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Preface: the Chebotarev density theorem

The Chebotarev density theorem

Throughout this talk, let K denote a number field with ring of integers
oK , and let p denote a generic maximal ideal of oK of norm q. Let Fqe be
the finite field of degree e over oK/p.

Theorem

Let f ∈ oK [x ] be a squarefree polynomial of degree d > 0 and put
X = Spec oK [x ]/(f ). For i = 0, . . . , d, for a certain explicit rational
number ci ,

lim
N→∞

#{p : q ≤ N,#X (Fq) = i}
#{p : q ≤ N}

= ci .

In words, the left side computes the probability that for a random prime p,
the reduction of f modulo p has exactly i linear factors.
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Preface: the Chebotarev density theorem

The Galois group

Theorem

Let f ∈ oK [x ] be a squarefree polynomial of degree d > 0 and put
X = Spec oK [x ]/(f ). For i = 0, . . . , d, for a certain explicit rational
number ci ,

lim
N→∞

#{p : q ≤ N,#X (Fq) = i}
#{p : q ≤ N}

= ci .

To define the constant ci , let G be the Galois group of the splitting field of
f over K . Then G acts transitively on the roots of f in an algebraic
closure of K , and ci is the probability that a random element of G fixes
exactly i of the roots.

For example, if G = Sd (the generic case), then cd = 1/d! and c0 ≈ 1/e.

This is not the most precise formulation of the Chebotarev density
theorem. The optimal version is an equidistribution statement on the
group G , which we give next.
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Preface: the Chebotarev density theorem

Equidistribution in the Galois group

View G as a compact Lie group using the discrete topology. Equip G with
the Haar measure, i.e., the uniform measure on the elements of G . Equip
the set Conj(G ) of conjugacy classes of G with the image measure µ, so
each class has measure proportional to its size.

Excluding finitely many primes of bad reduction, each p defines a
Frobenius conjugacy class Frobp ∈ Conj(G ). These are equidistributed for
µ: for any (continuous) function f : Conj(G )→ R,

lim
N→∞

1

#{p : q ≤ N}
∑

p:q≤N

f (Frobp) =

∫
f

dµ.

That is, the space average equals the time average.

This somewhat ponderous formulation has the advantage of making sense
when G is a compact but not necessarily finite Lie group.
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Preface: the Chebotarev density theorem

Chebotarev in higher motivic weight

One may view the Chebotarev density theorem as an equidistribution
property for a certain 0-motive (Artin motive). A conjectural
generalization to motives of higher weight has been described by Serre, in
which the Galois group G must be replaced by a certain compact Lie
group; see references below.

In this talk, we make the description explicit for 1-motives associated to
abelian varieties. We will especially emphasize the cases of abelian
varieties of dimension at most 3. Sadly, very little can be proved; our focus
will be on making the conjectures as explicit as possible.

References:
J.-P. Serre, Propriétés conjecturales des groupes de Galois motiviques et des représentations l-adiques, Motives (Seattle, WA,
1991), Proceedings of Symposia in Pure Math. 55, Amer. Math. Soc., 1994, 377–400.
J.-P. Serre, Lectures on NX (p), A.K. Peters, 2012.
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The Sato-Tate conjecture for elliptic curves
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The Sato-Tate conjecture for elliptic curves

The Hasse interval

Let E be an elliptic curve over K . Fix a model X for E over oK .

Theorem (Hasse)

For p at which X has good reduction, the trace of Frobenius

ap := q + 1−#X (Fq)

satisfies |ap| ≤ 2
√

q.

One can then ask about the distribution of the normalized trace ap :=
ap

2
√

q .

Equivalently, Hasse’s theorem implies a polynomial factorization

(1− apT + qT 2) = (1− αp
√

qT )(1− βp
√

qT )

in which
αp, βp ∈ C, |αp| = |βp| = 1, Imag(αp) ≥ 0

and we may ask about the distribution of αp, βp on the unit circle.
Kiran S. Kedlaya (MIT/UCSD) Sato-Tate groups of abelian varieties 9 / 22
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The Sato-Tate conjecture for elliptic curves

The case of CM curves

Theorem (Hecke)

Suppose E has complex multiplication. Then the αp are equidistributed for
the following measures on the semicircle |αp| = 1, Imag(αp) ≥ 0.

(a) If the CM is defined over K , take the Lebesgue measure.

(b) If not, take half the Lebesgue measure plus half the discrete measure
at αp = i .

More precisely, the pairs (αp, βp) occur as the eigenvalues of certain
conjugacy classes of a compact Lie group G = G (E ,K ) which are
equidistributed for the image of Haar measure.

(a) If the CM is defined over K , we have G = SO(2).

(b) If not, G is the normalizer of SO(2) in SU(2). It has two connected
components, on one of which the trace is identically 0, corresponding
to the 50% of prime ideals at which E is supersingular.
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The Sato-Tate conjecture for elliptic curves

The case of non-CM curves: the Sato-Tate conjecture

Conjecture (Sato-Tate)

Suppose E has no complex multiplication. Then the (αp, βp) occur as the
eigenvalues of certain conjugacy classes of G = SU(2) which are
equidistributed for the image of Haar measure.

This conjecture is supported by copious numerical evidence...

Theorem (Taylor et al.)

The Sato-Tate conjecture is true when K is a totally real field.

To prove this, one first obtains analytic continuation for some symmetric
power L-functions using modularity techniques. An argument of Serre,
simulating the prime number theorem, then gives equidistribution.
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The Sato-Tate group of an abelian variety
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The Sato-Tate group of an abelian variety

The Sato-Tate problem

Let A be an abelian variety over K of dimension g > 0. Fix a model X for
A over oK .

Theorem (Weil)

For p at which X has good reduction, there exist α1,p, . . . , α2g ,p ∈ C with

|αi ,p| = 1 (i = 1, . . . , 2g)

αi ,pαg+i ,p = 1 (i = 1, . . . , g)

#X (Fqe ) = qe + 1− qe/2(αe
1,p + · · ·+ αe

2g ,p) (e = 1, 2, . . . ).

Such data determine a unique conjugacy class in the unitary symplectic
group USp(2g). The Sato-Tate problem, in its simplest form, is to find a
measure for which these classes are equidistributed.

We will focus on identifying the measure. Proving equidistribution is in
most cases intractable: it awaits advances in the Langlands program.

Kiran S. Kedlaya (MIT/UCSD) Sato-Tate groups of abelian varieties 13 / 22
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The Sato-Tate group of an abelian variety

The Sato-Tate group

Conjecture (Refined Sato-Tate conjecture)

There exist a compact Lie group G = ST(A,K ) ⊆ USp(2g) and some
conjugacy classes Frobp ∈ Conj(G ) with eigenvalues α1,p, . . . , α2g ,p (which
we will describe explicitly later), such that these classes are equidistributed
for the image of Haar measure.

This Sato-Tate group will be realized as a maximal compact subgroup of a
certain reductive Q-algebraic subgroup AST(A,K ) of Sp(2g ,C). This
latter subgroup, the algebraic Sato-Tate group, can be identified
unconditionally in cases where standard motivic conjectures (Hodge,
Mumford-Tate) are known. In particular, this includes all cases with g ≤ 3.

This conjecture predicts the distribution of any symmetric function of the
αi ,p as the distribution of the corresponding function of eigenvalues of a
random matrix of ST(A,K ). This is again supported by evidence...
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The Sato-Tate group of an abelian variety

Construction of the algebraic Sato-Tate group

Fix an embedding K ↪→ C. The homology space H = H1(AC,Q) carries a
symplectic form (cup product) and hence an action of GSp(2g ,Q).
Meanwhile, H ⊗Q R may be identified with the tangent space of AC, and
hence carries a complex structure. Take the minimal Q-algebraic subgroup
of GSp(2g ,Q) containing C×, then intersect with Sp(2g ,Q) to get the
Hodge group of A.

The Hodge group is connected and acts trivially on absolute Hodge cycles
of A. To get the algebraic Sato-Tate group AST(A,K ), add elements of
Sp(2g ,Q) which act on absolute Hodge cycles via some element of
Gal(K/K ).

For g ≤ 3, we may use endomorphisms instead of absolute Hodge cycles.
The component group π0(AST(A,K )) ∼= π0(ST(A,K )) is then identified
with Gal(L/K ) for L/K the minimal extension over which all
endomorphisms of AK are realized.
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The Sato-Tate group of an abelian variety

Construction of the algebraic Sato-Tate group

Fix an embedding K ↪→ C. The homology space H = H1(AC,Q) carries a
symplectic form (cup product) and hence an action of GSp(2g ,Q).
Meanwhile, H ⊗Q R may be identified with the tangent space of AC, and
hence carries a complex structure. Take the minimal Q-algebraic subgroup
of GSp(2g ,Q) containing C×, then intersect with Sp(2g ,Q) to get the
Hodge group of A.

The Hodge group is connected and acts trivially on absolute Hodge cycles
of A. To get the algebraic Sato-Tate group AST(A,K ), add elements of
Sp(2g ,Q) which act on absolute Hodge cycles via some element of
Gal(K/K ).

For g ≤ 3, we may use endomorphisms instead of absolute Hodge cycles.
The component group π0(AST(A,K )) ∼= π0(ST(A,K )) is then identified
with Gal(L/K ) for L/K the minimal extension over which all
endomorphisms of AK are realized.

Kiran S. Kedlaya (MIT/UCSD) Sato-Tate groups of abelian varieties 15 / 22



The Sato-Tate group of an abelian variety

Construction of the algebraic Sato-Tate group

Fix an embedding K ↪→ C. The homology space H = H1(AC,Q) carries a
symplectic form (cup product) and hence an action of GSp(2g ,Q).
Meanwhile, H ⊗Q R may be identified with the tangent space of AC, and
hence carries a complex structure. Take the minimal Q-algebraic subgroup
of GSp(2g ,Q) containing C×, then intersect with Sp(2g ,Q) to get the
Hodge group of A.

The Hodge group is connected and acts trivially on absolute Hodge cycles
of A. To get the algebraic Sato-Tate group AST(A,K ), add elements of
Sp(2g ,Q) which act on absolute Hodge cycles via some element of
Gal(K/K ).

For g ≤ 3, we may use endomorphisms instead of absolute Hodge cycles.
The component group π0(AST(A,K )) ∼= π0(ST(A,K )) is then identified
with Gal(L/K ) for L/K the minimal extension over which all
endomorphisms of AK are realized.

Kiran S. Kedlaya (MIT/UCSD) Sato-Tate groups of abelian varieties 15 / 22



The Sato-Tate group of an abelian variety

Construction of Frobenius conjugacy classes

Fix a prime ` and an embedding Q` ↪→ C.

Under standard conjectures (which hold if g ≤ 3), the image of Gal(K/K )
on the `-adic Tate module is an open subgroup of AST(A,K )⊗Q Q`

(theorem of Bogomolov). Taking the image of Frobp in AST(A,K )⊗Q C,
then dividing by q1/2, gives a well-defined (up to conjugacy) element of
ST(A,K ).
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Sato-Tate groups of abelian surfaces
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Sato-Tate groups of abelian surfaces

The Sato-Tate axioms

Proposition (Sato-Tate axioms)

Suppose G = ST(A,K ) for some A. We then have the following.

(a) The group G is a closed subgroup of USp(2g).

(b) There exists a homomorphism θ : U(1)→ G 0 such that θ(u) has
eigenvalues u, u−1 each with multiplicity g .

(c) For each component H of G and each irreducible character χ of
GL(d ,C), the average of χ(γ) over γ ∈ H is an integer.

Theorem (FKRS)

For g = 2, there are 55 conjugacy classes of subgroups of USp(4)
satisfying the Sato-Tate axioms.
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Sato-Tate groups of abelian surfaces

Sato-Tate groups and endomorphism algebras

Theorem (FKRS)

The group ST(A,K ) determines the real endomorphism algebra
End(AK )⊗Z R and its action of Gal(K/K ). For g = 2, the converse is
also true.

Ignoring the Galois action, the options for End(AK )⊗Z R for g = 2 are

R,R× R,R× C,C× C,M2(R),M2(C)

corresponding to Sato-Tate groups with connected parts

USp(4), SU(2)× SU(2), SU(2)× U(1),U(1)× U(1), SU(2),U(1).

This conflates certain cases that one might otherwise distinguish. For
instance, C× C occurs both for the product of two nonisogenous CM
elliptic curves and for an absolutely simple CM abelian surface.
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Sato-Tate groups of abelian surfaces

Sato-Tate groups for g = 2: main result

Theorem (FKRS)

There exist exactly 52 groups which occur as the Sato-Tate groups of
abelian surfaces. Of these, exactly 34 groups occur for abelian surfaces
over Q.

This result includes an explicit description of each group and an example
of a genus 2 curve whose Jacobian provably realizes this Sato-Tate group.
(It does not include equidistribution!)

Corollary

Assume g = 2. Let L/K be the minimal extension such that
End(AL) = End(AK ). Then [L : K ] ∈ {1, 2, 3, 4, 6, 8, 12, 24, 48}.

This improves the case g = 2 of a result of Silverberg, which implies that
[L : K ] divides 23040 = 29 · 32 · 5.
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Sato-Tate groups of abelian surfaces

Some examples for g = 2

Most of the Sato-Tate groups for g = 2 have connected part U(1). These
groups all occur among Jacobians of twists of two curves with many
automorphisms:

y 2 = x5 − x , y 2 = x6 + 1.

For example, one finds examples with component groups D6 × C2 and
S4 × C2; since any subgroup of these can then occur, this implies that our
previous corollary is sharp.

Theorem (Fité-Sutherland)

The Sato-Tate conjecture holds for the Jacobian of any twist of one of
these two curves.
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Sato-Tate groups of abelian surfaces

What about g = 3?

For g = 3, there are 14 possibilities for the connected part of ST(A,K ). It
is not yet know how many Sato-Tate groups can occur, but it is definitely
at least 200.

In order to realize Sato-Tate groups with large component groups, one
needs abelian threefolds with large endomorphism algebras. Some obvious
examples arise from curves with many automorphisms (i.e., no
deformations preserving all automorphisms). These were listed by Wolfart:

y 2 = x8 − x , y 2 = x7 − x , y 2 = x8 − 1,

y 2 = x8 − 14x4 + 1, y 3 = x3(x − 1), y 4 + x3 = 1,

y 4 + x4 = 1, x3y + y 3z + z3x = 1.

However, curves are probably not enough! For instance, the Hessian group
of order 216 appears to arise as a component group, but the automorphism
group of a genus 3 curve can have at most 168 elements (Hurwitz bound).
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