
Interval arithmetic for function fields over

finite fields (or, How to compute in Cp

without really trying)

Computational Algebraic and Analytic

Geometry for Low-dimensional Varieties

January 17, 2003

Kiran S. Kedlaya

University of California, Berkeley

kedlaya@math.berkeley.edu

A preprint is in progress; an older preprint with

some of these results is available at arxiv.org

as math.RA/0110089. These slides are avail-

able at math.berkeley.edu/~kedlaya.

The author is supported by an NSF postdoc-

toral fellowship.

1

The geometric question

Give local parametrizations of plane curves over

a field K, i.e., find approximate roots of poly-

nomials over K[t]. Example: if char(K) 6= 2,

x3 − xt + t3 = 0

has a parametrization at the origin:

x = t1/2 −
1

2
t2 −

3

8
t7/2 −

1

2
t5 + · · ·

If K = C, an iteration using Newton polygons

produces roots in the ring of Puiseux series

∞⋃
i=1

C((t1/i));

one can compute with approximations to these.

But this is false if char(K) > 0, e.g., for finite

fields!

2

A bad example in positive characteristic

Chevalley observed that if char(K) = p > 0,

the polynomial

xp − x− t−1

over K((t)) has no roots in the ring of Puiseux

series over K.

Abhyankar suggested it should have the roots

x = c + t−1/p + t−1/p2
+ · · · (c ∈ Fp);

this makes sense in a ring of “generalized power

series”.

Is it possible to make sense of this remark in a

“computable” fashion?

3

Reformulation

The field C is complete and algebraically closed,

and it is easy to compute in C using floating-

point approximations (and interval arithmetic).

The fields Qp and Fp((t)) are easy to compute

in using rational approximations, but they are

not algebraically closed.

Question: how to compute in their completed

algebraic closures? Is there a reasonable ana-

logue of “floating-point arithmetic”?

4

Generalized power series (after Hahn)

The field k((tQ)) of generalized power series

over a field k is the set of expressions∑
i∈Q

cit
i,

where ci ∈ k and the set of i such that ci 6= 0 is

well-ordered, i.e., contains no infinite decreas-

ing sequence. (Well-orderedness is needed for

series multiplication to work.)

If k is perfect, then
⋃

K((tQ)) is algebraically

closed, where K runs over all finite extensions

of k.

Unfortunately, the truncation of a general se-

ries modulo ti is not described by computable

data. In earlier work, we gave a “recursive”

characterization of the power series in k((tQ))

which are algebraic over k((t)).

5

Finite automata

A finite automaton is an object which produces

a collection of strings using symbols from a

given alphabet Σ.

The data of an automaton includes:

• a finite collection Q of states;

• a transition function F : Q×Σ → Q;

• a designation of one state as the initial

state and one or more states as final states.

The language generated by the automaton con-

sists of all strings which yield a series of transi-

tions from the initial state to some final state.

6

An example

For Σ = {.,0,1,2,3,4}, the automaton

.

3

4

final

∅

init 4 3

2

2

with all unspecified transitions leading to ∅, ac-

cepts the language consisting of

.32, .342, .3432, .34342, . . .

and

.42, .432, .4342, .43432,

7

“Automatic” power series

Consider finite automata for the alphabet

{.,0, . . . , p− 1}.

A generalized power series
∑

cit
i over Fq (for

char(Fq) = p) is called automatic if for each

α ∈ Fq \ {0}, the set of i ∈ Q with ci = α is

generated by a finite automaton (if we identify

each i ∈ Q with its base p expansion).

Theorem (Christol, K). A generalized power

series x =
∑

cit
i is algebraic over Fq[t] if and

only if
∑

cit
ni is automatic for some integer

n. (In particular, the support of x is then in
1
nZ

[
1
p

]
.)

The result of Christol is the case of an ordinary

power series, which is used as part of the proof.

8

Computing with automatic series I:

Arithmetic operations

Given automata A1, A2 generating languages
L1,L2 of well-formed base p expansions of ra-
tionals in Z

[
1
p

]
∩ [0,+∞), there are operations

to produce the following:

• A canonical minimal automaton A′ gener-
ating L1.

• Automata generating L1∪L2, L1∩L2, and
L1 \ L2.

• For each i, an automaton generating those
rationals which occur with multiplicity i in
L1 + L2 (only if L1,L2 are well ordered).

These enable equality testing, addition, and
multiplication of automatic series.

9

Computing with automatic series II:

Extracting roots

Over Fp, Newton’s method applied to Cheval-

ley’s polynomial

xp − x− t−1

extracts the terms t−1/p, t−1/p2
, . . . in succes-

sion and never terminates. Namely, if x =

t−1/p + · · ·+ t−1/pk
+ y, we have

yp − y − t−1/pk
= 0

and we extract the next term by setting yp −
t−1/pk

to zero.

To avoid hangups like this, one can modify

Newton’s method by explicitly working around

situations like this. This makes it possible to

compute approximately with roots of polyno-

mials over Fp[t].

10

What about Cp?

Recall that Cp is the completed algebraic clo-

sure of Qp, which is both complete and alge-

braically closed.

Let R be the integral closure of FpJtK in Fp((tQ)).

Then there is an isomorphism

OCp
/pOCp

∼= R/tR.

In other words, the rings OCp
and R look the

same “up to valuation 1”.

Thus one can adopt the use of finite automata

to compute approximately in Cp as well. The

generalized power series in t are replaced (fol-

lowing Poonen) with “generalized power series

in p.”

11

Summary

One can represent approximations to elements

of the algebraic closure of Fp[t] (i.e., approxi-

mate local expansions of plane curves over Fp)

using finite automata.

To do: implement this scheme and see if it is

workable.

12

