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Introduction

Notation and setup

Throughout this talk, let C be a curve over Q (i.e., an absolutely
irreducible scheme which is smooth proper of relative dimension 1 over
SpecQ) of genus g ≥ 2. We always mean C to be explicit, i.e., it is
specified by an explicit model of its function field. Most of our examples
will be hyperelliptic curves

y2 = P(x)

where P(x) ∈ Q[x ] is an explicit polynomial with no repeated roots.

We will always assume that C has at least one known rational point O,
and that C is embedded into its Jacobian J by the map P 7→ (P)− (O).
(That is, we do not consider the question of whether or not C (Q) = ∅.)
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Introduction

Algorithmic determination of rational points: open
problems

Recall that C (Q) is finite since we assumed g ≥ 2.

Problem (Open)

Describe an algorithm that, given a curve C , returns C (Q).

In principle (and often in practice), by searching for points of small height,
one can reduce the previous problem to the following.

Problem (Also open)

Describe an algorithm that, given a curve C and an explicit finite set
S ⊆ C (Q), returns a proof that S = C (Q) whenever this is true (and may
behave arbitrarily otherwise).
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The Chabauty-Coleman method

The Chabauty condition

Definition

We say that C satisfies the Chabauty condition if rank J(Q) < g .

Chabauty proved finiteness of C (Q) under the Chabauty condition using
p-adic analysis. Coleman gave a beautiful reinterpretation of Chabauty’s
method by defining a integration pairing∫

: Pic0 C (K )× H0(CK ,ΩCK/K )→ K

for any field K between Qp and a completed algebraic closure.

The method of Chabauty-Coleman describes a certain finite subset of
C (Qp) containing C (Q). In many cases, one can produce an upper bound
on #C (Q) equal to the size of a set S of known points of C (Q), which
proves that S = C (Q).
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The Chabauty-Coleman method

The Chabauty-Coleman space of differentials

Let p be a prime of good reduction for C . Identify

H0(CQp ,ΩCQp/Qp
) ∼= H0(JQp ,ΩJQp/Qp

).

Within the right side, let ΩC be the subspace of forms which pair to zero
with every element of J(Q) via Coleman’s integration pairing. This space
has positive dimension by the Chabauty condition, so

S(C , p) = {P ∈ C (Qp) :

∫ P

O
ω = 0 for all ω ∈ ΩC}

(the Chabauty-Coleman set of C at p) is finite.
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The Chabauty-Coleman method

Application to rational points

Note that
C (Q ∩Qp) ∩ J(Q)div ⊆ S(C , p).

For instance, S(C , p) contains C (Q), and any torsion point of J on C .

Following Coleman, one can give upper bounds for #S(C , p). These
occasionally suffice to determine C (Q).

Example (Gordon-Grant, 1993; see also McCallum-Poonen, 2007)

For C the projective model of the affine curve

y2 = x(x − 1)(x − 2)(x − 5)(x − 6),

we have rank J(Q) = 1 < 2 = g . Coleman proves #S(C , 7) ≤ 10, but

∞, (0, 0), (1, 0), (2, 0), (5, 0), (6, 0), (3,±6), (10,±120) ∈ C (Q).

Hence C (Q) = S(C , 7).
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The Chabauty-Coleman method

Numerical Coleman integration for hyperelliptic curves

In less favorable cases, it may be helpful to obtain S(C , p) “explicitly”,
i.e., to obtain good p-adic approximations to the elements of S(C , p). For
instance, this may be a useful way to find elements of
C (Q ∩Qp) ∩ J(Q)div not defined over Q.

This is tricky in general, because the Coleman integral
∫ P
O ω is only a

locally analytic function of P (analytic on each residue disc). One needs
some explicit constants of integration to move between discs.

For hyperelliptic curves y2 = P(x) with deg(P) odd, we have an
implemented algorithm for this. (The case of deg(P) even is similar but
not implemented.) It is based on the computation of Frobenius matrices in
Monsky-Washnitzer cohomology (K, 2001).

Kiran S. Kedlaya (MIT) Numerical p-adic integration... Zurch, May 28, 2010 10 / 20



The Chabauty-Coleman method

Effectiveness of the method: an experiment

If we suspect that C (Q) 6= S(C , p), we cannot hope to use Chabauty’s
method to determine C (Q) without some additional information. But no
p-adic approximation of a point of S(C , p) would suffice to prove that
such a point is not defined over Q.

On the other hand, in case

C (Q ∩Qp) ∩ J(Q)div = S(C , p),

then we can identify each point of S(C , p)− C (Q) as a global algebraic
point of C .

We have little experimental data about how often we can identify all of
S(C , p) in terms of global points. It is now possible to collect such data
on a large scale, but we have not yet done so.
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The Chabauty-Coleman method

Beyond Chabauty?

The Chabauty condition fails in many interesting cases. What can be done
in such cases?

The best hope seems to be to perform a descent to pass from C to
another curve of higher genus, and hope that the Chabauty condition
applies there. For example, Wetherell used this method to treat the curve

y2 = x6 + x2 + 1

for which rank J(Q) = 2 = g .

An interesting variant of this has been proposed by Kim.

Kiran S. Kedlaya (MIT) Numerical p-adic integration... Zurch, May 28, 2010 12 / 20



Kim’s nonabelian Chabauty method: a toy example

Contents

1 Introduction

2 The Chabauty-Coleman method

3 Kim’s nonabelian Chabauty method: a toy example

Kiran S. Kedlaya (MIT) Numerical p-adic integration... Zurch, May 28, 2010 13 / 20



Kim’s nonabelian Chabauty method: a toy example

Overview of the method

Assuming the finiteness of the Shafarevich-Tate group, the group J(Q)
can be identified with the Selmer group

H1
f (GQ,TpJ) = H1

f (GQ, lim←− J(Q)[pn]).

We can also think of the coefficient group as the maximal pro-p abelian
quotient of the geometric étale fundamental group πet1 (CQ).

Kim proposes to replace this quotient with some mildly nonabelian
quotients, in which case the Selmer group becomes a pointed Selmer set.
This set again contains C (Q). Grothendieck’s section conjecture suggests
that for a large enough quotient, the Selmer set should be “small” (i.e., it
should satisfy a nonabelian analogue of the Chabauty condition). In this
case, one can again construct a finite set containing C (Q), this time
computable using iterated Coleman integrals.
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Kim’s nonabelian Chabauty method: a toy example

A toy example: integral points on elliptic curves

To give a numerical example of the method, Kim constructed the following
toy example, in which we consider integral points in genus 1 rather than
rational points in genus > 1.

Let E be an elliptic curve over Q of analytic rank 1 (crucially) and having
squarefree discriminant (for simplicity). Let E be the minimal regular
model over Z.

It is possible to give explicit equations cutting out E(Z) within E (Q), e.g.,
by taking the factor at p of the global p-adic height pairing. These
equations appear naturally in the context of Kim’s method, from a
rigidified Massey product in Galois cohomology.
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Kim’s nonabelian Chabauty method: a toy example

Massey products

Put X = E −{e} and let X be the complement in E of the identity section.
Let p be an odd prime of good reduction. One has an Albanese map

X(Zp)→ H1
f (GQp ,U2)

where U2 is the maximal pro-p two-step nilpotent quotient of the
geometric étale fundamental group of X . (Note that we took out a point,
so this fundamental group is not abelian!)

The Selmer set on the right may be viewed as a p-adic analytic variety (a
Selmer variety). Computing coefficients on this variety amounts to
computing some double Coleman integrals.

Using the work of Kolyvagin, one constructs an explicit map

H1
f (GQp ,U2)→ H2(GQp ,Qp(1)) ∼= Qp,

such that the composition kills the points of X(Z).
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Kim’s nonabelian Chabauty method: a toy example

Explicit equations

One can go through this recipe and recover the explicit equation defining
X(Z) inside X (Q). Write E in short (not necessarily minimal) Weierstrass
form y2 = P(x), and put α = dx/y , β = x dx/y .

Theorem

Suppose (for simplicity) that there is a nonzero two-torsion point
b ∈ X(Z). Then the ratio ∫ x

b αβ(∫ x
b α
)2

is constant over all x ∈ X(Z) of infinite order.

One has a similar result without the two-torsion point, using a tangential
basepoint instead (which we have not yet implemented).
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Kim’s nonabelian Chabauty method: a toy example

Numerical evidence

Let E be Cremona’s curve 65A1, with minimal regular model E defined by
the minimal Weierstrass equation y2 + xy = x3 − x . We instead compute
on the nonminimal model

y2 = x3 − 1323x + 3942.

Let

b = (3, 0), P = (39, 108), Q = (−33,−108),

R = (147, 1728), S = (103, 980), T = (−6,−108)

be points on E , which arise from the respective points

(0, 0), (1, 0), (−1, 0), (4, 6), (25/9, 85/27), (−1/4,−3/8)

on E. In particular, b,P,Q,R ∈ E(Z) but S ,T /∈ E(Z).
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Kim’s nonabelian Chabauty method: a toy example

Numerical evidence (continued)

Take the prime p = 11 of good reduction. For x = P,Q,R, the ratio∫ x
b αβ(∫ x
b α
)2

evaluates to

3 · 11−1 + 6 + 2 · 11 + 10 · 112 + 3 · 113 + 5 · 114 + O(115).

For x = S , it evaluates to

3 · 11−1 + 10 + 6 · 11 + 9 · 112 + 8 · 113 + 6 · 114 + O(115).

For x = T , it evaluates to

6 · 11−1 + 1 + 4 · 11 + 4 · 112 + 1 · 113 + 7 · 114 + O(115).
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Kim’s nonabelian Chabauty method: a toy example

What next?

We would like to try Kim’s method in the context of rational points on
hyperelliptic curves of genus at least 2. For this, the p-adic integral
computation is ready, but more work is needed on the computation of
global Selmer sets.

Advertisement: the computations here are similar to those needed to
compute global p-adic canonical heights on hyperelliptic curves. For genus
1, this was implemented by Harvey using a method of Mazur-Stein-Tate.
For higher genus, one can instead follow Coleman-Gross, combining p-adic
integration with the computation of prime-to-p factors (implemented by S.
Müller).
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