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The Plimpton 322 tablet (Babylonian, c. 1800 BCE)

Columbia University Libraries, http://www.columbia.edu/cu/lweb/eresources/exhibitions/treasures/html/158.html
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Another view of Plimpton 322

This photo, and the following analysis, are taken from a web site of Bill Casselman (University of British Columbia):
http://www.math.ubc.ca/~cass/courses/m446-03/pl322/pl322.html.
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Plimpton 322 and Pythagorean triples

This tablet is a table of numbers in base 60; the symbols

represent 1, . . . , 9 and 10, . . . , 50. (There is no symbol to represent zero!)

According to Neugebauer and Sachs (1945), the tablet is a computation of
some Pythagorean triples using the method we know from Euclid: form

(m(p2 − q2), 2mpq,m(p2 + q2))

for various p, q,m ∈ Z with p > q > 0, gcd(p, q) = 1, and pq even.

E.g., the first row takes m = 1, p = 12, q = 5 to obtain

1192 + 1202 = 14161 + 14400 = 28561 = 1692.
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An auxiliary structure in Pythagorean triples

A geometric interpretation of Euclid’s method via stereographic projection:

(−1,0)

slope=t

(2/(t^2+1), (1−t^2)/(1+t^2))

x^2 + y^2 = 1

A line with rational slope through one rational point has rational
coefficients, so its second intersection with the circle is again rational.
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An example of Diophantos

The Arithmetica of Diophantos (3rd century CE) is the first known treatise
on the solution of algebraic equations in integers or rational numbers. For
this reason, such equations are commonly called as Diophantine equations.

Example (Book IV, Problem 24): To divide a given number into two
numbers such that their product is a cube minus its side.

In other words, given a, find x and y such that

y(a− y) = x3 − x .

The following analysis, and illustration, are from: Ezra Brown and Bruce
T. Myers, Elliptic curves from Mordell to Diophantus and back, American
Math. Monthly 109 (2002), 639–649.
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An example of Diophantos (continued)

For any a, there is a trivial solution (−1, 0). As in the previous example,
let’s try to generate a new solution by solving the equation

t(x + 1)(a− t(x + 1)) = x3 − x .

For any given t, this is a cubic polynomial with x = −1 as one root, so
there is no reason for the other two roots to be rational.

However, if we choose t so that x = −1 occurs as a double root, then the
third root will be forced to be rational. This occurs for t = 2/a.

Note: Diophantos did not have the language of algebra, so he was forced
to illustrate his methods in terms of “typical” values of a. In this case he
used a = 6, in which case this procedure yields

(x , y) = (17/9, 26/27).
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Context: elliptic curves

This example went unexplained for over 1000 years, until similar examples
began to be considered by Fermat (17th century), e.g.,

x3 + y3 = 1

which only has the solutions (0, 1), (1, 0). In this case, the double root
trick fails because starting with either solution, forcing the double root
automatically forces a triple root.

The ultimate explanation is that for certain curves in the plane (called
elliptic curves), the points1 have a natural addition law with O as the
identity element. This law is commutative, associative, and admits
inverses, so one gets an abelian group structure. The method of
Diophantos amounts to doubling a point, i.e., adding it to itself.

1One must be careful here about points at infinity.
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Illustration: elliptic curves
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Aside: elliptic curves in computer science

As an aside, I note that elliptic curves have recently become of great value
not just for mathematicians, but also for computer scientists.

Elliptic curves give rise to a good method of factoring large integers,
particularly2 when one prime factor is smaller than the others, but is
still too large to be found by trial division.

Elliptic curves also give rise to public-key cryptography techniques
which are widely used in practice (e.g., SSL, digital signatures,
Bitcoin).

There are also applications of more sophisticated geometric objects like
hyperelliptic curves

y2 = (polynomial in x).

2This is not the case for the moduli used in RSA cryptography, which are products of
two similarly large primes. However, factorization techniques like the number field sieve
involve some auxiliary factorizations to which elliptic curves do apply.

Kiran S. Kedlaya (UCSD) Auxiliary structures in number theory Brown, March 12, 2016 10 / 22



Aside: elliptic curves in computer science

As an aside, I note that elliptic curves have recently become of great value
not just for mathematicians, but also for computer scientists.

Elliptic curves give rise to a good method of factoring large integers,
particularly2 when one prime factor is smaller than the others, but is
still too large to be found by trial division.

Elliptic curves also give rise to public-key cryptography techniques
which are widely used in practice (e.g., SSL, digital signatures,
Bitcoin).

There are also applications of more sophisticated geometric objects like
hyperelliptic curves

y2 = (polynomial in x).

2This is not the case for the moduli used in RSA cryptography, which are products of
two similarly large primes. However, factorization techniques like the number field sieve
involve some auxiliary factorizations to which elliptic curves do apply.

Kiran S. Kedlaya (UCSD) Auxiliary structures in number theory Brown, March 12, 2016 10 / 22



Aside: elliptic curves in computer science

As an aside, I note that elliptic curves have recently become of great value
not just for mathematicians, but also for computer scientists.

Elliptic curves give rise to a good method of factoring large integers,
particularly2 when one prime factor is smaller than the others, but is
still too large to be found by trial division.

Elliptic curves also give rise to public-key cryptography techniques
which are widely used in practice (e.g., SSL, digital signatures,
Bitcoin).

There are also applications of more sophisticated geometric objects like
hyperelliptic curves

y2 = (polynomial in x).

2This is not the case for the moduli used in RSA cryptography, which are products of
two similarly large primes. However, factorization techniques like the number field sieve
involve some auxiliary factorizations to which elliptic curves do apply.

Kiran S. Kedlaya (UCSD) Auxiliary structures in number theory Brown, March 12, 2016 10 / 22



What is arithmetic geometry?

The kind of auxiliary structures we have seen so far are objects of algebraic
geometry. Classical algebraic geometry takes place over an algebraically
closed field (e.g., C); working over Q typically requires extra techniques of
arithmetic geometry.

For example, any two conic curves over C are isomorphic. But over Q, this
only holds for conic curves containing at least one rational point; reasons3

for failure can be for “archimedean” (e.g., x2 + y2 = −1, due to R) or
“p-adic” (e.g., x2 + y2 = 3, due to congruences mod 4).

3For conics, there are no other modes of failure; this is part of the Hasse-Minkowski
theorem. This is special to conics; for instance, Selmer discovered that 3x3 + 4y 3 = −5
has no Q-points, but not for any archimedean or p-adic reason.
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A problem outside arithmetic geometry

One problem that historically resisted many advances of arithmetic
geometry is Fermat’s last theorem: for any integer n ≥ 3, the equation

xn + yn = 1

has no rational solutions with xy 6= 0.

For any individual n, one can try to use geometric techniques to study this
equation. (For example, Fermat himself gave a proof for n = 4, which
means that hereafter one need only worry about n prime.) However, it is
very hard to use this approach to get a statement uniformly over n.
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The Frey-Hellegouarc’h curve

An alternate approach was discovered by Hellegouarc’h (1975): to try to
rule out the existence of a nontrivial integer solution of An + Bn = Cn,
look at the elliptic curve

y2 = x(x − An)(x + Bn).

Frey (1982) realized that such a curve, were it to exist, would have very
strange properties. For example, there are “too few” primes for which the
reduction of this equation modulo p behaves badly (i.e., the curve acquires
a singularity because two of the roots of the polynomial in x come
together).
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The Frey-Hellegouarc’h curve (continued)

Again, associate to a solution of An + Bn = Cn the elliptic curve

y2 = x(x − An)(x + Bn).

Serre (1985) made Frey’s intuition precise, in the form of a conjecture
proved by Ribet (1990): the existence of a Frey-Hellegouarc’h curve is
inconsistent with the existence of a corresponding modular form.

That existence had itself been conjectured based on work of Taniyama,
Shimura, and Weil. That conjecture was proved (in sufficient cases) by
Wiles and Taylor-Wiles (1995), thus resolving Fermat’s last theorem once
and for all.

To say more, let us back up a few years...
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Generating functions

Given a sequence of integers a0, a1, . . . , the associated generating function
is the power series

a0 + a1q + a2q
2 + · · · .

In many cases, this series converges and the properties of the resulting
function give a lot of useful control on the original sequence.

For example, Euler (mid-1700s) observed that the power series

(1− q)−1(1− q2)−1 · · ·

is the generating function for the sequence counting partitions of n, i.e.,
ways to write n as an unordered sum of positive integers. (For instance,
there are 7 partitions of 5: 1 + 1 + 1 + 1 + 1, 1 + 1 + 1 + 2, 1 + 2 + 2,
1 + 1 + 3, 1 + 4, 2 + 3, 5.)
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Analytic properties of generating functions

Some deep links between combinatorial generating functions and complex
analysis were discovered by Legendre, Abel, and Jacobi (1820s). This was
a bit of an accident: they were trying to understand the integrals that
come up when trying to compute arclengths on an ellipse.4

This theory was further developed by Weierstrass (1860s). One key
example is the discriminant modular form

∆(q) = q
∞∏
n=1

(1− qn)24,

which has a strong symmetry property: for q = e2πiτ with Im(τ) > 0 and
a, b, c , d ∈ Z with ad − bc = 1,

∆

(
aτ + b

cτ + d

)
= (cτ + d)12∆(τ)

4These are closely related to elliptic curves, whence that terminology.
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An amazing observation

Let’s look at some coefficients of ∆:

∆(q) = q − 24q2 + 252q3 − 1472q4 + 4830q5 − 6048q6 − 16744q7

+ 84480q8 − 113643q9 − 115920q10 + 534612q11 − 370944q12

− 577738q13 + 401856q14 + 1217160q15 + 987136q16 − · · ·

Write τ(n) for the coefficient of qn. Ramanujan (1916) observed:

τ(mn) = τ(m)τ(n) whenever gcd(m, n) = 1.

This was explained by Mordell (1917) and generalized by Hecke (1937).

For more about ∆, see its “home page” (more on which shortly):
http://www.lmfdb.org/ModularForm/GL2/Q/holomorphic/1/12/1/a/.
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A related example

A closely related example is the modular form

f (q) = q
∞∏
n=1

(1− qn)2(1− q11n)2.

It again has a transformation rule: for q = e2πiτ ,

f

(
aτ + b

cτ + d

)
= (cτ + d)2f (τ) (a, b, c , d ∈ Z, ad − bc = 1, 11|c).

Writing an for the coefficient of qn in f , one again has multiplicativity:

amn = aman (gcd(m, n) = 1).

Like ∆, f is found in the L-Functions and Modular Forms Database:
http://www.lmfdb.org/ModularForm/GL2/Q/holomorphic/11/2/1/a/.
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From a modular form to an elliptic curve

Starting from the modular form

f (q) = q
∞∏
n=1

(1− qn)2(1− q11n)2,

a construction of Eichler and Shimura (1950s) produces the elliptic curve

y2 + y = x3 − x2 − 10x − 20.

It also has a home page: http://www.lmfdb.org/EllipticCurve/Q/11/a/2.

These two objects have the following relationship: for p 6= 11 a prime,
there are exactly p − ap pairs (x , y) ∈ Fp × Fp satisfying the equation of
the elliptic curve, where again ap is the coefficient of qp in f .

Many numerical examples of this sort have been tabulated by Cremona
(1990s–present; see http://lmfdb.org). By the work of Wiles (and
followup), it is known that every elliptic curve over Q arises in this fashion.
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More analytic functions

There is a close relationship between an analytic function of τ of the form

∞∑
n=1

anq
n (q = e2πiτ )

and the corresponding function of s given by the Dirichlet series

∞∑
n=1

ann
−s .

Information about the latter can be used to understand the aggregate
(statistical) behavior of the an as n varies. For example, if an = 1 for all n,
then the Dirichlet series is the Riemann zeta function, which can be used
to prove the prime number theorem.
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Dirichlet series and elliptic curves

Recall that if a modular form f =
∑∞

n=1 anq
n and an elliptic curve E are

related as per Eichler-Shimura, then for p prime (with finitely many
exceptions), the number of points on E over Fp equals p + 1− ap.

It was shown5 by Hasse (1930s) that |ap| ≤ 2
√
p. So one might ask how

ap/
√
p varies in the interval [−2, 2] as p varies.

A conjecture of Sato and Tate (1960s) asserts that there are only two
possible answers, depending on whether E has complex multiplication.
This is now known by work of Taylor et al (2000s), amounting to progress
on the vast Langlands program (building on Wiles).

For illustrations, see:

http://math.mit.edu/~drew/g1_D1_a1f.gif

http://math.mit.edu/~drew/g1_D2_a1f.gif

5Ramanujan conjectured a similar statement about ∆, whose resolution requires the
full strength of Deligne’s proof of the Weil conjectures (1970s).
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I could go on, but...

I’ll stop here. thank you for your attention!
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