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Notation

Throughout, we use the following notation.

• k be a field of characteristic p > 0.

• K is a field of characteristic 0, complete with respect to a discrete valuation, with
residue field k.

• O is the ring of integers of K.

• m is the maximal ideal of O.

• v(x) is the valuation of x ∈ K, normalized so that vp(p) = 1.

• σ : K → K is a continuous automorphism inducing the p-power (absolute) Frobenius
on k.

1 Crystals

Crystals, or more properly isocrystals, are the p-adic analogues of locally constant sheaves in
ordinary topology, locally free sheaves in sheaf cohomology, lisse sheaves in étale cohomology,
or local systems in de Rham cohomology. The closest analogy is the last one: when consider-
ing algebraic de Rham cohomology of a smooth affine variety over a field of characteristic 0,
local systems are simply finite locally free modules over the coordinate ring, equipped with
an integrable connection.

1.1 Convergent isocrystals on smooth affines

Let X = Spec A be a smooth affine scheme of finite type over k. By a theorem of Elkik,
there exists a smooth affine scheme X̃ of finite type over O with X̃ ×O k = X. We will
work not with the coordinate ring of X̃, which depends on the choice of X̃, but with its
p-adic completion Â, which by a theorem of Grothendieck is unique up to noncanonical
isomorphism; we call Â a complete lift of A. (The noncanonicality of complete lifts suggests

the use of the indefinite article here.) We can write Â = O〈x1, . . . , xn〉/(f1, . . . , fm) for some
n and fi, where O〈x1, . . . , xn〉 is the set of power series convergent for |x1|, . . . , |xn| ≤ 1.
(The latter is the p-adic completion of O[x1, . . . , xn].)

Let I be the ideal of the completed tensor product Â[1
p
]⊗̂KÂ[1

p
] which is the kernel of the

multiplication map a⊗ b 7→ ab. We then define Ω1 = I/I2, which is clearly an Â[1
p
]-module.

If Â ∼= O〈x1, . . . , xn〉, this is the quotient of the free Â[1
p
]-module generated by dx1, . . . , dxn

by the submodule generated by df1, . . . , dfm. Let Ωi be the i-th exterior power of Ω1 over
Â[1

p
].
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A convergent isocrystal over X is a finite locally free Â[1
p
]-module M equipped with an

integrable connection ∇ : M → M ⊗ bA[ 1
p
] Ω1. The integrable connection condition means

that ∇ is an additive, K-linear, homomorphism satisfying the Leibniz rule

∇(am) = a∇(m) + m⊗ da (a ∈ Â[
1

p
], m ∈ M)

such that the maps
0 → M → M ⊗ Ω1 → M ⊗ Ω2 → · · ·

induced by ∇ form a complex of K-vector spaces. The condition that ∇ is convergent is a
bit technical, but here’s the ideal: if t1, . . . , tn are local coordinates on X, then contracting
∇ with ∂

∂tj
gives a map Dj : M → M . (Don’t forget that ∂

∂tj
depends on the entire choice

of coordinates, not just on tj!) The maps Dj all commute with each other because ∇ is

integrable. The convergence condition states that for m ∈ M , a1, . . . , an ∈ Â with |aj| < 1,

and cI ∈ Â for each n-tuple I = (i1, . . . , in) of nonnegative integers, the series∑
I

cIa
i1
1 · · · ain

n

Di1
1 · · ·Din

n (M)

i1! · · · in!

converges to an element of M .
The complex

0 → M → M ⊗ Ω1 → M ⊗ Ω2 → · · ·
we wrote down earlier, in which all maps are induced by ∇, is the de Rham complex of M ,
and its cohomology is the convergent cohomology of X with coefficients in M .

That last definition should give some pause, as we have already note that the ring Â
is only determined by X up to noncanonical isomorphism. However, this is not a problem:
given an isomorphism ι : Â → Â which reduces to the identity modulo m, the maps id bA and
ι on the de Rham complex of the trivial isocrystal are homotopic. This yields a canonical
isomorphism ι∗M → M for any convergent isocrystal M . More generally, if X → Y is
a morphism of smooth affine schemes, A and B are the coordinate rings of X and Y ,
respectively, and Â and B̂ are complete lifts, then there exists a K-algebra homomorphism
f : B̂ → Â which induces the correct homomorphism from B to A, and the pullback f ∗M is
independent of the choice of f up to canonical isomorphism. (The homotopy on de Rham
complexes arises from the fact that any two lifts of the map are p-adically “close together”,
and so one can be continuously deformed into the other.) Minhyong Kim suggests a better
way to formulate this (by analogy with crystalline cohomology): form the category of triples

(X, Â, M), where X is a smooth affine k-scheme of finite type, Â is a complete lift of X, M

is a convergent isocrystal over Â, and morphisms are exactly morphisms on the underlying
schemes. Then this category is fibred over the category of smooth affine k-schemes of finite
type; that means precisely that there are pullback functors along morphisms.

Convergent cohomology turns out not to be very useful: for instance, the convergent
cohomology of the trivial isocrystal on A1 is not finite dimensional, because the differential
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d : K〈t〉 → Ω1 is far from being surjective. For instance, for any ai ∈ k of which infinitely
many are nonzero, the differential

∑
i aip

itp
i−1 dt is not exact.

One note on terminology: the term “isocrystal” is short for “crystal up to isogeny”. It
arises from the fact that the category of isocrystals on X is equivalent to a full subcategory of
the isogeny category of crystals of Ocrys⊗K-modules on X [O]. (The isomorphism category

is given by working with modules over Â rather than Â[1
p
].) One might also expect to

have a similar equivalence between finite locally free Â-modules with convergent integrable
connection and a full subcategory of the isomorphism category of torsion-free crystals of
Ocrys-modules; this is easy to verify locally, but I’m not sure if it holds globally. In any case,
one can fruitfully exploit the connection to crystalline cohomology (e.g., in Berthelot’s proof
of finite dimensionality of rigid cohomology with constant coefficients [Be]), but we will not
do so here, instead remaining entirely within the rigid setting.

1.2 Overconvergent isocrystals on smooth affines

While convergent isocrystals arise naturally in geometry, they are not well suited for co-
homology; as already noted, even in simple examples the resulting cohomology is infinite-
dimensional. We thus introduce a more refined notion, that of an overconvergent isocrystal,
which gives a better cohomology theory.

An algebra R equipped with a nonarchimedean absolute value | · | is weakly complete if
for any f1, . . . , fn ∈ R with |fi| < 1, and any cI ∈ R for each n-tuple I = (i1, . . . , in) of
nonnegative integers with |cI | ≥ 1, the sum∑

I

cIf
i1
1 · · · f in

n

converges under | · | to an element of R. A complete algebra is weakly complete, but not
vice versa. For instance, the algebra O〈x1, . . . , xn〉† of series for which there exists an η > 1
so that the series converges for |x1|, . . . , |xn| ≤ η is weakly complete but not complete.

Let X = Spec A be a smooth affine scheme of finite type over k. By the theorem of Elkik
mentioned before, there is a smooth finitely generated O-algebra A with A ⊗O k ∼= A. It
turns out that the weak completion A† of A is again unique up to noncanonical isomorphism.
We call A† a weakly complete lift of A. We can write A† = O〈x1, . . . , xn〉†/(f1, . . . , fm) for
some n and fi; in particular, A† is noetherian.

One defines Ω1 as in the complete case: let I be the ideal of the weakly completed tensor
product A†[1

p
] ⊗†

K A†[1
p
] which is the kernel of the multiplication map a ⊗ b 7→ ab, and put

Ω1 = I/I2. Likewise, one defines an overconvergent isocrystal by simply replacing complete
lifts with weakly complete lifts everywhere in the definition. Again, the resulting category
is independent of the choice of the lift. The de Rham cohomology of an isocrystal M in this
case is called the overconvergent cohomology, or more commonly the rigid cohomology, of
X with coefficients in M . For example, the rigid cohomology of A1 with coefficients in the
trivial isocrystal is finite dimensional and has sensible Betti numbers: H0 is one-dimensional
and all other spaces are zero-dimensional.
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It is clear that there is a faithful functor from overconvergent to convergent isocrystals,
by tensoring up from a weakly complete lift to its completion. More on this functor shortly.

1.3 Frobenius structures

It seems difficult to prove anything about isocrystals in the abstract; the disconnectedness
of the p-adic topology makes analytic continuation much more delicate. A fundamental
insight of Dwork is that isocrystals that arise from geometric situations come with an extra
structure, the so-called Frobenius structure, that rigidifies the isocrystal in the absence of
analytic continuation.

Let X = Spec A be a smooth affine scheme of finite type over k and let A be either
a complete or weakly complete lift of A. Let σ : A → A be a continuous homomorphism
lifting the p-power map modulo m and restricting to the chosen map σ : K → K. Then
for any (convergent or overconvergent) isocrystal M over X, σ∗M is again an isocrystal; a
Frobenius structure is an isomorphism F : σ∗M → M of isocrystals. By the usual homo-
topy construction, σ∗M is independent of the choice of σ up to canonical isomorphism. A
(convergent or overconvergent) isocrystal equipped with a (convergent or overconvergent)
Frobenius structure is called a (convergent or overconvergent) F -isocrystal.

The presence of Frobenius structure facilitates numerous computations involving isocrys-
tals. For example, any convergent morphism between overconvergent F -isocrystals is over-
convergent, i.e., the functor from overconvergent to convergent F -isocrystals is fully faithful
[K2]. (In particular, if a convergent F -isocrystal can be made overconvergent, it can be made
so in only one way.) Also, a convergent F -isocrystal which becomes overconvergent upon
restriction to a dense open subset is overconvergent [K6]. Both results are expected to on
isocrystals without Frobenius structure, but in that case they are not known. (Also, both
results hold on smooth but not necessarily affine schemes, and are believed to hold even on
nonsmooth schemes; Tsuzuki’s rigid cohomological descent probably allows a reduction to
the smooth case, but this has not yet been checked.)

Unfortunately, the benefits of having a Frobenius structure are not available when one
is trying to establish that an isocrystal has such a structure. For example, a conjecture of
Tsuzuki would imply that a convergent Frobenius structure on an overconvergent isocrystal
is itself overconvergent, but this has not been independently established.

Incidentally, to verify that a given module is an F -isocrystal, it suffices to verify the fact
that ∇ ◦ ∇ = 0 to get integrability; the convergence condition is automatic by “Dwork’s
trick”. This is handy in examples, since the convergence condition is a bit annoying to verify
directly. For instance, let f : E → X be a family of elliptic curves over a smooth base.
Then there is a rank 2 overconvergent F -isocrystal R1f∗O on X whose fibre at x ∈ X is the
cohomology of the elliptic curve Ex: producing the overconvergent module and the Frobenius
is not so hard, and the convergence condition is then free. Incidentally, if each fibre is an
ordinary elliptic curve, then R1f∗O admits a rank 1 subobject in the convergent category
(the “unit-root subcrystal”), but this object is not overconvergent.
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1.4 Isocrystals on nonsmooth/nonaffine schemes

For smooth but not necessarily affine varieties, convergent and overconvergent isocrystals
can be constructed by glueing: they can be described by giving isocrystals on an affine
cover and glueing isomorphisms on the overlaps which satisfy the cocycle condition on triple
intersections. The cohomology of such an isocrystal can be computed (or even defined!)
using the hypercohomology spectral sequence.

For affine but not necessarily smooth varietes, a different description is needed. Several
are possible, but my favorite is the following one given by Grosse-Klönne [G1]. (Actually, his
description is more general, but it implies that this one is correct.) Let X = Spec A be an
affine (but not necessarily smooth) scheme of finite type over k, and choose a presentation
A ∼= k[x1, . . . , xn]/(f 1, . . . , fm). Choose lifts fi of f i into O[x1, . . . , xn], form the ring Tm,n

of power series in x1, . . . , xn, y1, . . . , ym which converge for |xi| ≤ 1 and |yi| < 1, and put

Acon = Tm,n/(y1 − f1, . . . , ym − fm).

Then a convergent isocrystal on X is a finitely presented, locally free Acon-module equipped
with an integrable connection (for an appropriate definition of Ω1). Beware that now the ring
Acon is not independent of X even up to noncanonical isomorphism; but it is independent
up to “homotopy equivalence”, so one gets a canonical category of convergent isocrystals.

To get overconvergent isocrystals, one passes to the subring T †
m,n of series such that for

any δ < 1, there exists η > 1 (depending on the series and on δ) such that the series converges
for |xi| ≤ η and |yj| ≤ δ. (Once a series belongs to T †

m,n, it is enough to check this additional
condition for a single δ.) Then one works with modules over

Aocon = T †
m,n/(y1 − f1, . . . , ym − fm)

instead of Acon. In both cases, the module Ω1 ends up being freely generated by dx1, . . . , dxn,
and one defines de Rham cohomology as before. (And again, one can glue to define convergent
or rigid cohomology on nonsmooth nonaffines.)

2 Crew’s conjecture

Although a full theory of p-adic vanishing cycles has not yet been developed, it has become
clear how to interpret the notion of “the p-adic local monodromy of an isocrystal on a curve”,
thanks to the work of Crew. In his work on this subject (e.g., see [Cr]) arose a conjecture
about p-adic differential equations; in particular, under this conjecture, Crew proved finite
dimensionality of the rigid cohomology of an overconvergent F -isocrystal on a curve. The
conjecture was reformulated in entirely local guise (as we present it here) by Tsuzuki [T2],
but the name “Crew’s conjecture” is the most common. (Now that it has been resolved, it
is also known as the “p-adic local monodromy theorem”.)
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2.1 The Robba ring

Let R be the set of formal sums
∑∞

n=−∞ cnt
n, with cn ∈ K, such that

lim inf
n→−∞

v(cn)

−n
> 0, lim inf

n→∞

v(cn)

n
≥ 0.

Then R forms a ring under series convolution, called the Robba ring. Its elements may be
interpreted as Laurent series which converge on some open annulus of outer radius 1.

A theorem of Lazard implies that the Robba ring is a Bézout ring: every finitely generated
ideal is principal. In particular, every finitely presented projective module is free.

Let Rint be the subring of R whose coefficients belong to O; then Rint is a henselian
(but noncomplete) discrete valuation ring with residue field k((t)). Recall that σ : K → K
lifts the p-power Frobenius on k. Choose an extension σ : R→ R of σ to R of the form∑

cnt
n 7→

∑
cσ
n(tσ)n,

where tσ ∈ Rint
K reduces to tp.

The Robba ring can be viewed as the limit, over 0 < ρ < 1, of the subring Rρ of series
convergent for ρ < |t| < 1, and of course any finitely presented module over R is actually
defined over such a subring. One typically must restrict to such a subring to accomplish any
analysis (e.g., summing an infinite series) over R. However, one cannot avoid R entirely,
as these subrings are not preserved by any σ: for ρ sufficiently close to 1, σ carries Rρ into
Rρ1/p .

2.2 (F,∇)-modules

Let M be a finite free module over R. Crew’s conjecture is a structural classification of
a certain pair of extra structures on M ; these are local analogues of the connection and
Frobenius structures on overconvergent F -isocrystals.

A Frobenius structure on M is an additive, σ-linear map F : M → M whose image
generates M over RK . (One would like to say that F is bijective, but that is too strong:
that does not even hold for the trivial Frobenius structure given by σ on R itself.) Here
σ-linearity means that F (rm) = rσF (m) for r ∈ R. Equivalently, a Frobenius structure on
M is an isomorphism of the R-modules σ∗M (which looks like M but with the R-action
funneled through σ) and M .

A connection on M is an additive, K-linear map ∇ : M → M ⊗R Ω1
R/K satisfying the

Leibniz rule ∇(rm) = r∇(m) + m ⊗ dr for r ∈ R and m ∈ M . Here Ω1
R/K is the free

R-module generated by dt and d : R→ Ω1
R/K is the derivation∑

cnt
n 7→

(∑
ncnt

n−1
)

dt.

A Frobenius structure F and a connection ∇ on M are said to be compatible if F induces
an isomorphism of σ∗M with M as modules with connection. In other words, the following
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diagram should commute:

M
∇ //

F

��

M ⊗ Ω1
R/K

F⊗dσ
��

M
∇ // M ⊗ Ω1

R/K

where dσ is the linearization of σ: dσ(df) = d(fσ). An (F,∇)-module is a finite free module
M over R equipped with compatible Frobenius and connection structures. (Note that this
concept is independent of the choice of σ: the presence of ∇ allows one to “deform” a
Frobenius structure with respect to a particular σ into one for another σ.)

2.3 The p-adic local monodromy theorem

An (F,∇)-module is constant if it is spanned by the kernel of ∇. An (F,∇)-module is
unipotent if it admits a filtration by saturated (F,∇)-submodules whose successive quotients
are constant.

For L a finite separable extension of k((t)), there is a unique finite unramified extension
of Rint with residue field L (because Rint is henselian); if we call this extension Rint

L , then
RL = R⊗RintRint

L is also isomorphic to the Robba ring, but with a different series parameter.
We say an (F,∇)-module is quasi-constant if it becomes constant over RL for some

finite separable extension L of k((t)), and quasi-unipotent if it admits a filtration by satu-
rated (F,∇)-submodules whose successive quotients are constant (or equivalently, if it becose
unipotent over RL for some finite separable extension L of k((t))). Then Crew’s conjecture
is the following assertion.

Theorem 2.1 (p-adic local monodromy theorem). Every (F,∇)-module over R is
quasi-unipotent.

This theorem has been established independently by André [A], Mebkhout [M2], and the
speaker [K1]. We will comment on these proofs in the next section.

2.4 The canonical filtrations

The proofs of Crew’s conjecture all proceed by first establishing the existence of a canonical
filtration for modules over the Robba ring equipped with one of the two structures (Frobenius
or connection), then using the other to separate things further. For more details about these
proofs, a great reference is Colmez’s Seminaire Bourbaki of November 2001 [Co], though
unfortunately it is not yet published.

First, suppose M is a finite free R-module equipped with a connection ∇ but no Frobe-
nius. Under a certain technical hypothesis on∇ (always satisfied in the presence of Frobenius
and sometimes otherwise), the p-adic index theorem of Christol and Mebkhout [CM] pro-
duces a canonical ascending filtration on M , called the weight filtration. (The construction
of this filtration involves a formidable p-adic analytic computation, about which we will not
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comment further.) For M a (F,∇)-module, the weight filtration admits the following a pos-
teriori interpretation (due to Matsuda): for r ∈ Q nonnegative, the step Mr of the filtration
is the maximal (F,∇)-submodule which becomes unipotent over some extension of k((t))
whose ramification filtration has all its jumps less than or equal to r, in the upper number-
ing. (This is a bit confusing: we made an extension of the DVR Rint, but that extension is
unramified, so has no ramification numbers. It is the residue field extension of k((t)) that
contributes the ramification numbers.) For instance, M0 is the maximal (F,∇)-submodule
which becomes unipotent over a tamely ramified extension of k((t)). The main difficulty
in the construction is first establishing a criterion that determines the jumps in the weight
filtration assuming that it exists, then converting that criterion into an actual construction.

The proofs of Crew’s conjecture by André and Mebkhout both start from the weight
filtration, but proceed differently thereafter. André shows that any filtration that looks
group-theoretically like the ramification filtration of a local field (a “Hasse-Arf filtration”)
must be one, and that the weight filtration in the presence of a Frobenius structure is
such a filtration. Mebkhout uses a more computational approach, studying the action of
Frobenius explicitly on steps of the weight filtration. (Beware that the weight filtration is
not a unipotent filtration: for instance, if M is actually unipotent, the weight filtration has
a single jump at weight 0.)

The speaker’s proof of Crew’s conjecture proceeds differently, by working primarily with
Frobenius structures. For M a finite free R-module equipped with a Frobenius structure but
no connection, one obtains a canonical ascending filtration on M called the slope filtration.
(The construction of this filtration also involves a formidable p-adic analytic computation,
about which we will not comment further.) For M a (F,∇)-module and k algebraically
closed, the slope filtration admits the following a posteriori interpretation: for r ∈ Q non-
negative, the step Mr of the filtration is the maximal (F,∇)-submodule which, over some
extension of R, is spanned by elements m such that F am = pbm for some integers a, b with
a > 0 and b/a ≤ r. The main difficulty in the construction is first establishing a criterion
that determines the jumps in the slope filtration assuming that it exists, then converting
that criterion into an actual construction.

With the slope filtration in hand, one knows a priori that each successive quotient is an
(F,∇)-module over Rint whose Dieudonné-Manin slopes are all equal. One can reduce to
the case where these slopes are zero (the unit-root case); this case of Crew’s conjecture has
been treated by Tsuzuki [T1]. In fact any such (F,∇)-module is quasi-constant, not just
quasi-unipotent, so the slope filtration itself is a unipotent filtration.

Incidentally, if M is itself defined over Rint to begin with, the Dieudonné-Manin classifi-
cation itself produces a filtration of M . (That is the situation in the cohomology application,
but not in Berger’s construction.) This filtration is not the same as the slope filtration de-
scribed above! I call the Dieudonné-Manin filtration on M the generic slope filtration and
the one above the special slope filtration, because if you draw the Newton polygons of the
two sets of slopes, the special Newton polygon lies on or above the generic Newton polygon
and has the same endpoint. In fact, this phenomenon is closely related to the construction
of the slope filtration: one passes up to a huge ring (containing the maximal unramified
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extension of Rint) and establishes the existence of the filtration there by a series of suc-
cessive approximations, producing modules over various DVRS whose Newton polygons are
steadily increasing. When the Newton polygon can be raised no further, one gets the desired
filtration but over too large a ring; one must then “descend” the filtration back to R.

2.5 Other applications

Although our interest in Crew’s conjecture stems from its relationship with p-adic cohomol-
ogy, there seem to be other applications. We briefly mention two of them.

Building on work of Charbonnier and Colmez, Berger [Bg] has established a link be-
tween (F,∇)-modules and continuous representations Gal(L/L) → ΓL

n(K), for L a finite
extension of Qp. One can read off many properties of a representation from its correspond-
ing (F,∇)-module. For instance, a representation is crystalline (resp. semistable) in the sense
of Fontaine if and only if its corresponding (F,∇)-module is constant (resp. unipotent). In
particular, Fontaine’s conjecture that every de Rham representation is potentially semistable
(conjecture Cst) follows from Crew’s conjecture. (The de Rham condition is symptomatic of
representations that “come from geometry”; those that actually do are forced to be poten-
tially semistable by de Jong’s alterations theorem. Presumably all de Rham representations
come from geometry, but no assertion even remotely resembling this is known.)

Another application, or more precisely a variation, has been given by Yves André. He
is interested in q-difference equations, which may be viewed as deformations of differential
equations. (The idea is that the function g(x) = (f(xq) − f(x))/(q − 1) tends to xf ′(x) as
q → 1.) In this language, the natural analogue of Crew’s conjecture also holds; since the
notion of Frobenius structure is not altered by deformation, the analogue can be deduced
using the slope filtration. André and di Vizio believe there is also a weight filtration in this
context, but have not yet worked out the details. This analogue leads to a theory of q-rigid
cohomology, about which the speaker is presently unable to discourse further.

3 Cohomology

In this lecture, we summarize the proof of the following theorem given in [K3]. At the end
we also point out how this theorem can be used to give a p-adic derivation of the Weil
conjectures.

Theorem 3.1. The rigid cohomology of an arbitrary overconvergent F -isocrystal on an
arbitrary separated finite type k-scheme is a finite dimensional K-vector space.

For constant isocrystals, this was proved for smooth schemes by Berthelot [Be] and
extended to nonsmooth schemes by Grosse-Klönne [G2]. However, Berthelot’s proof is based
on de Jong’s alterations theorem and a reduction to crystalline cohomology, and does not
immediately extend to the general case.

Our proof is closer in spirit to the proof of finite dimensionality for the constant isocrystal
on a smooth affine k-scheme given by Mebkhout [M1]; in particular, we perform all of our
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computations on smooth affines and use excision arguments to reduce everything to the
smooth affine case. (The excision arguments handle the case of smooth but not necessarily
affine schemes; to get to nonsmooth schemes, one invokes the cohomological descent method
of Chiarellotto and Tsuzuki [CT].) More specifically, given a smooth affine variety, we fiber
it in curves over a variety of dimension one lower, and use Crew’s conjecture (Theorem 2.1)
to construct higher direct images of the given isocrystal. Then a Leray spectral sequence
allows one to deduce finite dimensionality of cohomology of the original isocrystal from finite
dimensionality of cohomology of its direct images.

3.1 More on weakly complete lifts

We want to define the Robba ring over a weakly complete lift, but to do so we must first do
a bit more “weakly complete algebra”.

Let A† be a weakly complete lift of the smooth affine finite type k-algebra A. For any
presentation A† = O〈x1, . . . , xn〉†/(f1, . . . , fm), we can write A† as the direct limit of the
subalgebras Tn(ρ)/(Tn(ρ) ∩ (f1, . . . , fm)) over ρ > 1, where Tn(ρ) ⊂ O〈x1, . . . , xn〉† is the
set of series convergent for |x1|, . . . , |xn| ≤ ρ. We call any such subalgebra a fringe algebra;
a fringe algebra is complete with respect to its “intrinsic” norm (the supremum norm over
|x1|, . . . , |xn| ≤ ρ) but not with respect to the norm on A†.

For A† a weakly complete lift, the localization of A† at some f ∈ A† \ mA† is the weak
completion of A†[f−1]. If A† ∼= O〈x1, . . . , xn〉†/(f1, . . . , fm), then its localization at f is
isomorphic to

O〈x1, . . . , xn+1〉†/(f1, . . . , fm, fxn+1 − 1).

3.2 The Robba ring over a weakly complete lift

It is easy to define the Robba ring over a complete lift Â: simply replace the power series
over K by power series over Â[1

p
] and keep the same convergence condition. If we stopped

there, we could only hope to construct higher direct images of an overconvergent F -isocrystal
in the category of convergent F -isocrystals. To get them in the overconvergent category, we
will need to define “the Robba ring over a weakly complete lift”.

Let L be the p-adic completion of Frac A†. We define the Robba ring RA† as the subring
of the Robba ring over L of series

∑
cnt

n such that for some r > 0, the quantities pbrnccn all
belong to some fringe algebra and converge to zero as n → ±∞ in the intrinsic norm of that
fringe algebra. The condition then holds for any smaller r as well (but the fringe algebra
may vary), so the result is indeed a ring.

Again, we define Ω1 as the free module generated by dt. We may then repeat the
definition of (F,∇)-module over RA† , as well as the unipotent property. Then one has the
following relationship between unipotence over a dagger algebra and over a field (see [K3]).

Proposition 3.2. Let M be a free (F,∇)-module over RA† which becomes unipotent over
the Robba ring of L. Then M is unipotent over RB† for some localization B† of A†.

11



3.3 Pushforwards in rigid cohomology

Let f : X → Y be a morphism of smooth affine finite type k-schemes, and let B† → A†

be a corresponding morphism of dagger algebras. Then we define the relative module of
differentials Ω1

A†/B† as the quotient of Ω1
A†/K

by the sub-A†-module generated by db for

b ∈ B†. Given an overconvergent F -isocrystal M on X, we define the higher direct images
Rif∗M as the cohomology of the complex M⊗Ω·

A†/B† . These are B†-modules with connection
and Frobenius, but may not be finitely generated. One can however prove the following.

Proposition 3.3. If f : X → Y is smooth of relative dimension 1, and M is an overconver-
gent F -isocrystal on X, then after restricting to some open dense subset U of Y , the Rif∗M
become overconvergent F -isocrystals on U .

(The restriction to U is really necessary: the conclusion implies that the fibrewise coho-
mologies H i(Xy) have the same rank for all y ∈ U , which may not hold for all y ∈ Y .)

Sketch of proof: by Theorem 2.1 and Proposition 3.2, one can replace X and Y by finite
covers (after shrinking Y ) so that X embeds into X which is smooth and proper of relative
dimension 1 over Y , the complement Z = X \ X is a union of disjoint sections, and M is
unipotent along each component of Z. (More on what this means in a moment.) In this
case, one can directly compute the Rif∗M and see that they are finitely generated over a
weakly complete lift of U ; this implies the finiteness also back for the original X and Y .
(End sketch.)

What it means for M to be unipotent along a component of Z: given a component of
Z, one gets an embedding of A† into Rint

B† which reduces modulo m to the embedding of

A into its completion along Z. Simple case: if A = K〈x〉†, B = K and Z is the point at
infinity in P1, then one such embedding of A into RK is x 7→ t−1, lifting the embedding
K[x] ↪→ K((x−1)). Of course there are many such embeddings, but whether M ⊗A† RB† is
unipotent does not depend on the embedding.

How do these pushforwards help us? They fit into a Leray spectral sequence relating the
cohomology of the original isocrystal with the cohomology of the pushforwards. Actually the
only case we really need is this one (which we can check “by hand”): if M is an overconvergent
F -isocrystal on X × A1 and f : X × A1 → X is the canonical projection, then there are
canonical exact sequences

H i(X, R1f∗M) → H i(X × A1, M) → H i−1(X, R1f∗M)

for all i.

3.4 How to put it all together

To sum up, here is a summary of the proof of finiteness of rigid cohomology with coefficients
in an overconvergent F -isocrystal.

• We proceed by induction on d, proving that:

12



(a)d H i(X, M) is finite dimensional if X is smooth and dim X ≤ d;

(b)d H i
Z(X, M) is finite dimensional if X is smooth, Z is a smooth subscheme and

dim Z ≤ d.

(This is the same strategy adopted by Berthelot in [Be].)

• The fact that (a)d implies (b)d follows from the existence of a Gysin isomorphism
H i

Z(X, M) → H i−2d(Z,M)(−d). Technically, this is only true “generically” (after
replacing X by an open dense subscheme) because of liftability hypotheses, but that
is good enough (by a bit of excision).

• By the excision exact sequence

· · · → H i
Z(X, M) → H i(X, M) → H i(Z,M) → · · · ,

given (b)d−1, to prove (a)d it suffices to prove it “generically”, i.e., after replacing
any given X by a suitable open dense subscheme. In particular, we can find such a
subscheme which is finite étale over An (yes, finite étale! This is a trick peculiar to
positive characteristic; see [K5]), and it suffices to work with the pushforward N of M
down to An (or an open dense subscheme thereof).

• Now view An as An−1 × A1 with projection f onto An−1; by Proposition 3.3, after
shrinking An−1 suitably, we get Rif∗N in the category of overconvergent F -isocrystals
on An−1. By the induction hypothesis, these have finite cohomology, as then does N
by the Leray construction. That completes the argument for X smooth.

• For X nonsmooth, we invoke cohomological descent as formulated by Chiarellotto and
Tsuzuki [CT]. The existence of the necessary proper hypercovering follows from de
Jong’s alterations theorem [dJ].

• One can also prove finiteness of cohomology with compact supports by proving Poincaré
duality: for X smooth of pure dimension d, one has a canonical perfect pairing

H i(X, M)×H2d−i
c (X,M∨) → H2d

c (X) ∼= K(−d).

This is easiest to do for X = An; again, excision and induction on dimension do the
trick in general. That immediately gives finite dimensionality of cohomology with
supports for X smooth; now the excision sequence for cohomology with supports

· · · → H i
c(U,M) → H i

c(X, M) → H i
c(Z,M) → · · ·

yields finite dimensionality in general.

• By similar means, one can obtain the Künneth decomposition: if Mi is an overconver-
gent F -isocrystal on Xi for i = 1, 2, then Hj(X1×X2, M1�M2) ∼=

∑
a+b=j Ha(X1, M1)⊗

Hb(X2, M2), and likewise with supports.
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3.5 Rigid “Weil II”

As a postscript, we note that Deligne’s “Weil II” theorem, which implies the Weil conjectures,
can be reproduced in rigid cohomology. (The analogous assertion in crystalline cohomology
had earlier been suggested by Faltings [F], though sans some significant technical details.)

Theorem 3.4. Let X be a separated Fq-scheme of finite type and M an overconvergent F -
isocrystal on X. Suppose that for each closed point x ∈ X of degree d, F d acts on the fibre
Mx via a linear transformation whose characteristic polynomial has rational (resp. integer)
coefficients and complex eigenvalues of absolute value qi/2. Then F acts on Hj

c (X, M) via
a linear transformation whose characteristic polynomial has rational (resp. integer) coeffi-
cients and complex eigenvalues each of absolute value qi+j−`/2 for some nonnegative integer
` (depending on the eigenvalue). If X is smooth and proper, then in fact ` = 0 for all
eigenvalues.

The implication of the Weil conjectures follows because one has a Lefschetz trace formula
in rigid cohomology, obtained from a construction of Monsky (based on work of Dwork and
Reich). In particular, finite dimensionality of rigid cohomology implies rationality of zeta
functions, Poincaré duality implies the functional equation for smooth proper varieties, and
the theorem above implies the Riemann hypothesis component.

As in the proof of Theorem 3.1, one can reduce Theorem 3.4 to the case where X is
a curve, or in fact where X = A1. Here instead of imitating Deligne’s arguments exactly,
we instead follow Laumon’s derivation using a geometric Fourier transform for constructible
sheaves on A1. The p-adic analogue of this construction is a Fourier transform on arithmetic
D-modules, constructed by Huyghe [H1]. See [K4] for more details.
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[A] Y. André, Filtrations de type Hasse-Arf et monodromie p-adique, Invent. Math. 148
(2002), 285–317.
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monodromie p-adique, Invent. Math. 148 (2002), 319–351.

[O] A. Ogus, F -isocrystals and de Rham cohomology II: convergent isocrystals, Duke
Math. J. 51 (1984), 765–850.

15



[T1] N. Tsuzuki, Finite local monodromy of overconvergent unit-root F -crystals on a curve,
Amer. J. Math. 120 (1998), 1165–1190.

[T2] N. Tsuzuki, Slope filtration of quasi-unipotent overconvergent F -isocrystals, Ann. Inst.
Fourier, Grenoble 48 (1998), 379–412.

16


