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Robert Coleman, computational number theorist?

In his later career, Robert’s mathematical productivity was largely enabled
by the existence of the personal computer (e.g., to produce overhead
transparencies and lecture notes).

However, while Robert’s work does not include (m)any papers which are
explicitly about computational aspects of number theory...

... I nonetheless contend that Robert’s inimitable style of mathematics is
very much in the spirit of computational number theory, and number
theorists with computational tendencies would be well-served by
understanding some of Robert’s insights.
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Zeta functions of algebraic varieties

Let Fq be a finite field of characteristic p. After (Artin, Schmidt, and)
Weil, we define the zeta function of a variety X over Fq as the formal
Dirichlet series

ζ(X , s) =
∏
x

(1−#κ(x)−s)−1,

where x runs over closed points of X and κ(x) denotes the residue field.
(Equivalently, x runs over Galois orbits of Fq-rational points and κ(x)
denotes the minimal field of definition.)

From now on, we write ζ as a formal power series in T = q−s . Then

ζ(X ,T ) = exp

( ∞∑
n=1

T n

n
#X (Fqn)

)
.
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Examples of zeta functions

From the formula

ζ(X ,T ) = exp

( ∞∑
n=1

T n

n
#X (Fqn)

)
,

one can compute ζ(X ,T ) in some explicit examples. For one:

ζ(Pd
Fq
,T ) =

1

(1− T )(1− qT ) · · · (1− qdT )
.

For another, if X is an elliptic curve over Fq, then

ζ(X ,T ) =
1− aT + qT 2

(1− T )(1− qT )
, a = q + 1−#X (Fq).

Based on these (and more) examples, Weil predicted that ζ(X ,T ) obeys
analogues of the properties of the Riemann zeta function (analytic
continuation, functional equation, Riemann hypothesis).
Kiran S. Kedlaya (UC San Diego) 15 years of p-adic point counting 4 / 21



Examples of zeta functions

From the formula

ζ(X ,T ) = exp

( ∞∑
n=1

T n

n
#X (Fqn)

)
,

one can compute ζ(X ,T ) in some explicit examples. For one:

ζ(Pd
Fq
,T ) =

1

(1− T )(1− qT ) · · · (1− qdT )
.

For another, if X is an elliptic curve over Fq, then

ζ(X ,T ) =
1− aT + qT 2

(1− T )(1− qT )
, a = q + 1−#X (Fq).

Based on these (and more) examples, Weil predicted that ζ(X ,T ) obeys
analogues of the properties of the Riemann zeta function (analytic
continuation, functional equation, Riemann hypothesis).
Kiran S. Kedlaya (UC San Diego) 15 years of p-adic point counting 4 / 21



Examples of zeta functions

From the formula

ζ(X ,T ) = exp

( ∞∑
n=1

T n

n
#X (Fqn)

)
,

one can compute ζ(X ,T ) in some explicit examples. For one:

ζ(Pd
Fq
,T ) =

1

(1− T )(1− qT ) · · · (1− qdT )
.

For another, if X is an elliptic curve over Fq, then

ζ(X ,T ) =
1− aT + qT 2

(1− T )(1− qT )
, a = q + 1−#X (Fq).

Based on these (and more) examples, Weil predicted that ζ(X ,T ) obeys
analogues of the properties of the Riemann zeta function (analytic
continuation, functional equation, Riemann hypothesis).
Kiran S. Kedlaya (UC San Diego) 15 years of p-adic point counting 4 / 21



Rationality of the zeta function

The first of the Weil conjectures on zeta functions of algebraic varieties is:

Theorem

The power series ζ(X ,T ) represents a rational function of T .

This is widely known as a consequence of the construction of étale
cohomology by Grothendieck et al. However, that was not the first proof!

Theorem (Dwork, 1960)

The power series ζ(X ,T ) is p-adic meromorphic: it is the ratio of two
power series over Qp with infinite radii of convergence.

Since ζ(X ,T ) converges for T ∈ C small (trivially), an argument of Borel
(1894) then shows that ζ(X ,T ) is rational.
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Zeta functions: the computational problem

Can one produce an algorithm that, given an explicit definition of X (i.e.,
defining equations), returns the rational function ζ(X ,T )?

Yes: one can compute a bound on the degree of ζ(X ,T ) and then
enumerate X (Fqn) for enough values of n to determine the coefficients.

But is there an efficient algorithm? Enumeration is impractical unless both
q and the degree bound are fairly small.

If you ask the question carelessly, probably no: the length of the answer
can be exponential in the length of the input. Even computing #X (Fq) is
dicey: one can reduce NP-complete problems (e.g., 3-SAT) to it.

However, more modest versions of this question are of both intrinsic and
extrinsic interest. E.g., interest grew rapidly circa 2000 due to applications
to (hyper)elliptic curve cryptography. There is also interest in computing
motivic L-functions, e.g., to test special values conjectures (BSD et al.).

Kiran S. Kedlaya (UC San Diego) 15 years of p-adic point counting 6 / 21



Zeta functions: the computational problem

Can one produce an algorithm that, given an explicit definition of X (i.e.,
defining equations), returns the rational function ζ(X ,T )?

Yes: one can compute a bound on the degree of ζ(X ,T ) and then
enumerate X (Fqn) for enough values of n to determine the coefficients.

But is there an efficient algorithm? Enumeration is impractical unless both
q and the degree bound are fairly small.

If you ask the question carelessly, probably no: the length of the answer
can be exponential in the length of the input. Even computing #X (Fq) is
dicey: one can reduce NP-complete problems (e.g., 3-SAT) to it.

However, more modest versions of this question are of both intrinsic and
extrinsic interest. E.g., interest grew rapidly circa 2000 due to applications
to (hyper)elliptic curve cryptography. There is also interest in computing
motivic L-functions, e.g., to test special values conjectures (BSD et al.).

Kiran S. Kedlaya (UC San Diego) 15 years of p-adic point counting 6 / 21



Zeta functions: the computational problem

Can one produce an algorithm that, given an explicit definition of X (i.e.,
defining equations), returns the rational function ζ(X ,T )?

Yes: one can compute a bound on the degree of ζ(X ,T ) and then
enumerate X (Fqn) for enough values of n to determine the coefficients.

But is there an efficient algorithm? Enumeration is impractical unless both
q and the degree bound are fairly small.

If you ask the question carelessly, probably no: the length of the answer
can be exponential in the length of the input. Even computing #X (Fq) is
dicey: one can reduce NP-complete problems (e.g., 3-SAT) to it.

However, more modest versions of this question are of both intrinsic and
extrinsic interest. E.g., interest grew rapidly circa 2000 due to applications
to (hyper)elliptic curve cryptography. There is also interest in computing
motivic L-functions, e.g., to test special values conjectures (BSD et al.).

Kiran S. Kedlaya (UC San Diego) 15 years of p-adic point counting 6 / 21



Zeta functions: the computational problem

Can one produce an algorithm that, given an explicit definition of X (i.e.,
defining equations), returns the rational function ζ(X ,T )?

Yes: one can compute a bound on the degree of ζ(X ,T ) and then
enumerate X (Fqn) for enough values of n to determine the coefficients.

But is there an efficient algorithm? Enumeration is impractical unless both
q and the degree bound are fairly small.

If you ask the question carelessly, probably no: the length of the answer
can be exponential in the length of the input. Even computing #X (Fq) is
dicey: one can reduce NP-complete problems (e.g., 3-SAT) to it.

However, more modest versions of this question are of both intrinsic and
extrinsic interest. E.g., interest grew rapidly circa 2000 due to applications
to (hyper)elliptic curve cryptography. There is also interest in computing
motivic L-functions, e.g., to test special values conjectures (BSD et al.).

Kiran S. Kedlaya (UC San Diego) 15 years of p-adic point counting 6 / 21



Zeta functions: the computational problem

Can one produce an algorithm that, given an explicit definition of X (i.e.,
defining equations), returns the rational function ζ(X ,T )?

Yes: one can compute a bound on the degree of ζ(X ,T ) and then
enumerate X (Fqn) for enough values of n to determine the coefficients.

But is there an efficient algorithm? Enumeration is impractical unless both
q and the degree bound are fairly small.

If you ask the question carelessly, probably no: the length of the answer
can be exponential in the length of the input. Even computing #X (Fq) is
dicey: one can reduce NP-complete problems (e.g., 3-SAT) to it.

However, more modest versions of this question are of both intrinsic and
extrinsic interest. E.g., interest grew rapidly circa 2000 due to applications
to (hyper)elliptic curve cryptography. There is also interest in computing
motivic L-functions, e.g., to test special values conjectures (BSD et al.).

Kiran S. Kedlaya (UC San Diego) 15 years of p-adic point counting 6 / 21



Zeta functions: the computational problem (continued)

Problem (Ill-posed)

Fix a positive integer n. Is there an algorithm that, given an algebraic
variety X of dimension n, returns the rational function ζ(X ,T ) in
“polynomial time”?

To quantify “polynomial time” (in the length of the input), we must
specify an input mechanism for X . Note that if Z ⊆ X is a closed
subscheme, then

ζ(X ,T ) = ζ(Z ,T )ζ(X − Z ,T );

we can thus reduce to working with affine hypersurfaces.

Problem (Well-posed, and open!)

Fix a positive integer n. Is there an algorithm that, given
f ∈ Fq[x1, . . . , xn] of degree d, returns the rational function ζ(X ,T ) for
X = SpecFq[x1, . . . , xn]/(f ) in time poly(d , log q)?
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Zeta functions: the computational problem (continued)

In principle, one can compute ζ(X ,T ) by computing the action of
Frobenius on mod-` étale cohomology for a few small primes `. This yields
important but rather specific cases.

Theorem (Schoof, 1985; Pila, 1990)

Fix a positive integer d. There is an algorithm which, for f ∈ Fq[x1, x2] of
degree d, returns the rational function ζ(X ,T ) for
X = SpecFq[x1, x2]/(f ) in time poly(log q).

By contrast, if one agrees to concede p for log p, then p-adic methods
apply quite generally.

Theorem (Lauder-Wan, 2000–2008)

Fix a positive integer n. There is an algorithm which, for
f ∈ Fq[x1, . . . , xn] of degree d, returns the rational function ζ(X ,T ) for
X = SpecFq[x1, . . . , xn]/(f ) in time poly(d , p, logp q).
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p-adic methods for zeta functions

Lauder and Wan prove their theorem by transcribing Dwork’s proof of
rationality. To date, the resulting algorithm has not been made practical.

However, Dwork’s approach was later adapted into a p-adic Weil
cohomology theory bearing a more formal resemblance to étale
cohomology, and also yielding more effective computational methods. This
includes work of myself, Lauder, Denef, Harrison, Vercauteren, Castryck,
Gerkmann, Harvey, Tuitman, Xiao, Bradshaw, Balakrishnan, Hubrechts,
Besser, de Jeu, Kloosterman, Escriva, Shieh, Costa, ...

We will restrict our discussion to the case where X is a curve. In this case,
there are important links to Coleman’s theory of p-adic abelian integrals
(cf. talks of Gross, Besser), the Chabauty-Coleman method (cf. talks of
Poonen, Stoll, Zureick-Brown) and nonabelian Chabauty (cf. talk of Kim).
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p-adic cohomology for curves

Let X be a curve of genus g over Fq. Lift X to a smooth proper curve X̃
over Zq (the étale extension of Zp with residue field Fq). The p-adic
cohomology of X “is” the algebraic de Rham cohomology of the generic
fiber X̃Q. The important part is H1, which sits in an exact sequence

0→ H0(X̃Q,Ω)→ H1
dR(X̃Q,Qq)→ H1(X̃Q,O)→ 0.

As in the classical theory of Riemann surfaces, elements of H1
dR can be

represented by certain meromorphic differential forms.

There is a canonical endomorphism Frobq of H1
dR such that

ζ(X ,T ) =
det(1− T Frobq,H

1
dR)

(1− T )(1− qT )
.

One way to produce Frobq is using crystalline cohomology (Grothendieck,
Berthelot, Ogus, etc.). However, from this interpretation, it is not
straightforward to compute the matrix of action of Frobq on a basis.
Kiran S. Kedlaya (UC San Diego) 15 years of p-adic point counting 10 / 21
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Structure of the rigid analytification

By rigid GAGA, H1
dR(X̃Q,Qq) is also the de Rham cohomology of the rigid

analytification Y of X̃Q. There is a reduction map red : Y → X whose
inverse images are open residue discs.

A wide open subset of Y is an open subset consisting of the complement
of a nonempty finite union of closed discs, each contained in a residue disc.
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The Monsky-Washnitzer Frobenius action

In general, there does not exist an endomorphism of X̃Q (or Y ) lifting the
q-power Frobenius automorphism of X .

However, for any open affine subspace U of X , there exist wide open
subsets V1,V2 of Y with f (Y − Vi ) = X − U and a morphism
ϕ : V1 → V2 lifting Frobenius.

Theorem (Monsky-Washnitzer, 1971)

Via the canonical isomorphism H1
dR(V1) ∼= H1

dR(V2), we have

ζ(U,T ) =
det(1− qϕ−1T ,H i

dR(V1))

1− qT
.

Warning: from now on, we pretend V1 = V2 = V for brevity.
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A p-adic framework for computing ζ

Choose the lift X̃ of X .

Choose the open subset U, the wide open V , and the morphism ϕ.
(If q 6= p, one can lift the p-power Frobenius and iterate to get ϕ.)

Apply ϕ to 1-forms representing a basis of H1
dR(V ).

Use known relations in H1
dR(V ) to write the results as exact 1-forms

plus Qq-linear combinations of basis vectors.

Recover ζ(U,T ) from the characteristic polynomial of ϕ on H1
dR(V ).

Note that the characteristic polynomial has coefficients in Z, but we
compute it over Qq. This involves inexact (truncated) arithmetic:
elements of Qq are truncated to rational numbers, and functions on V1 are
truncated to meromorphic functions on Y . To provably recover ζ(U,T ),
one must be careful about these truncations (e.g., by identifying V ).
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Example: hyperelliptic curves (K, 2001)

Suppose p 6= 2. Let X be a hyperelliptic curve of the form y2 = P(x)
where degP(x) = 2g + 1, lifted to y2 = P̃(x) where deg P̃(x) = 2g + 1.
Let U ⊆ X be the subset where y is invertible. Then H1

dR(V ) admits the
basis

x i dx

y
,
x j dx

y2
(i = 0, . . . , 2g − 1; j = 0, . . . , 2g).

These span the eigenspaces H1
dR(V )∓ for the involution y 7→ −y ; the −

eigenspace coincides with H1
dR(Y ).

We may take ϕ sending x to xq and y to yq(P̃(xq)/P̃(x)q)−1/2 (computed
using a binomial expansion or better, Newton-Raphson iteration).

We may perform simplifications in H1
dR(V ) systematically: e.g., there are

explicit relations converting Q(x) dx/y2n+1 into R(x) dx/y2n−1.
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Coleman integration

As described in Gross’s lecture, Coleman defined path integrals
∫ Q
P ω for

any meromorphic differential ω on a wide open subset V of Y and any
points P,Q ∈ V which are not poles of ω.

If P,Q lie in a single residue disc, this is easy: ω admits an analytic
antiderivative F on the disc, so

∫ Q
P ω = F (Q)− F (P).

But F is only locally analytic on V , and one is free to choose a different
constant of integration on each residue disc. How to make coherent
choices?

This was answered by Coleman in 1981. At Banff in 2007, Robert and I
came up with an equivalent answer...
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Banff, February 2007 (missing Robert)
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Coleman integration and the M-W construction

One is supposed to have the Jacobian change of variables formula,
particularly for Frobenius:∫ Q

P
ϕ∗(ω) =

∫ ϕ(Q)

ϕ(P)
ω.

Coleman used this by applying R(ϕ) where R is the characteristic
polynomial of ϕ on H1

dR(V ). By Cayley-Hamilton, R(ϕ∗)(ω) is exact.

Equivalently, let ω1, . . . , ωn be forms representing a basis of H1
dR(V ). The

Monsky-Washnitzer computation gave us formulas

ϕ∗(ωj) =
∑
i

Aijωi + dfj ,

in which we discarded fj and evaluated the charpoly of A.
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Coleman integration and the M-W construction (cont.)

Instead of discarding fi , let’s write∫ ϕ(Q)

ϕ(P)
ωj =

∫ Q

P
ϕ∗(ωj) =

∑
i

Aij

∫ Q

P
ωi + fj(Q)− fj(P).

By writing
∫ ϕ(Q)
ϕ(P) =

∫ P
ϕ(P) +

∫ Q
P +

∫ ϕ(Q)
Q , we end up with the equation

(A− 1)−1(vector of
∫ Q
P ωi ) = (vector of computable quantities).

Since A has no eigenvalues equal to 1 (by the Weil conjectures), this pins
down all the constants of integration!

Variation: use “tiny” integrals (within a residue disc) to replace P and Q
with ϕ-fixed points (Teichmüller points) P ′ and Q ′, and then get a linear

equation directly on
∫ Q′

P′ ωj .
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Illustration
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Numerical Coleman integration

For hyperelliptic curves, this strategy was implemented by Jennifer
Balakrishnan in her PhD thesis (based on work of Robert Bradshaw at the
2007 Arizona Winter School).

Balakrishnan and Tuitman are currently extending this to more general
curves. This should make it routine to compute the integrals arising in the
Chabauty-Coleman method...

...and the iterated Coleman integrals arising in Kim’s nonabelian Chabauty
method. Applications to rational points on curves are in the works! (See
Kim’s talk for examples.)
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Thank you!

To Robert, for demonstrating that mathematics is not just for those who
color within the lines...

... and to all of you for helping us to honor his legacy!
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