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Context: absolute de Rham cohomology

This talk is part of an ongoing project to investigate the properties of a
hypothetical analogue of crystalline cohomology (a p-adic Weil
cohomology theory for smooth proper varieties in characteristic p) related
to L-functions of varieties over Q. Additional references:

Absolute de Rham cohomology? A fantasy in the key of p (slides,
Nagoya 2010): http://kskedlaya.org/nagoya2010.pdf.

Towards uniformity over p in p-adic Hodge theory (slides, Lyon 2011):
http://kskedlaya.org/lyon2011.pdf.

Rational structures and (ϕ, Γ)-modules (preprint):
http://kskedlaya.org/papers/.

On the Witt vector Frobenius (to appear in Proc. AMS).
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Witt vectors

Throughout this talk, fix a prime p.

Let Wpn denote the functor of p-typical Witt vectors of length n + 1. For
instance, Wpn(Fp) ∼= Zp/(pn+1). More generally, if R is a perfect ring of
characteristic p, then Wpn(R) is the truncation mod pn+1 of the unique
p-adically complete ring S with S/(p) ∼= R.

However, Wpn is a meaningful functor on arbitrary rings! It is
characterized by the underlying functor on sets being the (n + 1)-fold
product and the fact that the ghost maps

wpm(x1, . . . , xpn) =
m∑
i=0

pixpm−i

pi
(m = 0, . . . , n)

are ring homomorphisms. (Note: w1 = x1, wp = xp
1 + pxp, etc.)

We also write W (R) for lim←−n
Wpn(R), the functor of p-typical vectors of

infinite length. (The maps in the inverse limit are initial segments.)
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Witt-perfect rings

For each nonnegative integer n, there is a natural transformation
F : Wpn+1 →Wpn characterized by the property that

wpm ◦ F = wpm+1 .

This is called Frobenius because for R of characteristic p, the map
F : W (R)→W (R) is also the one induced by the p-power map on R.

The ring R is Witt-perfect if the maps F : Wpn+1(R)→Wpn(R) are all
surjective1. There are many2 equivalent characterizations, e.g.: the
p-power map on R/(p) is surjective and there exists x ∈ R with xp ≡ p
(mod p2).

1Warning: this generally does not imply that F : W (R)→W (R) is surjective.
2See “On the Witt vector Frobenius” for further discussion.
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Examples

Some typical examples of Witt-perfect rings are:

the p-cyclotomic ring Z[µp∞ ];

the ring Z[µp∞ ][T
1/p∞

1 , . . . ,T
1/p∞
n ].

In some sense, this property is ubiquitous.

Lemma

For any local ring R, the direct limit of the rings R[Up−m
], where m runs

over nonnegative integers and U runs over finite subsets of R×, is
Witt-perfect.

Corollary

All local rings in the syntomic (flat, local complete intersection, étale away
from p) topology are Witt-perfect.
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Almost purity, version 1

A ring R is p-normal if it is p-torsion-free and integrally closed in
Rp = R[p−1].

Theorem

Let R be a p-normal Witt-perfect ring. Let S be the integral closure of R
in a finite étale extension of Rp. Then S is again Witt-perfect (and is
almost finite étale over R).

This reduces to the case where R is p-adically complete. In this case, R is
Witt-perfect if and only if it is integral perfectoid in the sense of Scholze
and Kedlaya-Liu, so one can use techniques of analytic geometry (adic
spaces) to further reduce to the case where Rp is a complete field.
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Inverse limits along Frobenius

Let W←−(R) be the inverse limit of the rings Wpm(R) along Frobenius

(rather than restriction). If R is not Witt-perfect, this inverse limit can be
small, e.g., W←−(Zp) ∼= Zp.

Theorem

If R is p-adically complete and Witt-perfect, then
W←−(R) ∼= W (lim←−F

R/pR).

For example, if R = OCp , then R is Witt-perfect and lim←−F
R/pR is a

valuation ring of a complete algebraically closed field of characteristic p.
This ring appears in the construction of Fontaine’s period rings.

Warning: W←−(R) admits a map F−1, but not F in general even if R is

Witt-perfect (unless R is also p-adically complete).
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Norms on Witt vectors

Let R be a p-normal ring. Then Rp carries a natural p-adic norm |•|p.

Define a norm |•|W on Wpn(R) and W (R) by the formula∣∣(xpi )
∣∣
W

= sup
i
{
∣∣xpi ∣∣p−i

p
}.

Theorem

This formula defines a submultiplicativea norm on Wpn(R) and a
power-multiplicativeb norm on W (R).

aIn particular, |xy |W ≤ |x |W |y |W .
bIn particular,

∣∣x2
∣∣
W

= |x |2W .

This may be viewed as an analogue of Gauss’s lemma for polynomials.
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Overconvergent Witt vectors

Fix b > 0. Define the subset W←−
b(R) of W←−(R) consisting of those

elements (xp−n)∞n=0 such that p−bn
∣∣xp−n

∣∣pn
W
→ 0 as n→∞.

Theorem

The subset W←−
b(R) is a subring of W←−(R). Moreover, the formula∣∣(xp−n)

∣∣
b

= sup
n
{p−bn

∣∣xp−n

∣∣pn
W
}

defines a submultiplicative norm which is power-multiplicative for b ≤ 1
and equivalent to a power-multiplicative norm for b > 1.
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Almost purity, version 2

Theorem

Let R be a p-normal Witt-perfect ring. Let S be the integral closure of R
in a finite étale extension of Rp. Then for all b > 0, W←−

b(S) is finite étale

over W←−
b(R).

When R is p-adically complete and Witt-perfect and b < 1, this gives a
well-studied ring in p-adic Hodge theory; for instance, such rings can be
used to describe p-adic Galois representations via (ϕ, Γ)-modules. In
particular, the statement of the theorem in this case is given explicitly by
Kedlaya-Liu.

For general R, the extra work required to reduce to the complete case is
mostly proving that the ring extension is finite.
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Where is this going?

Recall that our original motivation was to globalize crystalline cohomology.
A more immediate goal is to revisit the comparison isomorphisms between
de Rham, étale, and crystalline cohomology for varieties over p-adic fields,
in order to incorporate the rational structure on de Rham cohomology
(including the Hodge filtration) when the variety descends to a number
field.

The plan is to construct the comparison isomorphism (via Wach modules
in the good reduction case) using the de Rham-Witt complex.
Overconvergent Witt vectors are likely to play a key role.
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