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Maybe this talk should be called...

How to Succeed in Coding
Theory Without Really Trying

Acknowledgments: the implementation aspect is a
joint project with Tim Abbott and David Roe. Abbott
and Roe were supported by MIT’s Undergraduate
Research Opportunities Program; the speaker is
supported by NSF grant DMS-0400747.
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Some notation

Fq a finite field
X a smooth projective surface over Fq

H a very ample divisor on X

L(H) {f ∈ Fq(X) : div(f) + H ≥ 0}

(Riemann-Roch space)
S X(Fq) \ H(Fq)

C(X,H) the code {(f(s))s∈S : f ∈ L(H)}

δ the minimum distance of C(X,H)
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Minimal distance and Néron-Severi

Let NS(X) be the Néron-Severi group of X (divisors
modulo algebraic equivalence); then NS(X) is finitely
generated and rank NS(X) ≥ 1 (the class of H is not
torsion).

Voloch’s talk: upper bounds on rank NS(X) give lower
bounds on δ. The best we can hope for is
rank NS(X) = 1. (Note: these bounds depend only on
NS(X)/NS(X)tors, i.e., divisors modulo numerical
equivalence.)

Terminology: rank NS(X) = the Picard number of X.
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Finding low Picard number

Philosophy: a “random” X of general type should have
Picard number 1 unless you can “see” extra cycles
from its construction. But how to explicitly find such an
X?

Our approach: sample X from a simple family, and
test for Picard number 1 by partially computing the
zeta function of X. We’ll use smooth quintics in P3, but
many other choices are possible.
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Picard number and zeta functions

The zeta function of X is

Z(X,T ) = exp

(
Tn

n
#X(Fqn)

)
.

It factors as
4∏

i=0

Pi(T )(−1)i+1

,

where Pi(T ) ∈ Z[T ], Pi(0) = 1, and Pi(T ) has all roots in
C on the circle |T | = q−i/2.
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Picard number and zeta functions
(contd.)

From properties of étale cohomology, we have

rank NS(X) ≤ ordT=1/q P2(T ),

with equality conjectured by Tate. In particular,

ordT=1/q P2(T ) = 1 =⇒ rank NS(X) = 1.
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Picard number and Frobenius
matrices

Let H i(X) denote any Weil cohomology of X, i.e.,
vector spaces over a field K with char(K) = 0, acted on
by linear transformations Fi satisfying the Lefschetz
trace formula:

Pi(T ) = det(1 − TFi, H
i(X)) (i = 0, . . . , 4).

Then ordT=1/q P2(T ) is the multiplicity of q as an
eigenvalue of F2, so we wish to check whether that
multiplicity is 1.
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A word from our sponsor: p-adic
cohomology

The “usual” Weil cohomology is étale cohomology; its
computational utility is limited (but cf. Schoof,
Edixhoven).

A better choice for us is p-adic (crystalline,
Monsky-Washnitzer, rigid) cohomology; this is already
known to give good algorithms, e.g., for zeta functions
of hyperelliptic curves.

For X lifting to a smooth proper X̃ over Zq, the p-adic
cohomology “is” the algebraic de Rham cohomology
of X̃ × Qq. (Here Zq = W (Fq) and Qq = Frac Zq.)
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de Rham cohomology: setup

Let X be a smooth surface of degree d in P3
Fq

, given by
the equation P (x0, x1, x2, x3) = 0; put U = P3

Fq
\ X. Let H

be any hyperplane section.

Fix a lift P̃ (x0, x1, x2, x3) to Zq, put X̃ = V (P̃ ) ⊂ P3
Qq

and

Ũ = P3
Qq

\ X̃.
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de Rham cohomology: comparison

Put H2
prim(X) = H2(X)/ Span([H]). Since F [H] = q[H],

we can deduce rank NS(X) = 1 if we prove that q is not
an eigenvalue of F on H2

prim(X).

We will attempt to do this via the comparison

H3
dR(Ũ) ∼= H2

prim(X)(−1),

where (−1) means Frobenius is multiplied by q. We’ll
compute a p-adic approximation to the matrix A by
which Frobenius acts on some basis, and check that
A − q2I is nonsingular by Gaussian elimination.
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The Griffiths-Dwork method

Put H3 = H3
dR(Ũ) and

Ω =
3∑

i=0

(−1)ixi dx0 ∧ · · · ∧ d̂xi ∧ · · · ∧ dx3.

Then H3 is spanned by AΩ/P̃n for all A, n with
deg(A) + 4 = nd, modulo relations of the form

∂A

∂xi

Ω

P̃n
− n

∂P̃

∂xi

AΩ

P̃n+1
.
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Griffiths-Dwork (contd.)

The relations make it routine to:
• find a basis of H3;
• represent any 3-form in terms of the basis

elements.

These make heavy use of Gröbner basis techniques
over quotients of Zq; these are built into MAGMA.
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The Frobenius action on cohomology

The Frobenius action on H3 is induced by a ring map σ

sending xi to xq
i for i = 0, 1, 2, 3, where

σ(P̃−1) = P̃−q(1 − (P̃ q − σ(P̃ ))P̃−q)−1

is a p-adically convergent power series (in an
appropriate “weakly complete ring”).

Upshot: we can’t compute this exactly; instead, we
truncate and compute a p-adic approximation.
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Frobenius action (contd.)

It is helpful to describe (via crystalline cohomology) a
basis of H3 so that the matrix of F has entries in Zq.
Moreover, the elementary divisors of this matrix are
related to the Hodge numbers of X via the
Mazur-Ogus theorem.

We must also control the denominators introduced by
the reduction process; these look a priori like 1/n! but
are actually more like p−blogp nc. (The proof uses
excision in de Rham cohomology.)
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Approximate Gaussian elimination

Recall: we wish to verify that a certain square matrix
(F − q2I) over Zq is nonsingular, where each entry only
carries a few accurate p-adic digits.

• In the first column, of those entries with positive
relative precision, find the one of lowest valuation;
break ties in favor of more relative precision. If no
such entries exist, FAIL.

• If the matrix is 1 × 1, SUCCEED. Else, switch the
chosen row with the top row, then use it to clear
the rest of the first column. Repeat on the
submatrix excluding the first row and column.
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Implementation details

For q = p, we (with Abbott and Roe) have implemented
the approximate p-adic calculation of Frobenius in
MAGMA on dwork, a Sun dual Opteron 246 (2 GHz, 2
GB RAM, 32-bit mode).

Code for this implementation will be made available
upon request; it will eventually appear on my web site.
(Beware that MAGMA 2.12-10 or later is required.)
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An example

Example. The zero locus in P3
F2

of the quintic

x5
0 + x2

0x
2
1x3 + x0x1x

2
2x3 + x0x1x

3
3 + x0x2x

3
3

+ x0x
4
3 + x5

1 + x3
1x2x3 + x2

1x
3
3 + x5

2 + x3
2x

2
3 + x5

3

is a smooth surface of general type with Picard number 1.

This uses the Frobenius matrix mod 24, which we
compute in 2 CPU-hours. (Mod 25 requires 3.5
CPU-hours; mod 26 requires 7 CPU-hours.)

An alternate algorithm of Lauder (“deformation”)
should be faster but seems hard to implement.
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Complements

With more work, one can sometimes show that a
given X over Fq has small geometric Picard number.
This can be used to exhibit K3 surfaces over Q of
geometric Picard number 1; cf. the dissertation of R.
van Luijk. (Beware: over a finite field, if dim H2(X) is
even, the geometric Picard number is at least 2.)

It should also be easy to compute p-adic cohomology
of, and hence find examples of Picard number 1
among, smooth hypersurfaces in toric varieties (e.g.,
P1 × P2, weighted projective spaces).
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The end
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