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June 5, 2023

Supported by (grant DMS-2053473) and (Warschawski Professorship).

I acknowledge that my workplace occupies unceded ancestral land of the Kumeyaay Nation.

Kiran S. Kedlaya (UC San Diego) Relative class number 1 for function fields Luminy, June 5, 2023 1 / 19

https://kskedlaya.org
https://math.ucsd.edu
https://www.ucsd.edu
https://kskedlaya.org/slides/
https://github.com/kedlaya/same-class-number
https://www.nsf.gov/
https://www.ucsd.edu
https://www.kumeyaay.info


Introduction and setup

Contents

1 Introduction and setup

2 A paradigm for excluding noncyclic extensions

3 Implementation of the paradigm

4 Further thoughts

Kiran S. Kedlaya (UC San Diego) Relative class number 1 for function fields Luminy, June 5, 2023 2 / 19



Introduction and setup

The problem

Let F ′/F be a finite extension of function fields associated to a cover
C ′ → C of curves over finite fields. Let g , g ′ be the genera of F and F ′.
Let q, q′ be the cardinalities of the base fields1 of F ,F ′.

Let h, h′ be the class numbers2 of F and F ′. The ratio h′/h equals
#A(Fq) for A the Prym (abelian) variety of C ′/C , and hence an integer.
Following Leitzel–Madan (1976), we ask: in what cases does h′/h = 1?

To make this a potentially finite problem, we only specify the isomorphism
classes of F and F ′, not the inclusion (this only makes a difference when
g ≤ 1). We also ignore the trivial cases:

F ′ ∼= F ;

g = g ′ = 0.

1By “base field” I mean the integral closure of the prime subfield.
2That is, h = #J(C)(Fq) and h′ = #J(C ′)(Fq′).
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Introduction and setup

Where was I? (ANTS-XV, Bristol, August 2022)

At ANTS-XV, I reported progress on this problem. This borrows3 from the
study of the maximum number of points on a genus-g curve over Fq.

Solved when F ′/F is constant (i.e., F ′ = F · Fq′). We thus need
only treat the case where F ′/F is geometric (i.e., q′ = q).

Solved when q > 2, i.e.,4 q ∈ {3, 4}. Assume hereafter q = 2.

Solved5 when g ≤ 1 (we get g ′ ≤ 6). Assume hereafter g ≥ 2, so

that d := [F ′ : F ] ≤ g ′−1
g−1 by Riemann–Hurwitz.

Reduced to a finite computation: the zeta functions ζF , ζF ′ of
F ,F ′ form one of 208 known pairs. In all cases, g ≤ 7, g ′ ≤ 13.

Solved when g ≤ 5 and F ′/F is a cyclic extension, by a table lookup
for F (Howe, Xarles, Dragutinović) plus explicit CFT.

3Special thanks to the AGC2T community for its work to type/publish Serre’s 1985
Harvard lecture notes. Without these efforts my work would surely not have happened!

4By the Weil bound, h′/h = #A(Fq) ≥ (
√
q − 1)2 dim(A) > 1 if q ≥ 5.

5Modulo one step which we indicate later.
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Introduction and setup

Where am I now? Where do I go next?

In this talk, I focus on the following statement.

Theorem

Let F ′/F be a finite geometric extension of function fields with
q = 2, g > 1, h′/h = 1. Then F ′/F is cyclic.

A useful slogan here is
the most radical [extreme] covers are radical [cyclic]:

the class number condition puts severe pressure on point counts and
splitting behavior in the extension, and cyclic covers are better able to
withstand this pressure.

The proof will make free use of the zeta function constraint from the
ANTS-XV work, cited hereafter as .
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Introduction and setup

Where do I go next? (LuCaNT, July 2023)

This will leave unsettled the cases where g = 6, 7 and F ′/F is unramified
of degree 2, as in these cases we do not have complete tables of genus-g
curves over F2 with which to perform a table lookup by zeta function.

We are thus forced to exhaust over all curves ourselves using Mukai’s
explicit descriptions of canonical curves of these genera. This will be
discussed at LuCaNT (ICERM, Providence, July 2023).
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A paradigm for excluding noncyclic extensions

The state of play

We need to check that certain pairs ζF , ζF ′ (specified by ) cannot occur
for a noncyclic cover of curves of some degree d ≥ 3 over F2. By
Riemann–Hurwitz plus , d ≤ 7 and g ≤ 4.

In this range, in principle it is possible to:

find (by table lookup) all F with a particular ζF ;
6

find all F ′/F of degree d , e.g., using Bhargava’s orbit
parametrizations for d ≤ 5;

compute ζF ′ and confirm that the only extensions consistent with
are cyclic.

However, it is not straightforward at present to make this practical. In
particular orbit parametrizations have not been implemented for d = 4, 5,
and do not exist at all for d > 5.

6We cannot do this for F ′ at present, as g ′ can be as large as 10 and such tables do
not yet exist, although the methods of my LuCaNT talk could conceivably reach that far.
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A paradigm for excluding noncyclic extensions

A paradigm for d ≤ 6

For 3 ≤ d ≤ 6, we instead execute the following strategy.

Given ζF , ζF ′ , identify the combinatorial options7 for the splitting
types of the low-degree places of F . E.g., there is always a degree-1
place of F that is inert in F ′.

Let F ′′/F be the Galois closure of F ′/F . For each noncyclic
candidate for G = Gal(F ′′/F ) ⊆ Sd , use the character theory of G to
find other subfields of F ′′/F and compute how the various places of
F split in these subfields. One important example is the quadratic
resolvent, i.e., the fixed field of G ∩ Ad .

Identify isogeny factors of Jacobians for which we read off some
Frobenius traces, then exhaust over Weil polynomials to obtain a
contradiction.

This can be done uniformly using some simple Sage code, but individual
cases can also be analyzed by hand.

7These options differ slightly when the cover is ramified, but the strategy persists.
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A paradigm for excluding noncyclic extensions

The case d = 7

By , there is one possible pair (ζF , ζF ′) with (d , g , g ′) = (7, 2, 8). This
does occur for a cyclic cover.

In principle one could execute the previous paradigm for d = 7. However,
this requires working with the character tables of S7 and its transitive
subgroups (like PSL(2, 7)), which seems infeasible.

Luckily, a method of Howe shows (in very special cases) that a curve
whose zeta function “suggests an automorphism” actually has one.

This method also covers one missing step from : every curve C/F2 of
genus 6 with (#C (F2i ))

6
i=1 = (0, 0, 0, 20, 15, 90) is a cyclic étale degree-5

cover of y2 + y = x5.
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Implementation of the paradigm
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Implementation of the paradigm

Plan for this part of the talk

Here we illustrate the implementation of the paradigm, spelling out details
only in a few cases. The goal is to make the case that

all of the analysis could be done by hand,

but should be automated for reliability.

Reminders: A is the Prym variety of C ′/C and F ′′/F is the Galois closure
of F ′/F . Write C ′′ for the curve with function field F ′′.
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Implementation of the paradigm

The case d = 3 (part 1)

For d = 3, we have to rule out G = S3. Since F has a degree-1 place
which is inert in F ′, the quadratic resolvent C ′′/A3 is a geometric cover of
C ; let B be the Prym variety and TB,q its q-Frobenius trace.

Useful fact: if #C ′(Fq) = 0, then #C ′′(Fq) = 0 and8

TA,q = TJ(C ′),q − TJ(C),q = #C (Fq)

TB,q = TJ(C ′′),q − TJ(C),q − 2TA,q = −#C (Fq).

If F ′/F is ramified, then by ,

(g , g ′) = (2, 6); #C (F2) ≥ 3; #C ′(F2) = 0; #C ′(F4) = 2.

C ′ → C ramifies at 1 or 2 points of C ′(F2). Since #C ′(F2) = 0, C ′ → C
must have a triple point at the unique degree-2 place of C ′; hence the
quadratic resolvent is étale, so dim(B) = 1 and TB,2 ≤ −3, ⇒⇐.

8By decomposing the ℓ-adic Tate module of J(C ′′) as an S3-representation.
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Implementation of the paradigm

The case d = 3 (part 2)

If F ′/F is unramified, then dim(B) = g − 1. By ,
(g , g ′) ∈ {(2, 4), (3, 7), (4, 10)}.

If g = 2, by , TB,2 = −#C (F2) = −3, ⇒⇐.

If g = 4, by , TB,2 ≤ −7 or TB,2 = TB,4 = −6, ⇒⇐.

If g = 3 and #C ′(F2) > 1, then by , there are not enough places
of F ′ of degree ≤ 3 to cover the degree-1 places of F .

If g = 3 and #C ′(F2) = 1, then the unique degree-1 place of C ′

occurs in a fiber with a degree-2 place, so #C ′(F4) ≥ 3. By ,
#C (F2) = 5,#C (F4) = 9,#C ′(F4) = 3 and the splitting sequence9

begins {3(×4), 2 + 1}, {3(×2)}; so (TB,2,TB,4) = (−3,−9), ⇒⇐.

If g = 3, #C ′(F2) = 0, and #C ′(F4) > 0, then (details omitted).

If g = 3 and #C ′(F2) = #C ′(F4) = 0, then (details omitted).
9How to read this notation: of the degree-1 places of F , four lift to degree-3 places

of F ′ and one to a degree-2 place plus a degree-1 place; and of the degree-2 places of F ,
both lift to degree-6 places of F ′.
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Implementation of the paradigm

The case d = 4

For d = 4, we must rule out G = D4, S4. If G = D4, we have a tower of
geometric quadratic extensions F ′/E/F of relative class number 1, which
we exclude using except for one case that arises as a cyclic cover.10

If G = S4, we split into cases based on the quadratic resolvent.

If the quadratic resolvent is constant, then the splittings of
odd-degree places of F ′ must include only even indices. Combining
with , we easily get ⇒⇐.

If the quadratic resolvent is geometric, we can make arguments as for
d = 3 (details omitted).

10We can distinguish C4 from D4 using the Deuring–Shafarevich formula for p-ranks
in cyclic p-covers in characteristic p: in this case E ′ admits a unique unramified
quadratic extension.
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in cyclic p-covers in characteristic p: in this case E ′ admits a unique unramified
quadratic extension.
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Implementation of the paradigm

The case d = 5

For d = 5, by , g = 2. We rule out G = D5, S5 using the quadratic
resolvent (which must be geometric because F has a degree-1 place which
is inert in F ′).

For G = A5, we have abelian varieties B1,B2 of dimensions11 5,6 with

#(C ′′/D5)(Fq) = #C (Fq)− TB1,q

#(C ′′/A3)(Fq) = #C (Fq)− 2TA,q − TB1,q − TB2,q.

Using to compute possible splitting sequences and then TB1,2i ,TB2,2i

for i = 1, . . . , 7 (!!)12, we get ⇒⇐.

11These are dimensions of certain irreducible rational A5-representations. Over C,
there is a pair of 3-dimensional irreducible representations that do not descend to Q.

12Here we are using that we know all Weil polynomials of genus ≤ 6 over F2; this list
can be reproduced easily in Sage.
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Implementation of the paradigm

The case d = 6

For d = 6, by , g = 2. We again use to rule out the possibility that
F ′/F has an intermediate subfield.

This leaves the cases G = S6 and G = PGL(2, 5) ∼= S5. We also split into
cases based on whether the quadratic resolvent is constant or geometric.

In the case G = S6, we look at the Prym B for C ′′/PGL(2, 5) over C ;
then dim(B) = 5.

In the case G = PGL(2, 5), C ′′/PGL(2, 5) splits as a copy of C plus
another cover; we look at the Prym B of the latter, so dim(B) = 4.

In all cases, we use to compute splitting sequences and then TB,2i for
i ≤ 6, then ⇒⇐.
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Further thoughts

Further thoughts

The method of can (probably) be used to derive effective upper bounds
for the relative class number m problem for any m > 1. However, we got
lucky for m = 1 in (at least) three ways that may fail for m > 1.

We only had to compute splittings in relatively small degrees, where
the number did not explode.

There may be cases that do not occur but which are not ruled out by
Weil polynomials.

For m > 1 there probably do exist some noncyclic covers, so we need
more sensitive arguments that can accommodate this possibility.
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