3 = 0. The entry
n1 + n2 must go at the end of either the first or second
row; counting ways to complete the diagram from these
starting points yields

f (n1,n2,0) = f (n1 −1,n2,0)+ f (n1,n2 −1,0).

(This works even if n1 = n2, in which case the first row
is not an option but correspondingly f (n2 − 1,n2,0) =
0.) The induction step then follows from the identity

(n1 −n2)(n1 +1)+(n1 −n2 +2)n2

(n1 −n2 +1)(n1 +n2)
= 1.

(As an aside, the case n1 = n2,n3 = 0 recovers a stan-
dard interpretation of the Catalan numbers.)

Finally, suppose n3 > 0. We then have

f (n1,n2,n3)

= f (n1 −1,n2,n3)+ f (n1,n2 −1,n3)+ f (n1,n2,n3 −1),

and the induction step now reduces to the algebraic
identity

(n1 −n2)(n1 −n3 +1)(n1 +2)
(n1 −n2 +1)(n1 −n3 +2)(n1 +n2 +n3)

+
(n1 −n2 +2)(n2 −n3)(n2 +1)

(n1 −n2 +1)(n2 −n3 +1)(n1 +n2 +n3)

+
(n1 −n3 +3)(n2 −n3 +2)n3

(n1 −n3 +2)(n2 −n3 +1)(n1 +n2 +n3)
= 1.

Remark. We formulate the general hook length for-
mula in standard terminology. Let N be a positive inte-
ger, and consider a semi-infinite checkerboard with top
and left edges. A Ferrers diagram is a finite subset of
the squares of the board which is closed under taking a
unit step towards either edge. Given a Ferrers diagram
with N squares, a standard Young tableau for this dia-
gram is a bijection of the squares of the diagram with
the integers 1, . . . ,N such that the numbers always in-
crease under taking a unit step away from either edge.

For each square s = (i, j) in the diagram, the hook
length hs of s is the number of squares (i′, j′) in the

diagram such that either i = i′, j ≤ j′ or i ≤ i′, j = j′ (in-
cluding s itself). Then the number of standard Young
tableaux for this diagram equals

N!
∏s hs

.

For a proof along the lines of the argument given in the
previous remark, see: Kenneth Glass and Chi-Keung
Ng, A simple proof of the hook length formula, Ameri-
can Mathematical Monthly 111 (2004), 700–704.

A4 The prime p = 7 works: choose a = 5 and r = 3, and
note that 1,a,a2 can be rearranged to form b0 = 5, b1 =
1, b2 = 25 satisfying the stated property.

We claim that no prime p > 7 works. Suppose other-
wise: there exist p,a,r with p > 7 and r ∤ p such that
1,a, . . . ,ap−5 can be rearranged to form b0, . . . ,bp−5
with bn ≡ b0 +nr (mod p) for all 0 ≤ n ≤ p−5. Since
r ∤ p, {b0,b0 + r, . . . ,b0 +(p−5)r} represents a collec-
tion of p−4 distinct elements of Z/pZ. It follows that
all of 1,a, . . . ,ap−5 are distinct mod p. In particular,
p ∤ a; also, since p−5 ≥ p−1

2 , we conclude that ak ̸≡ 1
(mod p) for any 1 ≤ k ≤ p−1

2 . It follows that a is a
primitive root mod p.

Since a is a primitive root, a−3,a−2,a−1,a0, . . . ,ap−5

runs through all nonzero elements of Z/p exactly
once. On the other hand, b0 − 4r,b0 − 3r,b0 − 2r,b0 −
r,b0, . . . ,b0 + (p − 5)r runs through all elements of
Z/pZ exactly once. The given condition now implies
that

{b0 −4r,b0 −3r,b0 −2r,b0 − r}= {0,c,c2,c3}

where c = a−1; that is, 0,c,c2,c3 can be rearranged to
give an arithmetic sequence x1,x2,x3,x4 in Z/pZ.

If 0,c,c2,c3 can be arranged into a four-term arithmetic
progression, then by dividing the progression by c, we
see that 0,1,c,c2 can also be arranged into a four-term
arithmetic progression. Now no two of 1,c,c2 can both
be adjacent to 0 in this arithmetic progression, or oth-
erwise they would be negative of each other; but this
is impossible because the order of c is greater than 4.
We conclude that 0 must be either the first or the last
term of the progression, and by reversing the sequence
if necessary, we can assume that 0 is the first term of
the progression. Now the last three terms of this pro-
gression cannot be 1,c,c2 or c2,c,1 in that order, as
c− 1 ̸= c2 − c because c ̸= 1. Thus the only possibil-
ities for the arithmetic progression that remain are

0,1,c2,c; 0,c2,1,c;

0,c,1,c2; 0,c,c2,1.

As twice the second term must be the third term, and
thrice the second term must be the fourth term, we im-
mediately eliminate each of the above possibilities: the
first sequence is not possible because we must have
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c2 = 2,c = 3, which is a valid solution only when
p = 7; for the second sequence, we must have 1 = 2c2

and 1 = 3c, which is again a valid solution only when
p = 7; for the third sequence, we must have 1 = 2c and
c2 = 3c, implying c = 1/2 = 3, which is possible only
when p = 5; and for the fourth sequence, we must have
c2 = 2c and 1 = 3c, implying c = 2 = 1/3, which is
again possible only when p = 5.

A5 We will show that r = 0 (and no other value of r) mini-
mizes the stated probability. Note that P and Q coincide
with probability 0; thus we can assume that P ̸= Q.

First solution. First restrict P,Q to points on Ω such
that the segment PQ makes an angle of θ with the y
axis, where θ is a fixed number with −π/2 < θ ≤ π/2.
By rotating the diagram by −θ around the origin, we
move PQ to be a vertical line and move ∆ to be cen-
tered at (r cosθ ,−r sinθ). In this rotated picture, P
and Q are at (9cosφ ,±9sinφ) where φ is chosen uni-
formly at random in (0,π). Now the vertical tangent
lines to the boundary of ∆, x = r cosθ ± 1, intersect
the y > 0 semicircle of Ω at (9cosφ ,9sinφ) where
φ = cos−1

( r cosθ±1
9

)
. Thus the probability that PQ in-

tersects ∆ for a specific value of θ is 1
π

f (r,θ), where
we define

f (r,θ) = cos−1
(

r cosθ −1
9

)
− cos−1

(
r cosθ +1

9

)
.

If we now allow θ to vary (uniformly) in (−π/2,π/2],
we find that the overall probability that PQ intersects ∆

is

P(r) =
1

π2

∫
π/2

−π/2
f (r,θ)dθ .

The function P(r) is differentiable with

P′(r) =
1

π2

∫
π/2

−π/2

∂ f (r,θ)
∂ r

dθ .

Now

∂ f (r,θ)
∂ r

= (cos t)
(
(80−2r cos t − r2 cos2 t)−1/2

−(80+2r cos t − r2 cos2 t)−1/2
)
,

which, for t ∈ (−π/2,π/2), is zero for r = 0 and strictly
positive for r > 0. It follows that P′(0) = 0 and P′(r)<
0 for r ∈ (0,8], whence P(r) is minimized when r = 0.

Second solution. (based on ideas from Elliott Liu,
Bjorn Poonen, Linus Tang, and Allen Wang) We inter-
pret the first paragraph of the first solution as reducing
the original problem to the following assertion: given
two parallel lines at distance 2, both of which intersect
a circle of radius 9, the length of either of the two con-
gruent arcs of the circle lying between the two lines is
minimized when the line halfway between the two par-
allel lines passes through the center of the circle.

To see this, note that the length of a minor arc of a cir-
cle is a strictly increasing function of the length of the
chord connecting the two endpoints of the arc. In this
case, the chord connects points on the two given paral-
lel lines, so the distance between these points is min-
imized by having them be the endpoints of a segment
perpendicular to the two lines; this achieves the situa-
tion described above.

A6 The determinant equals 10n(n−1)/2. We compute the
corresponding determinant for the coefficients of the
generic power series

f (x) :=
∞

∑
n=1

cnxn, c1 = 1,

with associated continued fraction
a0

x−1 +b0 +
a1

x−1+b1+···
, a0 = 1.

If we truncate by replacing an+1 = 0, we get a ra-
tional function which can be written as An(x−1)

Bn(x−1)
where

An(x),Bn(x) are polynomials determined by the initial
conditions

A−1(x) = 1,A0(x) = 0, B−1(x) = 0,B0(x) = 1

and the recurrences

An+1(x) = (x+bn)An(x)+anAn−1(x) (n > 0)
Bn+1(x) = (x+bn)Bn(x)+anBn−1(x) (n > 0).

Since each additional truncation accounts for two more
coefficients of the power series, we have

An(x−1)

Bn(x−1)
= f (x)+O(x2n+1),

or equivalently (since Bn(x) is monic of degree n)

f (x)Bn(x−1)−An(x−1) = O(xn+1). (1)

We now reinterpret in the language of orthogonal poly-
nomials. For a polynomial P(x) = ∑i Pixi, define∫

µ

P(x) = ∑
i

Pici+1;

then the vanishing of the coefficient of xi+1 in (1) (with
n := i) implies that∫

µ

xiB j(x) = 0 ( j < i).

By expanding 0 =
∫

µ
xi−1Bi+1(x) using the recurrence,

we deduce that
∫

µ
xiBi(x)+ ai

∫
µ

xi−1Bi−1(x) = 0, and
so ∫

µ

xiBi(x) = (−1)ia1 · · ·ai.
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We deduce that∫
µ

Bi(x)B j(x) =

{
0 i ̸= j
(−1)ia1 · · ·ai i = j.

(2)

In other words, for U the n×n matrix such that Ui j is the
coefficient of x j in Bi(x), the matrix UAU t is a diagonal
matrix D with diagonal entries Di,i = (−1)i−1a1 · · ·ai−1
for i = 1, . . . ,n. Since U is a unipotent matrix, its deter-
minant is 1; we conclude that

det(A) = det(D) = (−1)n(n−1)/2an−1
1 · · ·an−1.

We now return to the sequence {cn} given in the prob-
lem statement, for which

f (x) =
1−3x−

√
1−14x+9x2

4
.

For

g(x) :=
1−7x−

√
1−14x+9x2

2x
,

we have

f (x) =
1

x−1 −5−g(x)
, g(x) =

10
x−1 −7−g(x)

.

This means that the continued fraction is eventually pe-
riodic; in particular, a1 = a2 = · · ·=−10. Plugging into
the general formula for det(A) yields the desired result.
This yields the desired result.

Reinterpretation. (suggested by Bjorn Poonen) Given
a formal Laurent series α = ∑i aixi, define the matrices
Hn(α) = (ai+ j−1)

n
i, j=1 and the determinants hn(α) =

detHn(α). One can then recover the evaluation of the
determinants from the following lemma.

Lemma. Suppose α = ∑
∞
i=1 aixi is a formal power series with

ai = 1. Define the power series β by α−1 = x−1−β . Then for
all n ≥ 1, hn(α) = hn−1(β ).

Proof. For m ≥ 2, by equating the coefficients of xm in the
equality x−1α = αβ +1, we obtain

am+1 =
m

∑
r=1

arbm−r.

We now perform some row and column reduction on Hn(α)
without changing its determinant. Starting with Hn(α), for
i = n,n− 1, . . . ,2 in turn, for k = 1, . . . , i− 1 subtract bi−1−k
times row k from row i. In light of the recurrence relation, the
resulting matrix M = (mi j) has the property that for i ≥ 2,

mi j = ai+ j−1 −
i−1

∑
k=1

a j+k−1bi−1s−k

=
j−1

∑
r=1

arbi+ j−2−r.

In particular, mi1 = 0 for i ≥ 2. Starting from M, for j =
2, . . . ,n− 1 in turn, for k = j+ 1, . . . ,n subtract ak− j+1 times
column j from column i. The resulting matrix has first col-
umn (1,0, . . . ,0) and removing its first row and column leaves
Hn−1(β ), yielding the claimed equality.

Remark. A matrix A whose i, j-entry depends only
on i+ j is called a Hankel matrix. The above compu-
tation of the determinant of a Hankel matrix in terms
of continued fractions is adapted from H.S. Wall, An-
alytic Theory of Continued Fractions, Theorems 50.1
and 51.1.

The same analysis shows that if we define the sequence
{cn}n=1 by c1 = 1 and

cn = acn−1 +b
n−1

∑
i=1

cicn−i (n > 1),

then an =−ab−b2, bn =−a−2b for all n > 0 and so

det(A) = (ab+b2)n(n−1)/2;

the problem statement is the case a = 3,b = 2. The case
a= 0,b= 1 yields the sequence of Catalan numbers; the
case a = 1,b = 1 yields the Schröder numbers (OEIS
sequence A006318).

There are a number of additional cases of Hankel deter-
minants of interest in combinatorics. For a survey, see:
A. Junod, Hankel determinants and orthogonal polyno-
mials, Expositiones Mathematicae 21 (2003), 63–74.

B1 This is possible if and only if n is odd and k = (n+1)/2.

We first check that these conditions are necessary. If
the pairs (a1,b1), . . . ,(an,bn) index squares of the grid
with no two in the same row or column, then each of
the two sequences a1, . . . ,an and b1, . . . ,bn is a per-
mutation of {1, . . . ,n}, and so in particular has sum
1+ · · ·+ n = n(n+1)

2 . In particular, if the selected num-
bers are 1,2, . . . ,n in some order, then

n(n+1)
2

=
n

∑
i=1

(ai +bi − k)

=
n

∑
i=1

ai +
n

∑
i=1

bi −
n

∑
i=1

k

=
n(n+1)

2
+

n(n+1)
2

−nk

which simplifies to k = (n+1)/2.

We next check that these conditions are sufficient. For
this, it suffices to observe that the sequence(

1,
n+1

2

)
,

(
2,

n+3
2

)
, . . . ,

(
n+1

2
,n
)
,(

n+3
2

,1
)
, . . . ,

(
n,

n−1
2

)
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of grid entries equals

1,3, . . . ,n,2, . . . ,n−1.

We illustrate this for the case n = 5,k = 3 below; the
selected entries are parenthesized.

−1 0 (1) 2 3
0 1 2 (3) 4
1 2 3 4 (5)
(2) 3 4 5 6
3 (4) 5 6 7


B2 No, there is no such sequence. In other words, any se-

quence of convex quadrilaterals with the property that
any two consecutive terms are partners must be finite.

First solution.

Lemma. Given five positive real numbers a,b,c,d,K, there
are only finitely many convex quadrilaterals with side lengths
a,b,c,d in that order and area K.

Proof. Let PQRS be a convex quadrilateral with

PQ = a,QR = b,RS = c,SP = d.

Then the congruence class of PQRS is uniquely determined by
the length of the diagonal f := PR. Moreover, as f increases,
the angles ∠RPQ and ∠RPS are both strictly decreasing, so
∠SPQ is decreasing; by the same logic, ∠QRS is decreasing.

We next recall Bretschneider’s formula: for s = (a+ b+ c+
d)/2,

K2 = (s−a)(s−b)(s−c)(s−d)−abcd cos2 ∠SPQ+∠QRS
2

.

Consequently, fixing K also fixes cos2 ∠SPQ+∠QRS
2 , and thus

limits ∠SPQ+∠QRS to one of two values. By the previous
paragraph, this leaves at most two possible congruence classes
for the triangle.

Returning to our original sequence, note that any two
consecutive quadrilaterals in the sequence have the
same area and the same unordered list of side lengths.
The latter can occur as an ordered list in at most six dif-
ferent ways (up to cyclic shift); for each of these, we
can have only finitely many distinct congruence classes
of quadrilaterals in our sequence with that area and or-
dered list of side lengths. We deduce that our sequence
must be finite.

Remark. Various proofs of the lemma are possible; for
example, here is one using Cartesian coordinates. We
first specify

P = (0,0),Q = (a,0).

For two additional points R = (x,y),S = (z,w), the con-
ditions QR = b, SP = d restrict R and S to the circles

(x−a)2 + y2 = b2, z2 +w2 = d2

respectively. Since we want a convex quadrilateral, we
may assume without loss of generality that y,w> 0. The
area of the quadrilateral is 1

2 a(y+w), which we also
want to fix; we may thus regard w as a function of y
(possibly restricting y to a range for which w> 0). After
splitting the semicircles on which R and S lie into two
arcs each, we may also regard x and w as functions of y.
It now suffices to observe that RS2

= (z−x)2+(w−y)2

is a nonconstant algebraic function of y, so it takes any
given value only finitely many times.

Second solution. Let ABCD be the first quadrilateral in
the sequence. Since the quadrilateral is convex, the di-
agonals AC and BD intersect. In particular they are not
parallel, so their perpendicular bisectors are not parallel
either; let O be the intersection of the bisectors.

We claim that the point O remains fixed throughout
the sequence, as do the distances OA,OB,OC,OD. To
see this, we check this for two partners as described in
the problem statement: the diagonal BD gets reflected
across the perpendicular bisector of AC, so its perpen-
dicular bisector also gets reflected; the point O is the
unique point on the perpendicular bisector of BD fixed
by the reflection. In particular, the segments OD and
OE are mirror images across the perpendicular bisector
of AC, so their lengths coincide.

As noted in the first solution, the unordered list of
side lengths of the quadrilateral also remains invari-
ant throughout the sequence. Consequently, the un-
ordered list of side lengths of each of the triangles
△OAB,△OBC,△OCD,△ODA is limited to a finite set;
each such list uniquely determines the unoriented con-
gruence class of the corresponding triangle, and lim-
its the oriented congruence class to two possibilities.
Given the oriented congruence classes of the four tri-
angles we can reconstruct the quadrilateral ABCD up to
oriented congruence (even up to rotation around O); this
proves that the sequence must be finite.

B3 First solution. (by Bjorn Poonen) Let tan−1 : R →
(−π

2 ,
π

2 ) be the principal branch of the arctangent func-
tion, and set t(x) := x− tan−1(x). Then t(0) = 0 and

dt
dx

= 1− 1
1+ x2 =

x2

1+ x2 > 0 (x ̸= 0),

so t(x) is strictly increasing. We have tanx = x if and
only if x = tan−1 x+nπ for some n ∈ Z; from the previ-
ous analysis it follows that rn is the unique solution of
t(x) = nπ .

Let x(t) be the inverse function of t(x), so that rn =
x(nπ). We compute that

dx
dt

−1 =
1

dt/dx
−1 =

1
x2

dx
dt

−1− 1
t2 =

1
x2 − 1

t2 .
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From this we deduce that x(t)− t is strictly increasing
for t > 0 (as then x(t) > 0) and x(t)− t + 1

t is strictly
decreasing for t > 0 (as then tan−1(x(t)) > 0 and so
t < x(t)). Evaluating at t = nπ and t = (n+ 1)π , we
obtain

rn −nπ < rn+1 − (n+1)π

rn −nπ +
1

nπ
> rn+1 − (n+1)π +

1
(n+1)π

,

which are the desired inequalities.

Second solution. Define the function

f (x) := tanx− x.

We then have f ′(x) = tan2 x. By induction on k, f (k)(x)
is a polynomial of degree k + 1 in tanx with leading
coefficient k! and all coefficients nonnegative. In par-
ticular, on each of the intervals

In :=
(

nπ,nπ +
π

2

)
(n = 0,1, . . .),

tanx is positive and so f (k)(x) is positive for each k ≥ 1;
replacing k with k + 1, we deduce that each f (k)(x) is
strictly increasing on In for k ≥ 0.

We now analyze f more closely on In. As x → nπ+

for n > 0, f (x) tends to f (nπ) =−nπ < 0; by contrast,
as x → 0+, f (x) tends to 0 via positive values. In ei-
ther case, as x → (nπ + π

2 )
−, f (x)→ ∞. Since f (x) is

strictly increasing on In, we deduce using the interme-
diate value theorem that:

– f (x) has no zero in I0;

– for n > 0, f (x) has a unique zero in In.

Since f (x) also has no zero between In and In+1 (as it
takes exclusively negative values there), we deduce that

nπ < rn < nπ +
π

2
.

This already suffices to prove the claimed lower bound:
since f (rn + π) = −π < 0 and f is strictly increasing
on In+1, the quantity δ := rn+1 − (rn +π) is positive.

To prove the upper bound, note that for k ≥ 1, for 0 <
x < nπ + π

2 − rn, we have

f (k)(x)≥ f (k)(rn +π) = f (k)(rn)

≥ k!rk+1
n > k!nk+1

π
k+1.

For each k ≥ 2, we may apply the mean value theorem
with remainder to deduce that for x in the same range,

f (rn +π + x)≥ f (rn +π)+
k

∑
i=1

f (i)(rn +π)
xi

i!
.

Taking the limit as k → ∞ yields

f (rn +π + x)≥ f (rn +π)+
∞

∑
i=1

f (i)(rn +π)
xi

i!

>−π +
k

∑
i=1

ni+1
π

i+1xi

>−π +
n2π2x

1−nπx
;

taking x = δ yields

0 >−π +nπ

(
1

1−nπδ
−1
)

and so δ < 1
n(n+1)π as desired.

Remark. There is a mild subtlety hidden in the proof:
if one first bounds the finite sum as

f (rn +π + x)>−π +
k

∑
i=1

ni+1
π

i+1xi

and then takes the limit as k → ∞, the strict inequality is
not preserved. One way around this is to write f ′′(rn) =
2rn +2r3

n, retain the extra term rnx2 in the lower bound,
take the limit as k → ∞, and then discard the extra term
to get back to a strict inequality.

Remark. The slightly weaker inequality δ < 1
n2π

fol-
lows at once from the inequality

f ′(rn +π) = f ′(rn) = tan2 rn = r2
n > n2

π
2

plus the mean value theorem.

Remark. One can also reach the desired upper bound
by comparing rn+1 to rn +π using the addition formula
for tangents:

tan(x+ y) =
tanx− tany

1+ tanx tany
.

Namely, one then gets

δ < tanδ =
tanrn+1 − tan(rn +π)

1+ tanrn+1 tan(rn +π)

=
rn+1 − rn

1+ rnrn+1
=

π +δ

1+ rnrn+1

and hence

δ <
π

rnrn+1
<

π

(nπ)((n+1)π)
=

1
(n2 +n)π

.

B4 The limit equals 1−e−2

2 .

First solution. We first reformulate the problem as a
Markov chain. Let vk be the column vector of length n
whose i-th entry is the probability that an,k = i, so that v0
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is the vector (1,0, . . . ,0). Then for all k ≥ 0, vk+1 = Avk
where A is the n×n matrix defined by

Ai j =


1
n if i = j
j−1
n if i = j−1

n− j
n if i = j+1

0 otherwise.

Let w be the row vector (1, . . . ,n); then the expected
value of an,k is the sole entry of the 1×1 matrix wvk =

wAkv0. In particular, E(n) = wAnv0.

We compute some left eigenvectors of A. First,

w0 := (1, . . . ,1)

satisfies Aw0 = w0. Second,

w1 := (n−1,n−3, . . . ,3−n,1−n)
= (n−2 j+1: j = 1, . . . ,n)

satisfies Aw1 =
n−2

n w1: the j-th entry of Awi equals

j−1
n

(n+3−2 j)+
1
n
(n+1−2 j)+

n− j
n

(n−1−2 j)

=
n−2

n
(n−2 j+1).

By the same token, we obtain

w =
n+1

2
w0 −

1
2

w1;

we then have

E(n)
n

=
n+1

2n
w0Anv0 −

1
2n

w1Anv0

=
n+1

2n
w0v0 −

1
2n

(
1− 2

n

)n

w1v0

=
n+1

2n
− n−1

2n

(
1− 2

n

)n

.

In the limit, we obtain

lim
n→∞

E(n)
n

=
1
2
− 1

2
lim
n→∞

(
1− 2

n

)n

=
1
2
− 1

2
e−2.

Remark. With a bit more work, one can show that A
has eigenvalues n−2 j

n for j = 0, . . . ,n− 1, and find the
corresponding left and right eigenvectors. In particular,
it is also possible (but much more complicated) to ex-
press v0 as a linear combination of right eigenvectors
and use this to calculate Anv0.

Second solution. We reinterpret the Markov chain in
combinatorial terms. Consider an apparatus consisting
of one red light bulb, which is initially lit, plus n− 1
white light bulbs, which are initially unlit. We then

repeatedly perform the following operation. Pick one
light bulb uniformly at random. If it is the red bulb, do
nothing; otherwise, switch the bulb from lit to unlit or
vice versa. After k operations of this form, the random
variable an,k is equal to the number of lit bulbs (includ-
ing the red bulb).

We may then compute the expected value of an,n by
summing over bulbs. The red bulb contributes 1 no mat-
ter what. Each other bulb contributes 1 if it is switched
an odd number of times and 0 if it is switched an even
number of times, or equivalently 1

2 (1− (−1) j) where
j is the number of times this bulb is switched. Hence
each bulb other than the red bulb contributes

n−n
n

∑
i=0

1
2
(1− (−1)i)

(
n
i

)
(n−1)n−i

=
n−n

2

(
n

∑
i=0

(
n
i

)
(n−1)n−i −

n

∑
i=0

(−1)i
(

n
i

)
(n−1)n−i

)

=
n−n

2
((1+(n−1))n − (−1+(n−1))n)

=
n−n

2
(n2 − (n−2)n)

=
1
2
− 1

2

(
1− 2

n

)n

.

This tends to 1−e−2

2 as n → ∞. Since E(n) equals n−1
times this contribution plus 1, E(n)

n tends to the same
limit.

Third solution. We compare the effect of taking an,0 =
j versus an,0 = j + 1 for some j ∈ {1, . . . ,n − 1}. If
mn,0 ∈ { j, j+1} then the values of an,1 coincide, as then
do the subsequent values of an,k; this occurs with prob-
ability 2

n . Otherwise, the values of an,1 differ by 1 and
the situation repeats.

Iterating, we see that the two sequences remain 1 apart
(in the same direction) with probability

( n−2
n

)n
and con-

verge otherwise. Consequently, changing the start value
from j to j+ 1 increases the expected value of an,n by( n−2

n

)n
.

Now let c be the expected value of an,n in the original
setting where an,0 = 1. By symmetry, if we started with
an,0 = n the expected value would change from c to n+
1− c; on the other hand, by the previous paragraph it
would increase by (n−1)

( n−2
n

)n
. We deduce that

c =
1
2

(
n+1− (n−1)

(
n−2

n

)n)
and as above this yields the claimed limit.

B5 For convenience, we extend the problem to allow non-
negative values for k and m.

First solution. Let R(n,k) denote the number of subsets
of {1, ...,n} of size k where repetitions are allowed. The
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“sticks and stones” argument shows that

R(n,k) =
(

n+ k−1
k

)
:

there is a bijection of these subsets with linear arrange-
ments of k (unlabeled) sticks and z − 1 (unlabeled)
stones, where we recover the subset by counting the
number of stones to the left of each stick.

Let fk,m(n) := ∑
n
z=1 R(z,k)R(z,m). It is known that for

any positive integer k, the sum of the k-th powers of all
positive integers less than or equal to n is a polynomial
in n (given explicitly in terms of Bernoulli numbers via
Faulhaber’s formula); hence fk,m(n) is a polynomial in
n. We wish to show that this polynomial has nonnega-
tive coefficients.

Using the recursion for binomial coefficients, we obtain

R(n,k)R(n,m) = fk,m(n)− fk,m(n−1)

=
n

∑
z=1

(R(z,k)R(z,m)−R(z−1,k)R(z−1,m))

=
n

∑
z=1

(R(z,k)R(z,m)−R(z−1,k)R(z,m)

+R(z−1,k)R(z,m)−R(z−1,k)R(z−1,m))

=
n

∑
z=1

(R(z,k−1)R(z,m)+R(z−1,k)R(z,m−1))

=
n

∑
z=1

(R(z,k−1)R(z,m)

+(R(z,k)−R(z,k−1))R(z,m−1))
= fk−1,m(n)+ fk,m−1(n)− fk−1,m−1(n).

It follows from the latter equation (replacing the index
m by m+1) that

fk,m(n) = R(n,k)R(n,m+1)+ fk−1,m(n)− fk−1,m+1(n); (3)

this can also be recovered by applying Abel summation
(summation by parts) to ∑

n
z=1 R(z,k)R(z,m).

Using (3), we can evaluate fk,m by induction on k: for
the first few values we obtain

f0,m(n) = R(n,m+1)
f1,m(n) = R(n,1)R(n,m+1)+R(n,m+1)−R(n,m+2)

= R(n,m+1)((m+1)n+1)/(m+2)

= R(n,m+1)
R(m+1,1)R(n,1)+1

m+2

and similarly

f2,m(n) = R(n,m+1)(R(m+1,2)R(n,2)+R(m+1,1)R(n,1)
+R(m+1,0)R(n,0))/R(m+2,2).

This leads us to conjecture that

fk,m(n) =
R(n,m+1)
R(m+2,k)

k

∑
i=0

R(m+1, i)R(n, i), (4)

which we prove by induction on k. The base case k = 0
is evident; given (4) with k replaced by k−1, we apply
(3) to obtain

fk,m(n)

= R(n,k)R(n,m+1)+
R(n,m+1)

R(m+2,k−1)

k−1

∑
i=0

R(m+1, i)R(n, i)

− R(n,m+2)
R(m+3,k−1)

k−1

∑
i=0

R(m+2, i)R(n, i)

=
R(n,m+1)
R(m+2,k)

k

∑
i=0

R(m+1, i)R(n, i)

yielding (4) as written.

Since R(n, i) = n(n+1)(n+2) · · ·(n+ i−1)/i! clearly
has positive coefficients for all i, the explicit formula
(4) implies that fk,m(n) also has positive coefficients for
all k and m.

Second solution. (by an anonymous Putnam partici-
pant) As in the first solution, we deduce that fk,m(n)
is a polynomial in n of degree k + m + 1 satisfying
fk,m(0) = 0 and fk,m(n)− fk,m(n−1) = R(n,k)R(n,m).
Since fk,m(n) > 0 for n ≫ 0, this polynomial has posi-
tive leading coefficient. To prove that it has nonnegative
coefficients, it will suffice to prove the stronger asser-
tion that the roots of fk,m(x) are all real and nonpositive,
as then this will imply that fk,m(x) = c∏

k+m
j=0 (x+ r j) for

some r j ≥ 0.

Since R(n,m)= 0 for m= 0,−1, . . . ,−m+1, we deduce
that fk,m(n) = 0 for n = 0,−1, . . . ,−m. Consequently,
fk,m(x) can be written as x(x + 1) · · ·(x + m)Q(x) for
some polynomial Q(x) of degree k, and it will suffice
to check that Q(x) has k distinct negative real roots.

From the equality fk,m(n) − fk,m(n − 1) =
R(n,k)R(n,m), if we substitute in for Q(x) and
divide out common factors, we obtain

(x+m)Q(x)− (x−1)Q(x−1) =
1

m!
R(x,k).

Substituting x = 0,−1, . . . ,−k+1 in turn, we obtain

Q(− j) =− j+1
m− j

Q(− j−1) ( j = 0, . . . ,k−1).

In particular, if any of Q(0), . . . ,Q(−k) were zero, then
all of them would be zero and Q would have too many
roots for its degree. Consequently, Q(0), . . . ,Q(−k) are
all nonzero and alternating in sign. By the intermediate
value theorem, Q has a root r j in the interval (− j −
1,− j) for j = 0, . . . ,k−1; this completes the proof.

B6 The claim holds with c=− 1
2 . Set t := 1/(1−x), so that

x = 1−1/t and

−1
t
− 1

t2 ≤ logx ≤−1
t
.



9

Set also m := ⌊t⌋. In the following arguments, we use c
to refer to some positive constant independent of n and
t, but a different such constant at each appearance.

Suppose first that a >− 1
2 . Then

Fa(x)e−t =
∞

∑
n=1

nae2n−txn2

≥
∞

∑
n=1

nae2n−t−n2/t−n2/t2

=
∞

∑
n=1

nae−n2/t2
e−t(1−n/t)2

.

If we restrict the sum to the range t < n < t +
√

t, we
may bound the summand from below by cta; we then
have Fa(x)e−t > cta+1/2 and this tends to ∞ as t → ∞.

Suppose next that a <− 1
2 . Then

Fa(x)e−t =
∞

∑
n=1

nae2n−txn2

≤
∞

∑
n=1

nae−t(1−n/t)2
.

Fix ε > 0 such that a + ε < − 1
2 . For the summands

with t − t1/2+ε < n < t + t1/2+ε , we may bound the
summand from above by cta; this range of the sum is
then dominated by cta+1/2+ε . For the summands with
n < t − t1/2+ε , we may bound the summand by nae−t2ε

;
this range of the sum is then dominated by te−t2ε

. For
the summands with n > t− t1/2+ε , we may again bound
the summand by nae−t2ε

; this range of the sum is then
dominated by cta+1e−t2ε

. Since all three bounds tends
to 0 as t → ∞, so then does Fa(x)e−t .
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