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Statement of the problem

Moduli spaces of curves

For g > 1, let Mg denote the moduli space of smooth curves of genus g ;
this object exists as a smooth Deligne–Mumford (DM) stack of relative
dimension 3g − 3 over Z.

For any field k, the set Mg (k) = Mor(Spec(k),Mg ) is naturally identified
with the set of isomorphism classes of classical� curves of genus g over k .

In particular, if k is finite then this set is also finite. However, each
element has an automorphism group: the class of a curve C carries the
group Autk(C ) of automorphisms� of C → k . When we write #Mg (k),
we count [C ] with weight 1/#Autk(C ).

�smooth, projective, geometrically irreducible
�Not to be confused with automorphisms of Ck , which may not be defined over k.
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Statement of the problem

The census problem

Problem

For given q and g, enumerate the set Mg (Fq) (or more precisely, one
curve representing each isomorphism class).

Given an explicit map f : S → Mg (Fq), in Magma one can easily:§

verify that f is injective;

compute Autk(f (s)) for each s ∈ S .

Thus f witnesses a lower bound for #Mg (Fq). If one has an independent
upper bound, or better yet the exact value (more on this below), these
together provide a proof that f is a bijection!

This creates a dependence on closed-source software which it would be
desirable to remove (e.g., by porting to SageMath).

§At least after applying some bugfixes that Magma has so far refused to accept.
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Statement of the problem

Progress report

A census has been completed in the following cases (all data in LMFDB):

g ≤ 3, various q by Sutherland.

g = 4, q = 2 by Xarles.

g = 5, q = 2 by Dragutinović.

g = 6, q = 2 by K–Huang–Lau.

Additional cases of some interest:

g = 7, q = 2: in progress by K–Huang–Lau.

g = 2, q ∈ {243, 256, 343, 512, 625, 729, 1024};
g = 3, q ∈ {3, . . . , 25}; g = 4, q ∈ {3, 4, 5}; g = 5, q = 3: would be
of interest for inverting the zeta function in LMFDB.

g = 6, q = 3: would be of interest for cohomology of moduli spaces
(see below). Beware that 315 ≫ 218!
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g = 6, q = 2 by K–Huang–Lau.

Additional cases of some interest:

g = 7, q = 2: in progress by K–Huang–Lau.

g = 2, q ∈ {243, 256, 343, 512, 625, 729, 1024};
g = 3, q ∈ {3, . . . , 25}; g = 4, q ∈ {3, 4, 5}; g = 5, q = 3: would be
of interest for inverting the zeta function in LMFDB.

g = 6, q = 3: would be of interest for cohomology of moduli spaces
(see below). Beware that 315 ≫ 218!

Kiran S. Kedlaya Census-taking for curves over finite fields Barcelona, June 19, 2024 5 / 25



Statement of the problem

Progress report

A census has been completed in the following cases (all data in LMFDB):

g ≤ 3, various q by Sutherland.

g = 4, q = 2 by Xarles.

g = 5, q = 2 by Dragutinović.
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Motivation: Inverting the zeta function function
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Motivation: Inverting the zeta function function

Inverting the zeta function function

Taking the numerator of the zeta function defines a map Mg (Fq) → Z[T ].
It is in general difficult to compute preimages of this map.

When the preimage is empty, one can sometimes detect this if the zeta
function implies nonsense about point counts (e.g., there is a negative
number of places of some degree) or polarizations. Very rarely, one can use
polarizations to show that a particular curve is unique for its zeta function
(work of Howe).

In general the only available approach is a partial census, perhaps making
geometric assumptions consistent with the candidate zeta function(s).
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Motivation: Inverting the zeta function function

Invariants of abelian varieties

One can stratify moduli spaces of abelian varieties in positive characteristic
in various ways (Newton polygon, Ekedahl–Oort). But which strata
contain Jacobians?

One way to gather evidence is to compute Mg (Fq). For example, all
Newton polygons occur for curves of genus 6 over F2. Maybe by looking at
examples, one can find some patterns that extend? (Perhaps ML/AI has a
role to play here, but only if we can generate a lot more data...)
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Motivation: Inverting the zeta function function

The gonality of curves over finite fields

Over an algebraically closed field, a curve of genus g always has gonality at
most g . Over a finite field this can increase, but only to g + 1 (Schmidt).

Theorem (Faber–Grantham–Howe)

A curve of genus g over Fq has gonality at most g except for:

215 curves with g = 3, q ∈ {2, 3, 4, 5, 7, 8, 9, 11, 13, 17, 19, 23, 29, 32};
2 curves with g = 4, q ∈ {2, 3}.

By Riemann–Roch, a curve with gonality g + 1 cannot have an effective
divisor of degree g − 2. This limits the zeta functions to a finite set; but a
partial census was required to rule out some cases with g ∈ {6, 7} (plus a
theoretical argument for one case with g = 9).
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Motivation: Inverting the zeta function function

The relative class number one problem for function fields

Theorem (K)

The set of isomorphism classes of pairs (F ′,F ), where F ,F ′ are function
fields of curves over finite fields of genera g < g ′ such that hF = hF ′ and
F embeds into F ′, is finite and known (it contains 145 elements).
Moreover, if g > 1, then F ′/F is Galois and cyclic.

Using ideas from bounding #C (Fq) for C a curve of genus g over Fq (as
in Serre’s 1985 Harvard course), one shows that the zeta functions of F ,F ′

are limited to a finite set with g ≤ 7. However, one needs at least a partial
census to identify curves with a specified zeta function. For example,

F2(x)[y , z ]/(y
2 + (x3 + x2 + 1)y + x2(x2 + x + 1), z2 + z + x2(x + 1)y)

is the unique function field F of genus 7 over F2 admitting an unramified
quadratic extension F ′/F with hF = hF ′ .
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Motivation: Cohomology of moduli spaces of curves
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Motivation: Cohomology of moduli spaces of curves

The Lefschetz trace formula for stacks

For X a DM stack of finite type over Fq, the Lefschetz trace formula for
Frobenius holds: for any prime ℓ not dividing q,

#X (Fq) =

2 dim(X )∑
i=0

(−1)i Trace(Frobq,H
i
c(XFq

,Qℓ)).

When there exists a polynomial P(q) such that #X (Fq) = P(q) for all
prime powers q, we say X has polynomial point count.

Mg is known to have polynomial point count for g ≤ 7 (Canning–Larson).
By computing cohomology of M6 using Pixton’s relations,
Bergstrom–Canning–Petersen–Schmitt obtain

#M6(Fq) = q15 + q14 + 2q13 + q12 − q10 + q3 − 1

so in particular #M6(F2) = 68615 (consistent with our data).

Kiran S. Kedlaya Census-taking for curves over finite fields Barcelona, June 19, 2024 12 / 25



Motivation: Cohomology of moduli spaces of curves

The Lefschetz trace formula for stacks

For X a DM stack of finite type over Fq, the Lefschetz trace formula for
Frobenius holds: for any prime ℓ not dividing q,

#X (Fq) =

2 dim(X )∑
i=0

(−1)i Trace(Frobq,H
i
c(XFq

,Qℓ)).

When there exists a polynomial P(q) such that #X (Fq) = P(q) for all
prime powers q, we say X has polynomial point count.

Mg is known to have polynomial point count for g ≤ 7 (Canning–Larson).
By computing cohomology of M6 using Pixton’s relations,
Bergstrom–Canning–Petersen–Schmitt obtain

#M6(Fq) = q15 + q14 + 2q13 + q12 − q10 + q3 − 1

so in particular #M6(F2) = 68615 (consistent with our data).

Kiran S. Kedlaya Census-taking for curves over finite fields Barcelona, June 19, 2024 12 / 25



Motivation: Cohomology of moduli spaces of curves

The Lefschetz trace formula for stacks

For X a DM stack of finite type over Fq, the Lefschetz trace formula for
Frobenius holds: for any prime ℓ not dividing q,

#X (Fq) =

2 dim(X )∑
i=0

(−1)i Trace(Frobq,H
i
c(XFq

,Qℓ)).

When there exists a polynomial P(q) such that #X (Fq) = P(q) for all
prime powers q, we say X has polynomial point count.

Mg is known to have polynomial point count for g ≤ 7 (Canning–Larson).
By computing cohomology of M6 using Pixton’s relations,
Bergstrom–Canning–Petersen–Schmitt obtain

#M6(Fq) = q15 + q14 + 2q13 + q12 − q10 + q3 − 1

so in particular #M6(F2) = 68615 (consistent with our data).

Kiran S. Kedlaya Census-taking for curves over finite fields Barcelona, June 19, 2024 12 / 25



Motivation: Cohomology of moduli spaces of curves

Marked points

Let Mg ,n be the moduli space of smooth curves of genus g with n marked
points. Given the set Mg (Fq) for some g and q, it is easy to compute
#Mg ,n(Fq) for any n, or more generally #(Mg ,n/G )(Fq) for any
subgroup G of Sn.

For example, Canning–Larson showed that M6,n also has polynomial point
count for n = 1, 2 but the polynomials are not currently known. However,
we know their values at q = 2, which reduces the number of cohomology
groups that would need to be computed. (The value at q = 3 would
reduce this again!)
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Enumerating curves by Brill–Noether type, I

Hyperelliptic curves

In odd characteristic, hyperelliptic curves over Fq are characterized up to
quadratic twist by their Weierstrass locus. Enumerating curves thus
amounts to computing

((Sym2g+2 P1)/PGL2)(Fq);

a good algorithm for this has been described by Howe.

In even characteristic, hyperelliptic curves over Fq are Artin–Schreier
covers of P1. A good algorithm for enumerating these has been described
by Xarles for q = 2; the general case is similar.
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Enumerating curves by Brill–Noether type, I

Bielliptic curves

Bielliptic curves can be handled similarly to hyperelliptic curves, by first
enumerating elliptic curves and then double covers of each elliptic curve.

In practice, it is convenient to handle these by appealing to explicit
geometric class field theory (e.g., in Magma).
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Enumerating curves by Brill–Noether type, I

Trigonal curves

Every trigonal curve of genus g occurs as an ample divisor in a Hirzebruch
surface (the intersection of the quadrics vanishing on the canonical
embedding). This surface has the form

Fn := ProjP1
k
(OP1

k
⊕O(n)P1

k
)

for some n (the Maroni invariant) with n ≤ ⌊g+2
3 ⌋, n ≡ g (mod 2).

For n > 0, we can represent Fn as an (n, 1)-hypersurface in P1
k ×k P

2
k . For

n = 0, we instead write F0
∼= P1

k ×k P
1
k .
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Brill–Noether stratifications

The stratification of M6

We use a compact but hopefully self-explanatory notation for complete
intersections.

Theorem (Mukai+ϵ)

Let C be a curve of genus 6 over a finite field k. Then C is exactly one of:

1 Hyperelliptic.

2 Trigonal of Maroni invariant 2: a (2, 1) ∩ (1, 3) in P1
k × P2

k .

3 Trigonal of Maroni invariant 0: a (3, 4) in P1
k ×k P

1
k .

4 Bielliptic.

5 Smooth quintic curve: a (5) in P2
k .

6 None of the above: a (1)4 ∩ (2) ∩ Gr(2, 5) in P9
k , where Gr(2, 5) is the

Grassmannian in its Plücker embedding.

Warning: We are using that Pn
k has no twists (e.g., because Br(k) = 0).
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Brill–Noether stratifications

The stratification of M7

Theorem (Mukai+ϵ)

Let C be a curve of genus 7 over a finite field k. Then C is exactly one of:

1 Hyperelliptic.

2 Trigonal of Maroni invariant 3: a (9) in P(1 : 1 : 3)k .

3 Trigonal of Maroni invariant 1: a (1, 1) ∩ (3, 3) in P1
k ×k P

2
k .

4 Bielliptic.

5 Not bielliptic but has a self-adjoint g2
6 : a (3) ∩ (4) in P(1 : 1 : 1 : 2)k .

6 Admits a pair of distinct g2
6 ’s: a (1, 1) ∩ (1, 1) ∩ (2, 2) in P2

k ×k P
2
k ...

7 or its quadratic twist.

8 Admits a g1
4 but no g2

6 : a (1, 1) ∩ (1, 2) ∩ (1, 2) in P1
k ×k P

3
k .

9 None of the above: a (1)9 ∩ OG+(5, 10) in P15
k where OG+ is a

component of the orthogonal Grassmannian in its spinor embedding.
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Brill–Noether stratifications

Can this be pushed further?

Mukai has a similar “flowchart” for curves of genus 8 over an algebraically
closed field. It should be easy to adapt this over a finite field.

In genus 9, Mukai describes the general curve but does not give a
complete flowchart even over an algebraically closed field. The Betti tables
and special linear series were computed by Sagraloff; it should be possible
to extract a flowchart from this.

In genus 10, it is known that M10 is unirational, e.g., because a general
genus-10 curve has 42 g1

6 ’s. But this description seems hard to work with;
is there a better one out there? (The natural analogue of Mukai’s
arguments only yields a divisor in M10.)
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arguments only yields a divisor in M10.)
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Computing points on group quotients

A standard approach

Many strata in moduli have the form X/G where X is a quasiprojective
variety and G is a (connected) linear algebraic group. To enumerate
(X/G )(k) = X (k)/G (k), the standard approach is:

Enumerate X (k).

Choose a small generating set of G (k) (e.g., by sampling at random).

Find connected components in the Cayley graph on X (k) for this
generating set.

However, in some cases X (k) is too big to enumerate, particularly for the
generic strata in genus 6 and 7. We use various tricks to circumvent this,
including the following.
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Computing points on group quotients

Computing orbits of actions on subsets

Suppose G is a finite group acting on a finite set S which is small enough
to enumerate. We can then find orbit representatives, together with a
function f carrying each s ∈ S to an element g ∈ G for which g−1(s) is
an orbit representative (sometimes called a transporter).

But now suppose we want the same for the induced action on
(S
n

)
, the set

of n-element subsets, for some n for which this set is too big to
enumerate. Given a transporter for

( S
n−1

)
, we can compute a transporter

for the incidence correspondence

Γ ⊂
(

S

n − 1

)
×
(
S

n

)
and then one for

(S
n

)
.
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Computing points on group quotients

Computing orbits of actions on subspaces

Suppose G is a finite group acting k-linearly on a finite-dimensional
k-vector space V which is small enough to enumerate, but we want to
compute a transporter for the induced action on Gr(n,V )(k), the set of
n-dimensional subspaces, for some n for which this set is too big to
enumerate. Given a transporter for Gr(n − 1,V )(k), we can compute a
transporter for the incidence correspondence

Γ ⊂ Gr(n − 1,V )(k)× Gr(n,V )(k)

and then obtain one for Gr(n,V )(k).
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