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Some notation

F, | afinite field

X | a smooth projective surface over F,
H | a very ample divisor on X

H) | {f €F (X):div(f) + H >0}
(Riemann-Roch space)

X(F,) \ H(F,)

C(X,H) | the code {(f(s))ses : [ € L(H)}

the minimum distance of C(X, H)
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Minimal distance and Néron-Severi

-~ Let NS(X) be the Néron-Severi group of X (divisors
modulo algebraic equivalence); then NS(X) Is finitely
generated and rank NS(X) > 1 (the class of H Is not
torsion).

Voloch's talk: upper bounds on rank NS(X) give lower
bounds on 4. The best we can hope for Is

rank NS(X) = 1. (Note: these bounds depend only on
NS(X)/NS(X)tors, 1.€., divisors modulo numerical
equivalence.)

Terminology: rank NS(X) = the Picard number of X.
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Finding low Picard number

Philosophy: a “random” X of general type should have
Picard number 1 unless you can “see” extra cycles
from its construction. But how to explicitly find such an
X7

Our approach: sample X from a simple family, and
test for Picard number 1 by partially computing the

zeta function of X. We’'ll use smooth quintics in P2, but
many other choices are possible.
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Picard number and zeta functions

he zeta function of X Is
T’rL

It factors as
H P z—l—l

where P;(T) € Z|T], P;(0) = 1, and P;(T) has all roots In
C on the circle |T| = ¢7¥2.
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Picard number and zeta functions
(contd.)

rom properties of étale cohomology, we have

rank NS(X') < ordy—y,, (7)),

with equality conjectured by Tate. In particular,

ordp_y,q P2(T) =1 = rank NS(X) = 1.
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Picard number and Frobenius
matrices

Let 4*(X) denote any Weil cohomology of X, i.e.,
vector spaces over a field K with char(K) = 0, acted on
by linear transformations F; satisfying the Lefschetz
trace formula:

Pi(T) = det(1 — TF;, H'(X)) (i=0,...,4).

Then ordr_, /, P»(T) Is the multiplicity of ¢ as an

eigenvalue of F;, so we wish to check whether that
multiplicity Is 1.
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A word from our sponsor: p-adic
cohomology

The “usual” Weil cohomology is étale cohomology; its

computational utility is limited (but cf. Schoof,
Edixhoven).

A better choice for us is p-adic (crystalline,
Monsky-Washnitzer, rigid) cohomology; this is already
known to give good algorithms, e.g., for zeta functions
of hyperelliptic curves.

For X lifting to a smooth proper X over Z,, the p-adic
cohomology “is” the algebraic de Rham cohomology
of X x Q,. (Here Z, = W(F,) and Q, = FracZ,.)

. Computing Zeta Functions of Surfaces — p.9/20



de Rham cohomology: setup

t X be a smooth surface of degree d In IP>3q, given by
the equation P(xo,z1,22,23) = 0; put U =Py \ X. Let H
be any hyperplane section.

U =P
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de Rham cohomology: comparison

Put A4°,..(X) = H*(X)/Span([H]). Since F[H] = ¢[H],
we can deduce rank NS(X) = 1 If we prove that ¢ Is not

an eigenvalue of F' on H2. (X).

prim
We will attempt to do this via the comparison

Hix(U) = H;

prim(X)(_l)a

where (—1) means Frobenius is multiplied by ¢. We’'ll
compute a p-adic approximation to the matrix A by
which Frobenius acts on some basis, and check that
A — ¢*I is nonsingular by Gaussian elimination.
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The Griffiths-Dwork method

ut H® = H3.(U) and

3
Q= (~1)fzidrg A~ Adwi A+ A das.
1=0

Then H? is spanned by AQ/ P for all A, n with
deg(A) + 4 = nd, modulo relations of the form

0A Q OP AQ

0x; pn naxi pntl-
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Griffiths-Dwork (contd.)

he relations make it routine to:
 find a basis of H*:

* represent any 3-form in terms of the basis
elements.

These make heavy use of Grobner basis techniques
over quotients of Z,; these are built into MAGMA.
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The Frobenius action on cohomology

The Frobenius action on A2 is induced by a ring map o
sending z; to « for i = 0,1, 2,3, where

~ ~

o(P™1) =P U1~ (P~ o(P))P™9)""

IS a p-adically convergent power series (in an
appropriate “weakly complete ring”).

Upshot: we can’t compute this exactly; instead, we
truncate and compute a p-adic approximation.
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Frobenius action (contd.)

It is helpful to describe (via crystalline cohomology) a
basis of H* so that the matrix of F has entries in Z,.
Moreover, the elementary divisors of this matrix are
related to the Hodge numbers of X via the
Mazur-Ogus theorem.

We must also control the denominators introduced by
the reduction process; these look a priori like 1/n! but

are actually more like p~l°& " (The proof uses
excision in de Rham cohomology.)
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Approximate Gaussian elimination

Recall: we wish to verify that a certain square matrix
(F — ¢*I) over Z, is nonsingular, where each entry only
carries a few accurate p-adic digits.

* In the first column, of those entries with positive
relative precision, find the one of lowest valuation;
break ties in favor of more relative precision. If no
such entries exist, FAIL.

 If the matrixis 1 x 1, SUCCEED. Else, switch the
chosen row with the top row, then use it to clear
the rest of the first column. Repeat on the
submatrix excluding the first row and column.
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Implementation details

For ¢ = p, we (with Abbott and Roe) have implemented
the approximate p-adic calculation of Frobenius in
MAGMA on dwor k, a Sun dual Opteron 246 (2 GHz, 2
GB RAM, 32-bit mode).

Code for this implementation will be made available
upon request; it will eventually appear on my web site.
(Beware that MAGMA 2.12-10 or later is required.)

. Computing Zeta Functions of Surfaces — p.17/20



An example

Example. The zero locus in IP’%2 of the quintic

x?) + x%x%xg + xoxlx%xg + xoxlxg + xoxgxg

4
+ ToT3 + xi’ + x?xgxg + x%x% + xg + x%x% + xg

IS a smooth surface of general type with Picard number 1.

This uses the Frobenius matrix mod 24, which we
compute in 2 CPU-hours. (Mod 2° requires 3.5

CPU-hours; mod 2° requires 7 CPU-hours.)

An alternate algorithm of Lauder (“deformation”)
should be faster but seems hard to implement.
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Complements

With more work, one can sometimes show that a
given X over F, has small geometric Picard number.

This can be used to exhibit K3 surfaces over Q of
geometric Picard number 1; cf. the dissertation of R.

van Luijk. (Beware: over a finite field, if dim H?(X) is
even, the geometric Picard number is at least 2.)

It should also be easy to compute p-adic cohomology
of, and hence find examples of Picard number 1
among, smooth hypersurfaces in toric varieties (e.g.,
P! x P?, weighted projective spaces).
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The end
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