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Philosophy: monodromy in the arithmetic direction

When one speaks of monodromy in either a topological or `-adic sense,
one is usually considering a geometric family of algebraic varieties, i.e., the
base space is itself a variety over a field.

But an algebraic variety over a number field can itself be viewed as a
family by choosing an integral model. The fibers of this family are varieties
over varying finite fields; a good analogue of the global monodromy group
in this setting is a certain compact real Lie group called the Sato-Tate
group of the family (or motive).

We will mostly only consider fibers of good reduction, for which there is no
dependence on the choice of model. For bad reduction fibers, one should
be careful about models; one then encounters local monodromy which
helps control the global monodromy. But we’ll ignore this here.
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Example: the Chebotarev density theorem

Let L/K be a Galois extension of number fields with Galois group G . For
each prime p of K not dividing the discriminant of L, the Artin map
associates to p a conjugacy class gp in G . By the Chebotarev density
theorem, these are equidistributed for the measure

µ(C ) =
#C

#G
.

That is, for any continuous function f : Conj(G )→ C, the average of
f (gp) over p equals

∫
µ f .

The measure µ can be viewed as the image of the Haar measure of G ,
viewed as a compact Lie group, under the map G → Conj(G ).

Kiran S. Kedlaya (UCSD) Sato-Tate groups of motives Boulder, April 14, 2013 3 / 10



Example: the Chebotarev density theorem

Let L/K be a Galois extension of number fields with Galois group G . For
each prime p of K not dividing the discriminant of L, the Artin map
associates to p a conjugacy class gp in G . By the Chebotarev density
theorem, these are equidistributed for the measure

µ(C ) =
#C

#G
.

That is, for any continuous function f : Conj(G )→ C, the average of
f (gp) over p equals

∫
µ f .

The measure µ can be viewed as the image of the Haar measure of G ,
viewed as a compact Lie group, under the map G → Conj(G ).

Kiran S. Kedlaya (UCSD) Sato-Tate groups of motives Boulder, April 14, 2013 3 / 10



Example: the Sato-Tate conjecture

Let E be an elliptic curve over a number field K . For each prime ideal p of
K at which E has good reduction, form the normalized characteristic
polynomial of Frobenius

Lp(E ,T ) = 1− ap√
Norm p

T + T 2.

This polynomial defines a unique class gp ∈ Conj(SU(2)).

Conjecture (known for K totally real using potential automorphy)

If E does not have complex multiplication, then the Lp(E ,T ) are
equidistributed for the image of Haar measure on SU(2).

If E has CM, one gets a similar theorem with SU(2) replaced by SO(2) if
the CM is defined over K or N(SO(2)) if not.
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Abelian varieties

Let A be an abelian variety of dimension g > 0 over a number field K ⊂ C.
The algebraic Sato-Tate group of A is the Q-algebraic subgroup AST(A) of

Aut(H1(Atop
C ,Q),∪) ∼= Sp(2g ,Q)

consisting of elements which act on absolute Hodge cycles as some
element of GK . The Sato-Tate group is a maximal compact subgroup
ST(A) of AST(A)C.

The connected part of ST(A) determines the Mumford-Tate group and
vice versa. The component group of ST(A) receives a continuous
homomorphism from GK .

Assume the Mumford-Tate conjecture for A. For each prime ideal p of K
at which A has good reduction, ST(A) contains a distinguished conjugacy
class gp with characteristic polynomial equal to the normalized
characteristic polynomial of Frobenius Lp(A,T ).
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When endomorphisms rule the world

In many cases, the Mumford-Tate group is determined entirely by
endomorphisms of AC (which define absolute Hodge 2-cycles). For
instance, this occurs whenever g ≤ 3.

In this case, the component group equals the Galois group of the minimal
field of definition of the endomorphisms of AC.

Moreover, ST(A) determines the real endomorphism algebra of AC and its
GK -action, and vice versa. Warning: this is not true with real replaced by
rational! For instance, ST(A) does not detect whether or not A is
absolutely simple.
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A classification for abelian surfaces

Theorem (Fité–K–Rotger–Sutherland)

As A varies over abelian surfaces over number fields, ST(A) runs over
exactly 52 conjugacy classes of subgroups of USp(4). Of these, exactly 34
classes occur over Q.

The most complicated part of the classification occurs in CM cases, when
the connected part of ST(A) equals U(1). For example, the Jacobian of

y 2 = x6 − 5x4 + 10x3 − 5x2 + 2x − 1

has Sato-Tate group an extension of U(1) by C2×S4.

One expects (and can verify numerically using moment statistics and
heavy computations) equidistribution of the gp in ST(A), but this seems
hopeless to prove in the generic case ST(A) = USp(4).
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Towards a classification for abelian threefolds

The complete classification of Sato-Tate groups for abelian threefolds is
not yet known. Some partial results are known in the case where the
connected part of ST(A) equals U(1), which is expected to occupy the
bulk of the classification.

For instance, twists of the Jacobians of the Fermat and Klein quartics

x4 + y 4 + z4 = 0, x3y + y 3z + z3x = 0

produce groups of order 96 and 168.

However, there is also a subgroup of PGL3(C) of order 216 (the Hessian
group) which has not yet been ruled out as a component group. It cannot
occur by twisting a curve because 216 > 168 = 84(g − 1).
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Some other motives

One can also define Sato-Tate groups for other motives (again using
absolute Hodge cycles). To get a good theory, one must assume certain
motivic conjectures analogous to the Mumford-Tate conjecture.

For example, consider motives of weight 3 with Hodge numbers
h0,3 = h1,2 = h2,1 = h3,0 = 1. By group theory, we can limit the Sato-Tate
group to 26 possibilities, but only 23 are known to occur. For example,
symmetric cubes of elliptic curves give SU(2), SO(2), N(SO(2)). Many
split cases arise from sums/products of modular forms. The case USp(4)
occurs generically in the Dwork pencil

x5
0 + · · ·+ x5

4 = tx0 · · · x4;

in fact, not one exception is known!
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Fields of definition of endomorphisms

For A an abelian variety over K of dimension g , the minimal field of
definition of the endomorphisms of AC is a finite Galois extension L of K .
Silverberg gives an upper bounds for [L : K ] based on orders of symplectic
groups over finite fields. An easy corollary is

[L : K ] ≤ 2(9g)2g .

In principle, analysis of Sato-Tate groups can be used to improve these
bounds. For example, for g = 2, the optimal bound is [L : K ] ≤ 48.

Question: can one use real Lie group classifications to derive bounds for
general g which are sharper than Silverberg’s bounds?
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