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Introduction

K3 surfaces

Throughout, let K be a field and let X be a K3 surface over K , i.e., a
geometrically connected, projective variety of dimension 2 such that:

the canonical bundle ΩX/K = ∧2Ω1
X/K is trivial;

X is not an abelian surface.

Some classes of examples:

a smooth quartic surface in P3
K ;

a double cover of P2
K branched over a smooth sextic curve;

a transverse intersection of a smooth quadric and cubic in P4
K ;

a transverse intersection of three smooth quadrics in P5
K ;

an elliptic K3 surface.

From the point of view of geometry and arithmetic, K3 surfaces are
strongly analogous to elliptic curves. (This analogy extends to Calabi-Yau
threefolds, but we don’t discuss these here.)
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Introduction

Zeta functions of K3 surfaces: initial constraints

Hereafter, assume K := Fq is finite. By the Weil conjectures and
properties of crystalline cohomology1, the zeta function of X has the form

ζ(X ,T ) =
1

(1− T )(1− qT )(1− q2T )q−1L(qT )

where for some a1, . . . , a10 ∈ Z we have

L(T ) = q + a1T + · · ·+ a10T
10 ± (a10T

11 + · · ·+ a1T
20 + qT 21)

and the roots of L in C lie on the unit circle. Hence for a given q, these
constraints limit ζ(X ,T ) to a computable finite set.

In addition to these initial constraints, we also have (for q ≤ 17)
monotonicity constraints like #X (Fq2) ≥ #X (Fq) ≥ 0, and (for all q)
arithmetic constraints derived from Brauer groups as described next.

1For q 6= p, the p-adic conditions are slightly stronger than stated here.
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Introduction

Base extension and monotonicity

For n > 1, the base extension Xn of X from Fq to Fqn has zeta function

ζ(Xn,T ) =
1

(1− T )(1− qnT )(1− q2nT )q−nLn(qnT )

where Ln is the polynomial obtained from L by raising each root to the
n-th power. That is, there exist α1, . . . , α21 ∈ C such that

L(T ) = q
21∏
i=1

(1− αiT ), Ln(T ) = qn
21∏
i=1

(1− αn
i T ).

In particular, Ln is uniquely determined by L; for example,

L2(T 2) = L(T )L(−T ).
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Introduction

Brauer groups and K3 zeta functions

Factor L(T ) as (1− T )r−1L1(T ) with L1(1) 6= 0. Under the Tate
conjecture2, r equals the rank of the Néron-Severi lattice NS(X ).

The Artin-Tate formula states that

L1(1) = |∆|# BrX

where ∆ is the discriminant of NS(X ) and BrX is the Brauer group of X .
The latter is finite and its order is a perfect square.

Even without knowledge of ∆ (or even the Tate conjecture), one can
compare the Artin-Tate formulas over Fq and Fq2 to deduce that L1(−1)
is a (possibly zero) perfect square (Elsenhans-Jahnel).

2This is apparently now unconditional: the last missing cases in characteristic 2 are
handled by Madapusi Pera–Kim, arXiv:1512.02540.
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Introduction

The inverse problem for K3 zeta functions

For given q, d , the Honda-Tate theorem specifies which rational functions
occur as zeta functions of a d-dimensional abelian variety over Fq.

What about for K3 surfaces? There is a partial analogue of Honda-Tate
due to Taelman (to be stated later), but for various reasons it does not tell
the whole story.

As a complement, we make a detailed numerical study of the case q = 2.
For practical reasons, we limit ourselves to smooth quartics; this is a
serious limitation from the point of view of zeta functions, but nonetheless
we obtain a “reasonable” class in which every eligible candidate actually
occurs for some K3 surface.
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Enumerating candidate zeta functions

Rolle’s theorem as algorithm

We first enumerate the candidates for L consistent with the
Weil/crystalline constraints (imposing the others as filters). This resembles
finding Pisot/Salem numbers, number fields of fixed signature, etc.

The constraints amount to the existence of a presentation

L(T ) = (1± T )T 10Q(T + T−1), Q(T ) = qT 10 + b1T
9 + · · ·+ b10

where all roots of Q in C are real and in [−2, 2]. For a given choice of ±,
the transformation between the ai and bi is unipotent and integral.

If Q has roots in [−2, 2], then by Rolle’s theorem the same is true of

1

k!
Q(k)(T ) =

10−k∑
i=0

(
i + k

i

)
b10−i−kT

i (k = 1, . . . , 10).

It is thus natural to enumerate candidates recursively: given bi , . . . , bi ,
find all bi+1 consistent with Rolle’s theorem and other known constraints.
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Enumerating candidate zeta functions

Other known constraints

Based on work done by one of us (KK) in 2008, we add some constraints.

From b1, . . . , bi , we can compute the first i power sums of either L or
Q. Every power sum of L has absolute value at most 21.

We impose classical symmetric inequalities on the roots of Q.

We obtain more constraints from Descartes’s rule of signs.

We use Sturm sequences to count roots in intervals; this leads to
some additional “lookahead” constraints. (It is unclear whether VCA
root isolation would be better here.)

The implementation is also improved from 2008; it uses Sage for
user-facing code, FLINT for low-level operations, and Cython in between.

Fewer than 1% of the ends of the search tree lead to solutions. This
suggests that there is still significant room for further improvement.
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Enumerating candidate zeta functions

Results for q = 2

For q = 2, there are 2,971,182 polynomials L satisfying the initial
constraints. Of these, 2,195,801 also satisfy the Elsenhans-Jahnel
constraint. Of these, 1,672,565 also satisfy monotonicity.

This computation required less than 1 hour on a 24-core machine. We
used 512 threads to enumerate the search tree in parallel, using
randomized work-stealing.

QA note: we used the same implementation to find monic polynomials of
degree 2, 4, . . . , 20 with all roots on the unit circle. Since these must be
products of cyclotomic polynomials (Kronecker’s theorem), the result can
be checked independently.
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Enumerating zeta functions of smooth quartic surfaces
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Enumerating zeta functions of smooth quartic surfaces

Enumerating smooth quartic surfaces

We next enumerate quartic surfaces in P3
Fq

up to PGL4-equivalence.

Identify each homogeneous quartic f ∈ Fq[w , x , y , z ] with a vector
v(f ) ∈ V := F35

q (the
(7
3

)
= 35 monomial f form a basis for V ) .

Identify PGL4(Fq) with G ⊆ GL35(Fq). For q = 2 we find that
#G = 20,160 and V has 1,732,564 G -orbits (by Burnside’s lemma).

Using a bitmap M indexed by V we can determine a minimal
representative for each G -orbit by simply enumerating orbits.

Take the index v(f ) ∈ V of the first unmarked bit in M as the
representative of its G -orbit, mark all the bits in this G -orbit, repeat.

Eliminate G -orbit reps v(f ) for which the singular locus defined by
the Jacobian matrix of f is nonempty.

For q = 2 we get 528,257 PGL4-inequivalent f defining K3 surfaces.
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Enumerating zeta functions of smooth quartic surfaces

Computing zeta functions of smooth quartics

Let S be our set of 528,257 K3 surfaces X : f (w , x , y , z) = 0 over F2. For
X ∈ S we compute #X (F2n) for enough n to determine LX (T ).

Plan: for x0, y0 ∈ F2n and f ∈ S count roots of f (w , x0, y0, 1) in F2n

(also need to count solutions to f (w , x , y , 0) = 0, but this is easy).

All but 34 f ∈ S yields cubics we can write as g(w) = w3 + aw + b.
There are only 22n+1 such g , a lot less than 528,257 · 22n.

Precompute tables Tn indexed by (a, b) counting roots of w3 + aw +b
in F2n using Zinoviev’s formulas (this actually takes negligible time).

Iterate over x0, y0 ∈ F2n , instantiate each of 35 quartic monomials at
x = x0, y = y0, z = 1, compute f (w , x0, y0, 1) for f ∈ S as a linear
combination, and look up the number of roots in Tn.

Compute #X (F2n) for X ∈ S and n ≤ 12. For n = 13, 14, . . . , 19,
reduce S to the subset with LX (T ) not yet determined3 and repeat.

3The only ambiguity is ±, which only resolves once we find a nonzero coefficient of L.
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Enumerating zeta functions of smooth quartic surfaces

Results for q = 2

For q = 2, on a 32-core machine it took about 2 days to enumerate the
set S of PGL4-inequivalent K3 surfaces X defined by smooth plane
quartics, and about 2 weeks to compute L(T ) for all X ∈ S .

Most of the time was spent on the roughly 1000 cases in which we
computed #X (F2n) with n = 18, 19.

We actually did more work than necessary (as a sanity check).
For example, only 125 cases require n = 19, but we computed 283.

Important practical optimization: using Intel’s PCLMULQDQ instruction
(“carry-less” multiplication) sped up our implementation by a factor of 10.

We find that 52,755 distinct L(T ) arise among the 528,257 X ∈ S .
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The inverse problem revisited
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The inverse problem revisited

A theorem of Taelman

For X given, factor L(T ) = Lalg(T )Ltrc(T ) where Lalg is the product of all
cyclotomic factors of L. (Aside: deg(Lalg) + 1 = rank NS(XK ).)

Theorem (Taelman, 2016)

Assumea that K3 surfaces over finite extensions of Qp admit potential
semistable reduction. For q given, choose any L satisfying the initial
constraints. Then for some positive integer n (and hence any multiple
thereof), there is a K3 surface over Fqn whose Ltrc is the base extension of
the one obtained from L.

aThis hypothesis is made precise by Liedtke–Matsumoto (arxiv.1411.4797).
It is is known for K3 surfaces of small degree relative to p.

Question: is it reasonable to hope that one can always take n = 1?
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The inverse problem revisited

A positive result for n = 1

Take q = 2. Since we only have numerical data for smooth quartics, we
can only hope to make an affirmative statement towards Taelman’s
theorem by limiting the set of candidates to those that “probably” come
from smooth quartics.

To this end, consider those L satisfying the initial constraints for which

Lalg(T ) = 1 + T , Ltrc(1) = 2, Ltrc(−1) > 2.

This forces rank NS(X ) = rank NS(XK ) = 1, |∆| = 4. In particular, X
must admit a degree 4 polarization, and so must be either a smooth
quartic or a slightly degenerate case thereof.

We find 1995 candidates satisfying these constraints. All of them are
realized by smooth quartics!
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Additional remarks

Other classes of K3 surfaces

Among our candidates for q = 2, we find many which cannot occur for
smooth quartics. Namely, some of these have L1(1) equal to 2 times a
large squarefree odd number D, which forces the K3 surface to admit a
polarization of degree 2D (i.e., every generic hyperplane section has genus
D
2 + 1). Sample values of D include 307, 367, 463.

The moduli space of polarized K3 surfaces consists of one component per
polarization degree; for degrees as large as these, these components are of
general type. There is thus no hope for an “easy” construction of K3
surfaces matching these zeta functions.

In individual instances, one might be able to make Taelman’s method
effective: construct a suitable K3 surface over C, descend it to a number
field, and find a smooth model over some prime dividing 2.
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Additional remarks

Enumerating zeta candidates for q > 2

The algorithm for enumerating zeta candidates is sufficiently robust that it
can be executed for slightly larger fields. The main difficulty is that the
number of candidates over Fq is O(q10), so even enumerating the answers
gets tough quickly.

For example, for q = 3, in about 2.5 days we find 75,936,610 zeta
functions satisfying the initial constraints, of which 49,645,728 satisfy the
Elsenhans-Jahnel and monotonicity constraints.
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Additional remarks

Enumerating smooth quartics for q > 2

For q > 2 a bitmap representing all quartic polynomials is too large to
work with. Instead, one must find a system of representatives for
PGL4-equivalence by computing some sort of “canonical form” for each
quartic polynomial.

For q = 3, David Harvey has done this using the intersections with all
rational planes, in 215 hours on a 16-core server. As a check, one again
uses Burnside’s formula to compute the number of PGL4-equivalence
classes; there are 4,127,971,480 of them.
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Additional remarks

Computing zeta functions for q > 2

Our approach for computing zeta functions over F2 is not feasible for
q > 2, both in the increased per-instance cost and in light of the number
of instances required.

Instead, one should switch to p-adic cohomological methods, particularly
the modified version of the Abbott–Kedlaya–Roe method of Costa–Harvey.
With this method, a complete census over F3 is probably doable.
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