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Introduction

Christol’s theorem

Throughout this talk, fix a prime number p and let k be a field of
characteristic p.

Let x =
∑∞

n=0 xnT
n ∈ kJT K be a power series with coefficients in k . We

say that x is algebraic if there exists a nonzero polynomial P ∈ k[y , z ]
such that P(T , x) = 0. That is, as an element of the Laurent series field
k((T )), x is integral over the subfield k(T ) of rational functions.

Suppose now that k is a finite field of characteristic p. We say that x is
automatic if for each c ∈ k, the set {n ≥ 0 : xn = c} is p-automatic, that
is, the corresponding base-p expansions (read right-to-left) form a regular
language on the alphabet Σp := {0, . . . , p − 1}.

Theorem (Christol)

For k finite, x ∈ kJT K is algebraic if and only if it is automatic.
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Introduction

A few variations on Christol’s theorem

Continue to assume that k is finite, of cardinality q.

Bridy: for x in a fixed finite extension of k(T ), one can give a good
estimate of the complexity of the corresponding automaton in terms
of geometric invariants (degree, height, genus).

Kedlaya: “algebraic equals automatic” also for generalized
(univariate) power series

∑
i xiT

i , where i can run over any
well-ordered set of nonnegative rationals.

Furstenberg: if x =
∑∞

n=0 xnT
n, y =

∑∞
n=0 ynT

n are algebraic, then
so is the Hadamard product

∑∞
n=0 xnynT

n.

Salon: “algebraic equals automatic” also for multivariate power series.
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Introduction

Beyond finite fields

The primary goal of this talk is to indicate how theorems about
automaticity of power series can be extended to nonfinite fields of
characteristic p. There are several reasons one might want to do this.

In 1998, I thought I had given an explicit description of an algebraic
closure of k((T )) using generalized power series, but this turned to be
incorrect for k nonfinite! Automaticity provides a way to correct it
(and recover many corollaries).

Derksen showed that if (xn)∞n=0 is a linear recurrent sequence over k ,
then {n ≥ 0 : xn = 0} is p-automatic. Adamczewski–Bell extended
this to algebraic power series. This is very suggestive!

Furstenberg’s theorem on Hadamard products remains true for
nonfinite k (Deligne, Sharif–Woodcock). This is also very suggestive!

The linear-algebraic perspective of Bridy’s lecture sets this up nicely...
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From sets to vector spaces

Contents

1 Introduction

2 From sets to vector spaces

3 Variations on a (linear) theme

4 Variations and questions

K.S. Kedlaya Automata and (generalized) power series Montréal, May 4, 2017 6 / 21



From sets to vector spaces

Algebraicity revisited

Assume again that k is finite. Let x =
∑∞

n=0 xnT
n be an automatic power

series over k . Instead of describing each of the sets {n ≥ 0 : xn = c} with
a separate automaton, it is already more efficient to combine resources.

Take Σ = {0, . . . , p − 1}. Let L0
p be the subset of the language Σ∗

consisting of strings not starting with 0. For s ∈ L0
p, let |s| be the

nonnegative integer represented by s. Then x is automatic if the function
s 7→ x|s| is the function fM arising from a deterministic finite automaton
with output. (Equivalently, the level sets of this function form a regular
partition of L0

p.)

For example, the Thue–Morse series
∑∞

n=0 xnT
n over F2 is computed by a

DFAO with 2 states (see previous lecture).
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From sets to vector spaces

Reminder: finite automata with output

A deterministic finite automaton with output (DFAO) is a tuple
M = (Q,Σ, δ, q0,∆, τ) in which:

Q is a finite set (the states);

Σ is a finite set (the alphabet);

δ is a function from Σ× Q to Q (the transition function);

q0 ∈ Q is a state (the initial state);

∆ is a set (the output alphabet);

τ is a function from Q to ∆ (the output function).

The function δ formally extends to δ∗ : Q × Σ∗ → Q thus:

δ∗(q, ∅) = q, δ∗(q, aw) = δ(a, δ∗(q,w)) (q ∈ Q, a ∈ Σ,w ∈ Σ∗).

We then obtain a function fM : Σ∗ → ∆ by setting fM(w) = τ(δ∗(q0,w)).
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From sets to vector spaces

Composed functions

Let V be a finite-dimensional k-vector space, choose a function
τ : Σ→ Endk(V ), and construct the function f : Σ∗ → Endk(V ) by

f (a1 · · · an) = τ(a1) ◦ · · · ◦ τ(an).

We will say that any f occurring this way is composed.

We say that f is potentially composed if there exist a finite-dimensional
k-vector space V ′, a k-linear injection ι : V → V ′, a composed function
f ′ : Σ∗ → Endk(V ′), and a k-linear surjection π : V ′ → V such that
f (s) = π ◦ f ′(s) ◦ ι.

This is basically the same thing as using a p-representation in the notation
of Bridy’s lecture.

K.S. Kedlaya Automata and (generalized) power series Montréal, May 4, 2017 9 / 21
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From sets to vector spaces

Automata and composed functions

Suppose that in the formula

f (a1 · · · an) = τ(a1) ◦ · · · ◦ τ(an),

we had made τ(ai ) dependent also on the class of ai+1 · · · an in some
regular partition of L0

p. Then the notion of a potentially composed
function would not change: we can encode the regular partition by
replacing V ′ with some finite direct sum of copies thereof.

From this observation, it follows easily that a function f : Σ∗ → k is
potentially composed if and only if it is automatic. That is, Christol’s
theorem can be stated (and proved, with good complexity bounds!) in
terms of potentially composed functions.
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Variations on a (linear) theme

Nonfinite fields

Let k be a perfect, but not finite, field of characteristic p. In order to
describe algebraic series over k, we must modify the previous setup in one
crucial way: instead of linear transformations on V , we consider
ϕ-semilinear transformations T : V → V , which satisfy

T (r1v1 + r2v2) = ϕ(r1)T (v1) + ϕ(r2)T (v2) (r1, r2 ∈ k ; v1, v2 ∈ V )

where ϕ(r) = rp. (For compatibility with the previous discussion, I could
instead take ϕ(r) = rq, but going forward I won’t need to.)

Note that the composition of ϕ-semilinear transformations is not itself
ϕ-semilinear, so we need to be careful about definitions. For a composed
function, we now want

f (a1 · · · an) = τ(a1) ◦ · · · ◦ τ(an)

where each τ(ai ) is ϕ-semilinear (but f (a1 · · · an) is ϕn-semilinear).
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Variations on a (linear) theme

A Christol-type theorem for nonfinite fields

Theorem

Suppose that k is perfect. For x =
∑∞

n=0 xnT
n ∈ kJT K, x is algebraic if

and only if the function f : L0
p → k given by f (s) = x|s| is potentially

composed. (To interpret “potentially composed”, treat k as a
one-dimensional vector space over itself.)

The proof is an immediate adaptation of the Speyer–Bridy approach to
Christol’s theorem, using the Cartier operator

(up0 + up1 dT + · · ·+ upp−1 dT ) 7→ up−1 dT .

Note that this is not k-linear, but ϕ−1-semilinear. (Presumably the bound
on dimension is the same as in Bridy, but I didn’t optimize for this.)

Corollary (Deligne, Sharif–Woodcock)

For any k, the Hadamard product of two algebraic series is algebraic.
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Variations on a (linear) theme

An application to zero sets

Corollary (Derksen, Adamczewski–Bell)

For any k , for x =
∑∞

n=0 xnT
n ∈ kJT K algebraic, the set {n ≥ 0 : xn = 0}

is p-automatic.

Proof.

Formally reduce to the case where k is finite over Fp(t1, . . . , tm) for some
m. By the previous corollary, we may take norms to reduce to the case
k = Fp(t1, . . . , tm), then rescale to force xn ∈ Fp[t1, . . . , tm] for all n. Now
view x in FpJt1, . . . , tm,T K and apply Salon’s theorem and the following
lemma with Σ1 = {0, . . . , p − 1}m+1, Σ2 = {0, . . . , p − 1}.

Lemma (exercise)

Let Σ1 → Σ2 be any map of finite sets. Let L be a regular language on
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Variations on a (linear) theme

An application to zero sets

Corollary (Derksen, Adamczewski–Bell)

For any k , for x =
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n ∈ kJT K algebraic, the set {n ≥ 0 : xn = 0}
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Variations on a (linear) theme

Generalized power series

A generalized power series over a field k is a formal sum
∑

i∈Q≥0
xiT

i with

xi ∈ k such that the support {i ∈ Q≥0 : xi 6= 0} is well-ordered (contains
no infinite decreasing sequence). These were introduced by Hahn (1904);
a noncommutative analogue was considered by Malcev–Neumann.

One reason to consider generalized power series is that when k is of
characteristic p, the algebraic closure of k((T )) cannot be obtained simply
by forming the union of k((T 1/d)) over all d > 0 (i.e., the field of Puiseux
series). For example, the roots of the equation

zp − z = T−1

have the form

z = c + T−1/p + T−1/p2
+ · · · (c ∈ Fp).
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Variations on a (linear) theme

Automatic generalized power series

Let Lp be the language on {0, . . . , p − 1, .} consisting of strings with a
single “.” which do not start or end with 0. We regard these as the base-p
expansions of elements of Z[p−1]≥0; let ‖s‖ denote the number
represented by the string s.

We again define composed and potentially composed functions, but with a
twist: in the formula

f (a1 · · · am.b1 · · · bm) = τ(a1) · · · τ(am)τ(.)τ(b1) · · · τ(bm),

the linear transformations τ(ai ) are ϕ-semilinear, but the τ(bj) are
ϕ−1-semilinear (and τ(.) is k-linear).

Warning: most potentially composed functions do not give rise to formal
sums with well-ordered support!
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Variations on a (linear) theme

An “algebraic equals automatic” theorem for generalized
power series

Theorem

For k perfect, a generalized power series
∑

i∈Z[p−1]≥0
xiT

i is algebraic over

k(T ) if and only if the function Lp → k taking s to x‖s‖ is potentially
composed. (For k finite, one may read “automatic” for “potentially
composed.”)

After adjoining T−1 and T 1/d for d coprime to p, this produces the full
integral closure of k(T ) within the field of generalized power series.

A bizarre corollary: if one reverses all the base-p-expansions, one gets
another algebraic generalized power series provided that the support is still
well-ordered. Some special cases which can be shown explicitly are actually
exploited in the proof!
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Variations on a (linear) theme

Corollaries

Here are some corollaries of the previous theorem (for any k).

Corollary

For
∑

i∈Z[p−1]≥0
xiT

i algebraic over k(T ), any truncation
∑

i<j xiT
i is

again algebraic.

Corollary

The Hadamard product of two algebraic generalized power series over k is
algebraic.

Corollary

For
∑

i∈Z[p−1]≥0
xiT

i algebraic over k(T ), the set {i ∈ Z[p−1]≥0 : xi = 0}
is p-automatic.
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Variations and questions
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Variations and questions

Mixed characteristic

As far as I know, there is no mixed-characteristic analogue of Christol’s
theorem to pick out, say, the integral closure of Q within Qp.

However, there is a mixed-characteristic analogue of the generalized power
series field (considered by Poonen), and in that field one can identify the
integral closure of Qp using automata. The new result shows that this can
also be achieved with Qp replaced by W (k)[p−1] for k perfect.
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Variations and questions

More questions

Bridy’s bounds should carry over easily to ordinary power series over a
perfect field. What about generalized power series over a finite field?
Or a perfect field?

Is there an “algebraic implies automatic” theorem that simultaneously
includes multivariate power series and univariate generalized power
series? Probably yes, but the tricky part is to give a formulation that
captures a full algebraic closure of k(T1, . . . ,Tn).
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