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These are the notes for a three-lecture minicourse given at the Institut Henri Poincaré in
January 2010 as part of the Galois Trimester. The first lecture reviews the theory of slopes
and slope filtrations for Frobenius actions (φ-modules) over the Robba ring, the link to p-adic
Hodge theory via the work of Berger, and the analogue of Dieudonné-Manin classifications
over the Robba ring. The second lecture introduces the notion of an arithmetic family of
φ-modules, and describes our fairly limited knowledge about such objects, particularly the
variation of slopes in a family. The few positive results we have are joint with Ruochuan Liu.
The third lecture introduces the notion of a geometric family of φ-modules, gives a much more
comprehensive treatment of variation of slopes than in the arithmetic case, and indicates an
application to the theory of Rapoport-Zink period domains. This lecture represents work
in progress, again joint with Ruochuan Liu; we plan to prepare a more detailed manuscript
later.
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1 Slope filtrations and (φ,Γ)-modules

In this lecture, we discuss the theory of slope filtrations for φ-modules over the Robba ring,
and make the connection to Galois representations via the theory of (φ,Γ)-modules. We will
work at a somewhat greater level of generality than might seem to be necessary at first; this
generality will be needed in the later lectures.
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1.1 φ-modules over a field

We start with a bit of “semilinear algebra” over a complete discretely valued field. This
includes the Dieudonné-Manin classification theorem for rational Dieudonné modules over
an algebraically closed field. This discussion is taken from [29, Chapter 14], for which see
for additional references.

Hypothesis 1.1.1. Throughout § 1.1, let K be a field complete for a discrete valuation v,
with residue field k of characteristic p. (We do not assume p > 0 except when specified.) Let
oK be the valuation subring of K, and let mK be the maximal ideal of oK . Let φ : K → K be
an endomorphism which is an isometry for v, so that φ induces an endomorphism φ : k → k.

Definition 1.1.2. For V a K-vector space, let φ∗V = V ⊗K,φK be the extension of scalars
of V along φ, in which v⊗ φ(r) = (rv)⊗ 1 for r ∈ K,v ∈ V and the scalar multiplication is
defined by r(v⊗ s) = v⊗ rs for r, s ∈ K,v ∈ V . (Do not confuse φ∗V with the restriction of
scalars φ∗V .) Note that for W another K-vector space, given a K-linear map A : φ∗V → W ,
the map B : V → W given by B(v) = A(v⊗1) is φ-semilinear, i.e., it is additive and satisfies
B(rv) = φ(r)B(v) for r ∈ K,v ∈ V . Conversely, given a φ-semilinear map B : V → W , the
formula A(v ⊗ r) = rB(v) defines a K-linear map A : φ∗V → W .

A φ-module over K is a finite-dimensional K-vector space V equipped with an isomor-
phism Φ : φ∗V → V of K-modules. By the previous paragraph, it is equivalent to equip V
with a semilinear action of φ which carries any basis of V to another basis. In fact, it suffices
to check this for a single basis, as may be seen as follows. Use one basis e1, . . . , en to identify
V with a space of column vectors, and define the matrix of action F of φ on e1, . . . , en by
the formula

φ(ej) =
∑
i

Fijei.

Then define the change-of-basis matrix U to a second basis v1, . . . ,vn by the formula

vj =
∑
i

Uijei;

the matrix of action on φ on the new basis v1, . . . ,vn will equal U−1Fφ(U), which is invertible
if and only if F is.

The condition that Φ : φ∗V → V must be an isomorphism is the closest one can come to
requiring the φ-action to be bijective without requiring that it be bijective on K itself. Here
is when the latter happens.

Exercise 1.1.3. Prove that φ is bijective if and only if φ is bijective.

Example 1.1.4. In the case where φ is the identity map, a φ-module is nothing more than
a vector space equipped with an invertible linear transformation. If K were algebraically
closed (and hence not discretely valued), we would get a decomposition into generalized
eigenspaces. In the present case, one does at least get a direct sum decomposition of each
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φ-module in which each summand splits over Kalg as a direct sum of generalized eigenspaces
whose eigenvalues all have the same valuation. We will simulate this decomposition in the
general case using the notion of a pure φ-module.

Example 1.1.5. There are also many interesting examples in arithmetic geometry of φ-
modules for which φ is not the identity map. The usual source of these is the crystalline
cohomology of schemes over a perfect field k of characteristic p > 0, or similar constructions
such as the Dieudonné module of a p-divisible group. In these cases, K will be the fraction
field of the ring W (k) of Witt vectors of k; that is, W (k) is the unique complete discrete
valuation ring with maximal ideal (p) and residue field k. The endomorphism φ will be
induced by the unique lift to W (k) of the p-power Frobenius on k. (For instance, if k = Falg

p ,
then K is the completion of the maximal unramified extension of Qp.)

Exercise 1.1.6. Write out the definitions of tensor products, symmetric powers, exterior
powers, and duals in the category of φ-modules.

When φ is nontrivial, a φ-module does not have a well-defined determinant; however,
this nonexistent determinant does at least have a well-defined valuation.

Definition 1.1.7. Let V be a φ-module over K of rank d. Let A be the matrix of action of
φ on some basis of V , and define the degree of V as deg(V ) = v(det(A)); it does not depend
on the choice of the basis because for any U ∈ GLd(K),

v(det(U−1Aφ(U))) = v(det(U)−1) + v(det(A)) + v(φ(det(U))) = v(A).

Note that degree is additive: if 0 → V1 → V → V2 → 0 is a short exact sequence of φ-
modules over K, then deg(V ) = deg(V1) + deg(V2). For V nonzero, define the slope of V to
be the ratio µ(V ) = deg(V )/ rank(V ).

Remark 1.1.8. The notion of slope is motivated by an analogy with the theory of vector
bundles on an algebraic curve. Another analogous concept is the notion of determinantal
weight used by Deligne in his second proof of the Weil conjectures [16].

Our best approximation to the notion of a φ-module having a single eigenvalue is the
following.

Definition 1.1.9. Let V be a nonzero φ-module over K. We say V is pure if for some
positive integer d and some basis e1, . . . , en, the matrix of action A of φd on e1, . . . , en equals
a scalar matrix times an element of GLn(oK); this forces µ(V ) = 1

d
v(A). Another way to

write this condition is v(A) + v(A−1) = 0, where v(A) denotes the minimum valuation of
any entry of A. We say V is étale if it is pure of slope 0.

Example 1.1.10. Let π be any generator of mK (i.e., any uniformizer of K). For c, d integers
with d > 0, define the φ-module Mπ,c,d of rank d to have its φ-action on a basis e1, . . . , ed
given by

φ(e1) = e2, . . . , φ(ed−1) = ed, φ(ed) = πce1.
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Then Mπ,c,d is pure of slope c
d
v(π), because φd acts on e1, . . . , ed via a diagonal matrix each

of whose diagonal entries is the image of πc under some power of φ. We usually only consider
Mπ,c,d in case gcd(c, d) = 1, in which case it will follow from Lemma 1.1.13 below that Mπ,c,d

is irreducible.

Exercise 1.1.11. Suppose that V is pure, and that d is any integer for which dµ(V ) = v(λ)
for some λ ∈ K. Prove that there exists a basis e1, . . . , en of V on which the matrix of
action of φd equals λ times an element of GLn(oK). (The definition of purity only requires
the existence of some such d.)

Exercise 1.1.12. Let 0 → V1 → V → V2 → 0 be a short exact sequence of φ-modules, in
which V1, V2 are pure of the same slope. Prove that V is also pure of that slope.

The following calculation shows that there are no maps between pure φ-modules of dif-
ferent slopes.

Lemma 1.1.13. Let ψ : V → W be a nonzero homomorphism of pure φ-modules over K.
Then µ(V ) = µ(W ).

Proof. Suppose first that dim(V ) = 1 and ψ is injective, so that we may identify V with a
one-dimensional φ-stable subspace of W . Choose a positive integer d and a basis e1, . . . , en
of W on which φd acts via a matrix of the form λA with λ ∈ K and A ∈ GLn(oK). Let v
be a generator of V , and write v = a1e1 + · · · + anen and φ(v) = b1e1 + · · · + bnen. Then
a1, . . . , an and λ−1b1, . . . , λ

−1bn generate the same oK-submodule of K, since they can be
written as oK-linear combinations of each other using the entries of A and A−1. On the
other hand, since V is supposed to be φ-stable, we must have φ(v) = ηv for some η ∈ K,
which must then satisfy ηλ−1 ∈ o×K . Hence µ(V ) = v(η) = v(λ) as claimed.

Suppose next that dim(V ) = d > 0 and ψ is injective. We may then replace V and W
by ∧dV and ∧dW and apply the previous paragraph.

Suppose next that ψ is surjective. We may then replace V and W by V ∨ and W∨ and
apply the previous paragraph.

Suppose finally that ψ is arbitrary. We may then apply the preceding paragraphs to the
maps ker(V ) → V and V → image(V ) to deduce the claim.

Exercise 1.1.14. Let 0 → V1 → V → V2 → 0 be a short exact sequence of φ-modules in
which V1, V2 are pure and µ(V1) > µ(V2). Prove that the sequence splits uniquely. (Hint:
since the splitting is supposed to be unique, it is enough to find in the category of φd-modules
for some d. A good warmup is to try the case where dimK(V1) = dimK(V2) = 1.)

The key structural result about φ-modules is the following.

Theorem 1.1.15. Let V be an irreducible φ-module over K. Then V is pure.

Proof. Let K{T} be the twisted polynomial ring in K, in which the scalars commute with
each other but satisfy the relation Tr = φ(r)T for r ∈ K. One may define Newton polygons
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for elements of K{T}, and prove a form of Hensel’s lemma stating that any irreducible
twisted polynomial has only one slope in its Newton polygon.

To apply this to the claim at hand, let v ∈ V be any nonzero element, and put d =
dimK V . Then v, φ(v), . . . , φd−1(v) span a nonzero φ-stable subspace of V , which must be
all of V . Now consider the map K{T} → V sending

∑
i aiT

i to
∑

i aiφ
i(v); its kernel is

a left ideal of K{T}, which is principal by the Euclidean algorithm. We can thus write
V = K{T}/K{T}P for some twisted polynomial P , so that the φ-action is given by left
multiplication by T .

If the polynomial P factored nontrivially as P1P2, we would obtain a short exact sequence

0 → P1K{T}/K{T}P → K{T}/K{T}P → K{T}/K{T}P2 → 0,

but such a sequence cannot exist because V is irreducible. Hence P is irreducible, and so
has only one slope in its Newton polygon. From this, it is straightforward to check that V
is pure. (See [29, §14.4] for a more detailed discussion.)

This leads to the following description of an arbitrary φ-module.

Theorem 1.1.16. Let V be a φ-module over K. There exists a unique filtration 0 = V0 ⊂
· · · ⊂ Vl = M by φ-submodules having the following properties.

(i) For i = 1, . . . , l, the quotient Vi/Vi−1 is pure.

(ii) We have µ(V1/V0) < · · · < µ(Vl/Vl−1).

This filtration is called the slope filtration of V . If φ is bijective on k, then the slope filtration
splits.

Proof. We check only the existence, leaving the uniqueness as an exercise. The splitting in
the case φ is bijective on k will follow because φ is then also bijective (Exercise 1.1.3), so V
may be viewed also in the category of φ−1-modules. There, the slopes are all negated, so the
steps of the slope filtration appear in the opposite order.

To check existence, suppose that we have any filtration which satisfies (i) but fails to
satisfy (ii). There must then exist an index i for which µ(Vi/Vi−1) ≥ µ(Vi+1/Vi). If equality
holds, then Vi+1/Vi−1 is again pure by Exercise 1.1.12, so we may simply drop Vi from the
filtration. If the inequality is strict, then the sequence

0 → Vi/Vi−1 → Vi+1/Vi−1 → Vi+1/Vi → 0

splits by Exercise 1.1.14. There then exists a φ-submodule of Vi+1/Vi−1 which projects onto
Vi+1/Vi, which we may write as V ′

i /Vi−1 for V ′
i a φ-submodule of V . We may then replace

Vi by V ′
i in the filtration, in order to achieve µ(V ′

i /Vi−1) < µ(Vi+1/V
′
i ).

Now start with any Jordan-Hölder filtration of V , i.e., any filtration whose successive
quotients are irreducible. This satisfies (i) by Theorem 1.1.15. Repeat the argument in the
previous paragraph (making arbitrary choices of i). We can only perform the first operation
(omitting an index) as many times as the number of steps in the original filtration. Once
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we have exhausted the first operation, each instance of the second operation (changing
the filtration at one position) decreases the number of pairs of indices i < j for which
µ(Vi/Vi−1) > µ(Vj/Vj−1). We must thus eventually run out of operations, at which point the
filtration has the desired form.

Exercise 1.1.17. Prove that the slope filtration of a φ-module is unique.

Exercise 1.1.18. Show that the slope filtration fails to split in the following example (in
which φ is not bijective): take K to be the completion of Qp(t) for the Gauss norm (in which
v(t) = 0), take φ to be the substitution t 7→ tp, and take V to be the φ-module on generators
e1, e2 for which

φ(e1) = e1, φ(e2) = t+ pe2.

For some k, one can classify φ-modules even further.

Definition 1.1.19. We say that k is difference-closed under φ if every equation of the form
anφ

n
(x) + · · ·+ a1φ(x) + a0x = y, with n a positive integer, an ∈ k×, and an−1, . . . , a0, y ∈ k,

has a nonzero solution x ∈ k. For instance, if k has characteristic p > 0 and φ is a power of
the absolute Frobenius, then k is difference-closed if and only if k is algebraically closed.

Theorem 1.1.20. Suppose k is difference-closed under φ. Let π be any uniformizer of K.
Let φ be any Frobenius lift on K. Then any φ-module over K is isomorphic to a direct sum
in which each summand is an Mπ,c,d for some coprime integers c, d with d > 0.

Proof. See [29, Theorem 14.6.3].

Remark 1.1.21. In the case where k is algebraically closed and φ is the absolute Frobenius,
Theorem 1.1.20 recovers the usual Dieudonné-Manin classification theorem.

Exercise 1.1.22. If k is difference-closed under φ, then Theorem 1.1.20 implies that every
φ-module over K is completely reducible. Prove that this can fail if k is not difference-closed,
even when φ is bijective. (Hint: consider an extension of two étale φ-modules of rank 1 over
Zp.)

Remark 1.1.23. When φ is the absolute Frobenius (or a power thereof), there is a canonical
way to extend K to a complete discretely valued field with algebraically closed residue field.
The first step is to replace K by the completion K ′ of the direct limit

K
φ→ K

φ→ · · · ,

which has perfect residue field. Then K ′ can be written as a finite extension of FracW (kperf),
and we may use Witt vector functoriality to form K ′ ⊗W (kperf) W (kalg).

For φ general, it is possible to extend K and φ in order to force the residue field to
become difference-closed, but not in a canonical way.
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Exercise 1.1.24. Prove that there exists a complete field extension K ′ of K with the same
value group, carrying an extension φ′ of φ, such that the residue field of K ′ is perfect and
difference-closed under the endomorphism induced by φ′. (Hint: use Zorn’s lemma or an
equivalent.)

Remark 1.1.25. One can generalize the argument in the proof of Theorem 1.1.15 to show
that given any cyclic vector of V , i.e., any isomorphism V ∼= K{T}/K{T}P for a twisted
polynomial P , the slopes of V are computed by the Newton polygon of P . In other words,
if you have a basis of V on which φ acts via a companion matrix, then the slopes of V are
computed by the characteristic polynomial of that matrix. However, it is not true that the
slopes of V can be computed by taking the Newton polygon of the characteristic polynomial
of the matrix of action on on an arbitrary basis; see [25, §1.3] for an example.

1.2 Slope filtrations over the Robba ring

In various applications (notably in p-adic Hodge theory, more on which later), one encounters
φ-modules over somewhat more complicated rings than complete discretely valued fields. In
the key case of the Robba ring, one can still construct slope filtrations.

Hypothesis 1.2.1. Throughout § 1.2, retain notation as in Hypothesis 1.1.1, but change
the name of the endomorphism on K from φ to φK .

Definition 1.2.2. On K[z, z−1], extend the valuation v as the Gauss valuation:

v

(∑
i

aiz
i

)
= min

i
{v(ai)};

For r > 0, also define the valuation wr by the formula

wr

(∑
i

aiz
i

)
= inf

i
{v(ai) + ir};

for ρ = e−r, we write | · |ρ = exp(−wr(·)) for the corresponding Gauss norm.

Definition 1.2.3. For r > 0, letRr
K be the Fréchet completion of K[z, z−1] for the valuations

ws for all s ∈ (0, r]. This gives the ring of rigid analytic functions on the annulus 0 < v(z) ≤ r;
concretely, it may be identified with the set of formal sums a =

∑
i∈Z aiz

i with ai ∈ K for
which for each s ∈ (0, r], v(ai) + is → +∞ as i → ±∞. Define the Robba ring RK over K
to be the union of the Rr

K over all r > 0; note that each element of RK is a formal series
which converges on some annulus of the form 0 < v(z) ≤ ∗, but there is no choice of a single
annulus on which all of the elements of RK converge.

There are various equivalent ways to formulate the growth conditions used to define the
Robba ring.
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Exercise 1.2.4. Prove that for any r > 0, a formal sum a =
∑

i aiz
i with coefficients in K

belongs to Rr
K if and only if the following conditions both hold.

(i) We have v(ai) + ir → +∞ as i→ −∞.

(ii) For any s > 0, we have v(ai) + is→ +∞ as i→ +∞.

Exercise 1.2.5. Prove that a formal sum a =
∑

i aiz
i with coefficients in K belongs to RK

if and only if

lim inf
i→−∞

v(ai)

−i
> 0, lim inf

i→+∞

v(ai)

i
≥ 0.

Remark 1.2.6. The ring RK is inconvenient for certain purposes because it is not noethe-
rian. However, by a result of Lazard [32], each of the Rr

K is a Bézout domain, i.e., an integral
domain in which any finitely generated ideal is principal. It follows that RK is also a Bézout
domain. This is helpful because Bézout domains behave like principal ideal domains for
many purposes; some of these are described in the following exercise.

Exercise 1.2.7. Let R be a Bézout domain.

(i) Prove that for any positive integer n, any x1, . . . , xn ∈ R which generate the unit ideal
appear as the first row of some invertible n× n matrix over R.

(ii) Prove that any finitely generated torsion-free module over R is free.

(iii) Let M be a finite free R-module. Prove that any saturated submodule of M is a direct
summand of M . (A submodule N of M is saturated if M/N is torsion-free.)

Definition 1.2.8. Note that the theory of Newton polygons for (Laurent) polynomials over
K extends to the Robba ring. An immediate consequence is that any unit of RK belongs
to the subring Rbd

K consisting of series with bounded coefficients. Note that this subring is
actually a discretely valued field under v which is not complete; however, see Exercise 1.2.9
below.

Note that v extends to a well-defined valuation on Rbd
K ; we write Rint

K to denote the
valuation subring of Rbd

K , i.e., the series with coefficients in oK . By contrast, a typical
element of RK with unbounded coefficients is

log(1 + z) =
∞∑
i=1

(−1)i−1

i
zi,

and there is no well-defined p-adic valuation on such an element. One can define wr for such
an element for r sufficiently large (in this case any r > 0 will do), but these are not respected
by the Frobenius lifts which we will consider shortly.

Exercise 1.2.9. Prove that the field Rbd
K , while not complete, is henselian. This implies for

instance that it has a unique unramified extension for each finite separable extension of its
residue field.
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Definition 1.2.10. Let q > 1 be an integer. A relative Frobenius lift on RK is an endomor-
phism φ of the form ∑

i

aiz
i 7→

∑
i

φK(ai)φ(z)i,

where φK is the isometric endomorphism of K fixed earlier, and φ(z) is an element of RK

such that φ(z)− zq ∈ mKRint
K . (If k is imperfect, one may prefer a slightly looser definition

not requiring φ to carry K into itself, but we will not worry about this.)
In case k has characteristic p > 0 and q is a power of p, we may be interested in the

special case where φK induces the q-power absolute Frobenius on k. In such a case, we call
φ an absolute Frobenius lift on RK .

Remark 1.2.11. The definition of Frobenius lifts is the reason why we consider the Robba
ring, rather than the ring of power series convergent on a particular annulus. Already in the
case φ(z) = zp, applying φ does not preserve the inner radius of convergence of a series. One
does however have some compatibility between φ and wr, as in the following exercise.

Exercise 1.2.12. Let φ be any relative Frobenius lift on RK . Prove that if r > 0 satisfies
wr/q(φ(z)/zq − 1) > 0, then for all x ∈ Rr

K ,

wr/q(φ(x)− xq) > wr(x).

Consequently, for r > 0 sufficiently close to 0 (depending only on φ), for any x ∈ Rr
K ,

wr(x) = wr/q(φ(x)).

(See [27, Lemma 2.3.3] and [28, Remark 1.2.5].)

Hypothesis 1.2.13. For the rest of § 1.2, fix a relative Frobenius lift φ on RK .

Definition 1.2.14. A φ-module over Rbd
K or RK is a finite free module M over that ring,

equipped with an isomorphism Φ : φ∗M → M . We again identify Φ with a semilinear
φ-action that carries some (and hence any) basis of M to another basis.

Remark 1.2.15. The reader familiar with nonarchimedean analytic geometry may wonder
whether we lose some generality in considering finite free modules over RK , rather than
locally free coherent sheaves on an open annulus with outher radius 1. The answer is no:
since K is discretely valued, any such sheaf is represented by a finite free module, i.e., it is
generated by finitely many global sections. (In fact, this only requires K to be spherically
complete. See for instance [26, Theorem 3.14].)

For the remainder of this lecture (with one exception; see Theorem 1.3.14), we will
consider modules rather than sheaves. We will be forced to introduce the geometric viewpoint
when we consider families, at which point we will develop it in more detail; see § 2.3.

With a bit of care, we can extend the notions of degree, slope, and purity to the setting
of φ-modules over Rbd

K or RK .
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Definition 1.2.16. Let M be a nonzero φ-module over Rbd
K or RK . The matrix of action A

of φ on any basis of M has determinant which is a unit in RK . In particular, det(A) ∈ Rbd
K

and v(A) is well-defined. The same is true for the change-of-basis matrix between two bases of
M , so we may again unambiguously define the degree and slope of M as deg(M) = v(det(A))
and µ(M) = deg(M)/ rank(M).

We say M is pure if there exists a basis of M on which for some positive integer d, the
matrix of action of φd equals a scalar in Rbd

K times an invertible matrix over Rint
K ; note that

the scalar can always be taken within K. We again say M is étale if it is pure of slope 0.

The following key example from p-adic Hodge theory shows that Lemma 1.1.13 does not
extend to this setting.

Example 1.2.17. Suppose K = Qp and φ(z) = (z + 1)p − 1, and put t = log(1 + z). Then
φ(t) = pt, so tRK is a φ-submodule (pure of slope 1) of the trivial φ-module RK (pure of
slope 0).

One does however have the following inequality, which resembles the situation of vector
bundles on an algebraic curve (aside from a sign discrepancy).

Lemma 1.2.18. Let ψ : M → N be a nonzero homomorphism of pure φ-modules over RK.
Then µ(M) ≥ µ(N).

Proof. See [29, Corollary 16.3.5].

Homomorphisms between pure modules of the same slope are particularly restricted.

Theorem 1.2.19. Let M,N be pure φ-modules of the same slope over Rbd
K .

(a) Any homomorphism from M ⊗Rbd
K
RK to N ⊗Rbd

K
RK is induced by a (unique) homo-

morphism from M to N . In particular, any pure φ-module over RK descends uniquely
to a pure φ-module over Rbd

K .

(b) Let 0 →M ⊗Rbd
K
RK → P → N ⊗Rbd

K
RK → 0 be a short exact sequence of φ-modules

over RK. Then P is also pure (of the same slope).

Proof. For (a), see [29, Corollary 16.3.4]. For (b), see [29, Proposition 16.3.9].

We have an analogue of the purity theorem for φ-modules over a field (Theorem 1.1.15),
but its proof is significantly more complicated. We will return to it after we introduce the
analogue of the Dieudonné-Manin decomposition over the Robba ring.

Theorem 1.2.20. Any irreducible φ-module over RK is pure.

From this result, we derive consequences as in the case over a field.

Theorem 1.2.21. Let M be a φ-module over RK. There exists a unique filtration 0 = M0 ⊂
· · · ⊂Ml = M by saturated φ-submodules having the following properties.
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(i) For i = 1, . . . , l, the quotient Mi/Mi−1 is pure. (Note that Mi/Mi−1 is free by Exer-
cise 1.2.7, so it makes sense to view it as a φ-module.)

(ii) We have µ(M1/M0) < · · · < µ(Ml/Ml−1).

This filtration is called the slope filtration of M .

Proof. This follows from Theorem 1.2.20 as in the proof of Theorem 1.1.16.

Corollary 1.2.22. In Theorem 1.2.21, M is pure if and only if there does not exist a nonzero
φ-submodule of M of slope less than µ(M).

Remark 1.2.23. By analogy with the theory of vector bundles, one might characterize the
latter condition in Corollary 1.2.22 by saying that M is semistable. However, this is not the
same semistability occurring in the theory of p-adic Galois representations (though the two
are distantly related).

Corollary 1.2.24. In Theorem 1.2.21, the least slope achieved by a nonzero φ-submodule of
M (not necessarily saturated) is µ(M1). Moreover, any submodule achieving this slope is a
saturated φ-submodule of M1.

Definition 1.2.25. We define the slope multiset of a φ-module M over RK by constructing
the slope filtration as in Theorem 1.2.21, then taking the multiset consisting of µ(Mi/Mi−1)
with multiplicity rank(Mi/Mi−1) for i = 1, . . . , l. It is convenient to assemble these into an
open convex polygon in the usual fashion: sort the slopes into increasing order, then use
each slope in turn as the slope of a segment of the polygon whose horizontal projection has
length equal to the multiplicity of that slope. The resulting polygon is sometimes called the
Newton polygon, the slope polygon, or the Harder-Narasimhan polygon of M . (The last name
is again motivated by the analogy with vector bundles.)

Exercise 1.2.26. Let M,N be φ-modules over RK with slope multisets s1, . . . , sm and
t1, . . . , tn, respectively.

(i) Prove that the slope multiset of M ⊕ N consists of s1, . . . , sm, t1, . . . , tn. the slope
multisets of M and N .

(ii) Prove that the slope multiset of M⊗N consists of si+ tj for i = 1, . . . ,m, j = 1, . . . , n.

(iii) Prove that for i = 1, . . . ,m, the slope multiset of ∧iM consists of sj1 + · · ·+ sji for all
i-tuples (j1, . . . , ji) of integers with 1 ≤ j1 < · · · < ji ≤ m.

(iv) Prove that the slope multiset of the dual M∨ of M consists of −s1, . . . ,−sm.

Definition 1.2.27. Let M be a φ-module over Rbd
K . There are two natural ways to associate

a slope multiset to M . One is by tensoring up to the completion of Rbd
K under v, and using

the slopes coming from Theorem 1.1.16; we call this the generic slope multiset of M . The
other is by tensoring up to RK and using the slopes coming from Theorem 1.2.21; we call
this the special slope multiset of M .
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The terminology comes from the case where M arises from a Dieudonné module (or F -
crystal) over a local ring; in this case, the generic and special slopes are related to the base
changes to the generic and special point. This assertion includes the following not entirely
trivial fact: if M is obtained by base change from a finite free module over Rbd

K ∩K[[t]], and
M0 is the reduction of that module modulo t, viewed as a φ-module over K, then the slope
multiset of M0 coincides with the special slope multiset of M . See [29, Definition 16.4.5].

As in the case of Dieudonné modules, one has the following semicontinuity property of
generic and special slope filtrations.

Theorem 1.2.28. Let M be a φ-module over Rbd
K . Form generic and special slope polygons

associated to M with the same left endpoint. Then the special polygon lies on or above the
generic polygon, and the right endpoints also coincide.

Proof. See [29, Theorem 16.4.6].

Remark 1.2.29. It is a serious deficit in the theory of slope filtrations that there is currently
no analogue of Theorem 1.2.21 available when the base field K is not discretely valued. The
dependence on this hypothesis arises from the corresponding dependence in the Dieudonné-
Manin theory over extended Robba rings; see § 1.4. We will run squarely into this difficulty
in the second lecture.

1.3 Slope filtrations and p-adic Hodge theory

We now describe the link between φ-modules over the Robba ring and p-adic Galois repre-
sentations.

Hypothesis 1.3.1. Throughout § 1.3, letK0 be a finite unramified extension of Qp, equipped
with the p-adic valuation vp normalized so that vp(p) = 1.

Definition 1.3.2. For r > 0, let B†,r
K0,rig

be a copy of Rr
K0

with the series variable labeled by

π, and put B†
K0,rig

= ∪r>0B
†,r
K0,rig

∼= RK0 . Let B†
K0

be the subring of B†
K0,rig

corresponding to

Rbd
K0

.

We equip B†
K0,rig

with the absolute Frobenius lift φ (extending the unique absolute Frobe-

nius lift on K0) for which φ(π) = (π + 1)p − 1. We also equip B†,r
K0,rig

and B†
K0,rig

with an
action of the group Γ = Z×p , for which K0 carries the action of Γ via the cyclotomic character,

and γ(π) = (π + 1)γ − 1; this action is continuous for the Fréchet topology on B†,r
K0,rig

. Put
t = log(1 + π), so that φ(t) = pt and γ(t) = γt.

It turns out that the finite unramified extensions of B†
K0

are closely related to finite
(possibly ramified) extensions of K0 itself. This construction is a special case of the Fontaine-
Wintenberger theory of fields of norms [18, 43].
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Definition 1.3.3. For r > 0 and n a positive integer such that r > 1/(pn−1(p − 1)),
the elements of B†,r

K0,rig
correspond to series in π which converge at ζ − 1 whenever ζ is a

primitive pn-th root of unity. Moreover, t vanishes to order 1 at ζ − 1. We thus have a
well-defined homomorphism θn : B†,r

K0,rig
→ K0(µpn)JtK with dense image. Note that we have

a commutative diagram

B†,r
K0,rig

φ //

θn

��

B
†,r/p
K0,rig

θn+1

��
K0(µpn)JtK // K0(µpn+1)JtK

(1.3.3.1)

in which the bottom arrow acts as the absolute Frobenius lift on K0, fixes µpn , and carries t
to pt.

Let S be a finite unramified extension of B†
K0

; note that the actions of φ and Γ extend

uniquely to S. For some r > 0, we can write S = Sr ⊗B†,r
K0

B†
K0

for some finite B†,r
K -algebra

Sr which is unramified with respect to the wr for all r ∈ (0, r]. For n a positive integer with
1/(pn−1(p−1)) < r, put Tn = Sr⊗B†,r

K0
,θn
K0(µpn). Using the commutative diagram (1.3.3.1),

we obtain homomorphisms Tn → Tn+1 which are φ-equivariant for the absolute Frobenius
lift on K0 (fixing µp∞). By Lemma 1.3.4 below, Tn is a field for n large, so the direct limit
T of the Tn is a finite field extension of K0(µp∞). Moreover, it is canonically independent of
the choices of r and Sr.

We now convert the correspondence S  T into a map of Galois groups. We first identify
the absolute Galois group Gk0((π)), for k0 the residue field of K0, with Gal((B†

K0
)unr/B†

K0
).

Since the correspondence S  T is sufficiently functorial to commute with automorphisms of
S, we get an action of Gal((B†

K0
)unr/B†

K0
) on T whenever S is Galois over B†

K0
. In particular,

we also get an action on the compositum T̃ of the extensions of K0(µp∞) induced by all finite

unramified Galois extensions of B†
K0

. This allows us to identify Gk0((π)) with the quotient
of GK0(µp∞ ) by a closed subgroup, or in other words, to write down a surjective continuous
homomorphism GK0(µp∞ ) → Gk0((π)).

Lemma 1.3.4. With notation as in Definition 1.3.3, the ring Tn is a field for n large.

Proof. By enlarging K0, we may reduce to the case where the residue field ` of S is totally
ramified over k0((π)). Choose a uniformizer α of ` and let P (T ) be its minimal polynomial
over k0((π)). This polynomial is Eisenstein, i.e., it is monic with all nonleading coefficients
in πk0JπK and constant term not divisible by π2. Let P [T ] be any monic lift of P (T ); then
S ∼= B†

K0
[T ]/(P (T )). It thus suffices to note that for n large, the image of P (T ) under θn is

an Eisenstein polynomial over K0(µpn), and is hence irreducible.

Theorem 1.3.5. The homomorphism GK0(µp∞ ) → Gk0((π)) is a homeomorphism of profinite
groups.

Proof. It suffices to check that the correspondence S 7→ T of Definition 1.3.3 is injective;
this amounts to checking that every finite extension of K0(µp∞) is contained in some T .
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It suffices to consider extensions of the form K(µp∞) for some finite extension K of K0,
since this includes all finite extensions of K0(µp∞). There is no harm in replacing K0 by an
unramified subextension of K(µp∞), so we may also assume that K(µp∞) is totally ramified
over K0.

Put K0,n = K0(µpn) and Kn = K(µpn). Note that under the map θn : B†,r
K0,rig

→ K0,n

(for r > 1/(pn−1(p − 1))), π maps to a uniformizer of K0,n. It follows that any element of
oK0,n can be lifted to some polynomial in π with coefficients in oK0 . Moreover, any element
in mK0,n can be lifted to a polynomial in π with all coefficients in mK0 , whereas any nonzero
element of oK0,n can be lifted by a polynomial with not all coefficients in mK0 .

Choose a positive integer n such that [Kn : K0,n] = [K∞ : K0,∞]. Note that Kn is totally
ramified over K0,n. If Kn is tamely ramified over K0,n, we can write Kn = K0,n[T ]/(P (T ))
with P (T ) = Tm − a for some positive integer m not divisible by p and some a ∈ oK0,n .

In this case, lift a to ã ∈ oK0 [π] with not all coefficients in mK0 ; then we may take B†
K =

B†
K0

[T ]/(P̃ (T )) for P̃ (T ) = Tm − ã. This polynomial obviously has separable reduction
modulo mK0 , so has the desired effect.

If Kn is not totally ramified over K0,n, then m = [Kn : K0,n] must be divisible by p. We
can then write Kn = K0,n[T ]/(P (T )) with P (T ) = Tm+

∑m−1
i=0 aiT

i for some positive integer
m divisible by p and some a0, . . . , am−1 ∈ mK . We can also ensure that there exists an index
j ∈ {1, . . . ,m− 1} not divisible by p such that aj 6= 0. (If P (T ) does not have this property,
then P (T + p) does because its coefficient of Tm−1 must be pm.) Choose lifts ã0, ãj ∈ oK0 [π]
of a0, aj with not all coefficients in mK0 , and lifts ãi ∈ oK0 [π] of ai for i /∈ {0, j} with all

coefficients in mK0 , and then take B†
K = B†

K0
[T ]/(P̃ (T )) for P̃ (T ) = Tm −

∑m−1
i=0 ãiT

i. This
polynomial has separable reduction modulo mK0 because the reduction has all roots nonzero
while its derivative is equal to T j−1 times a nonzero scalar. Hence this construction has the
desired effect.

Definition 1.3.6. Let K be a finite totally ramified extension of K0. Let K ′
0 be the maximal

unramified subextension of K(µp∞). By Theorem 1.3.5, K(µp∞) corresponds to a finite

unramified extension B†
K of B†

K0
. Put B†

K,rig = B†
K ⊗B†

K0

B†
K0,rig

. These rings admit unique

extensions of the actions of φ and Γ. We may (noncanonically) identify the rings B†
K ,B

†
K,rig

with RK′
0
,Rbd

K′
0

by lifting a uniformizer of the residue field of B†
K .

Let GK be the absolute Galois group of K, let HK be the absolute Galois group of
K(µp∞), and put ΓK = GK/HK = Gal(K(µp∞)/K). The cyclotomic character χ gives an

isomorphism of ΓK with an open subgroup of Z×p ; via χ, we get an action of ΓK on B†
K and

B†
K,rig. (Note that the rings depend only on K(µp∞), whereas K itself is reflected by the

choice of the subgroup ΓK within Z×p .)

By a (φ,ΓK)-module over B†
K or B†

K,rig, we will mean a φ-module equipped with a semi-
linear action of ΓK which commutes with φ and is continuous for the Fréchet topology. We
say a (φ,ΓK)-module is étale if its underlying φ-module is étale.

Remark 1.3.7. For a (φ,ΓK)-module over B†
K , the continuity of the action of ΓK is a

somewhat delicate point. For the p-adic topology on B†
K , the action of each γ ∈ ΓK is
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continuous. However, for the action to be continuous, the map ΓK → Aut(B†
K) would have

to be continuous, which it is not. If it were, then modulo any power of p the action of some
open subgroup of ΓK would be trivial; however, even modulo p the action of any nontrivial
γ ∈ ΓK is nontrivial.

There are (at least) three natural topologies on B†
K for which the action of ΓK is contin-

uous. One is the Fréchet topology, i.e., the subspace topology from B†
K,rig. Another is the

weak topology, in which a sequence converges if and only if it is p-adically bounded, and mod-
ulo any power of p converges in the π-adic topology; this is incomparable with the Fréchet
topology. A third is the locally convex direct limit topology given by imposing the Fréchet
topology on each B†,r

K,rig defined by wr and vp; this is finer than both the weak topology and
the Fréchet topology.

In general, it is unclear whether a ΓK-action on a φ-module which is continuous for one
of these topologies is also continuous for the others. The exception is when the φ-module is
pure; see Theorem 1.3.8.

We now have the following description of p-adic Galois representations.

Theorem 1.3.8. Let K be a finite totally ramified extension of K0. The following categories
are equivalent.

(a) The category of continuous representations of GK on finite-dimensional Qp-vector
spaces.

(b) The category of étale (φ,ΓK)-modules over the p-adic completion BK of B†
K.

(c) The category of étale (φ,ΓK)-modules over B†
K.

(d) The category of étale (φ,ΓK)-modules over B†
K,rig.

Proof. The equivalence between (a) and (b) is due to Fontaine [17]; we describe the two
functors here, and leave the verification that they are quasi-inverses as an exercise. Given
a continuous action of GK on a finite-dimensional Qp-vector space V , the associated étale

(φ,ΓK)-module isD(V ) = (V ⊗QpB̂
unr
K )HK ; this has the expected dimension by Theorem 1.3.5

plus Hilbert-Noether Theorem 90. In the opposite direction, given an étale (φ,ΓK)-module D

over BK , it can be shown (as in the proof of Theorem 1.1.20) that V (D) = (D⊗BK
B̂unr
K )φ=1

is a Qp-vector space of the expected dimension. This space evidently carries an action of

HK ; it also carries an action of ΓK . We claim that the group of automorphisms of B̂unr
K

generated by HK and ΓK is homeomorphic to GK , which will yield the GK-action on V (D).
To establish this claim, it is enough to check that for a finite Galois extension L of K, the

group G of automorphisms of BL generated by HK and ΓK is isomorphic to Gal(L(µp∞)/K)
in a fashion compatible with further field extensions. In fact, it is equivalent to check the
claim with BL replaced by B†

L; in this case, for n sufficiently large, G acts via θn on

B†
L ⊗B†

K0

K0(µp∞) ∼= L(µp∞).
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The image of G in Gal(L(µp∞)/K) contains Gal(L(µp∞)/K(µp∞)) (from the HK-action) and
surjects onto Gal(K(µp∞)/K) (from the ΓK-action), and so is all of Gal(L(µp∞)/K). We
thus have a surjection G→ Gal(L(µp∞)/K); this must be an isomorphism by Theorem 1.3.5.

The equivalence between (b) and (c) is the base extension from B†
K to BK . It is relatively

easy to show that the restriction is fully faithful; essential surjectivity was established by
Cherbonnier and Colmez [12]. One can extract a simpler proof from the work of Berger and
Colmez [7].

The equivalence between (c) and (d), originally observed by Berger, is the base extension
from B†

K to B†
K,rig. The fact that this is an equivalence of categories is an immediate

consequence of Theorem 1.2.19.

We can now describe some applications of slope filtrations to the construction of Galois
representations. The desire to extend these applications to families of representations will
motivate the discussion in the second and third lectures.

Remark 1.3.9. It is possible to give a complete classification of (φ,ΓK)-modules over B†
K,rig

of rank 1, and of all possible extensions between two of these. For K = Qp, this was done
by Colmez [13, §2]; the general case was carried out by Nakamura [37].

Using this classification, it is possible to show that for 0 → M1 → M → M2 → 0 a
short exact sequence of (φ,ΓK)-modules over B†

K,rig, in which M1 and M2 are of rank 1,
µ(M) = 0, and µ(M1) > µ(M2), the sequence splits if and only if M is not étale. To
show this, one uses Theorem 1.2.21 to see that if M is not pure, it must have a unique
saturated rank 1 φ-submodule N with µ(N) < µ(M). Since N is unique, it is stable under
ΓK and hence a (φ,ΓK)-submodule. The image P of N in M2 cannot be zero, as otherwise
N would be a submodule of M1 in violation of Lemma 1.2.18. We must then have P ∼= N ,
and the original short exact sequence must correspond to an element of the extension group
Ext(M2,M1) whose image in Ext(P,M1) is zero. However, the explicit calculaton of these
extension groups shows that such an element cannot exist. See [13, Proposition 3.5] or [37,
Theorem 3.4].

Remark 1.3.10. Calculations such as those in Remark 1.3.9 depend on the theory of Galois
cohomology for (φ,ΓK)-modules, as introduced by Herr and Liu. We will treat this topic in
more detail in the second lecture.

Definition 1.3.11. Let K be a finite totally ramified extension of K0. A filtered φ-module
over K consists of a φ-module D over K0 together with an exhaustive decreasing filtration
Fil·DK on DK = D⊗K0K by K-subspaces. Note that we do not yet insist on any relationship
between the φ-module structure and the filtration.

The multiset containing i with multiplicity dimK(FiliDK/Fili+1DK) comprises the Hodge-
Tate weights of the filtered φ-module. Define tN(D) = deg(D). Define tH(D) to be the sum
of the Hodge-Tate weights of D.

Definition 1.3.12. For D a filtered φ-module over K, a filtered φ-submodule of D is a
φ-submodule D′ of D equipped with an exhaustive decreasing filtration Fil·D′

K such that
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FiliD′
K ⊆ FiliDK for all i. If this last inclusion is an equality, we say D′ is a saturated

filtered φ-submodule of D.
We say that D is weakly admissible if the following conditions hold.

(i) We have tN(D) = tH(D).

(ii) For any filtered φ-submodule D′ of D, we have tN(D′) ≥ tH(D′). (It suffices to check
this for D′ saturated.)

A theorem of Colmez-Fontaine puts filtered φ-modules in a natural correspondence with
Galois representations. We make this correspondence explicit in terms of slope filtrations,
following Berger [6].

Definition 1.3.13. Let M be a (φ,Γ)-module over B†
K,rig. A modification of M is a (φ,Γ)-

module M ′ over B†
K,rig equipped with an isomorphism M [t−1] ∼= M ′[t−1].

For some r, we may realize M as the base extensions of a finite free module Mr over a
finite extension Sr of B†,r

K′
0,rig

which is unramified with respect to ws for all s ∈ (0, r], such

that Γ acts on Mr and φ carries M into Mr/p = Mr ⊗B†,r
K′

0,rig

B
†,r/p
K′

0,rig
. We may similarly

realize M ′ as a finite free module M ′
r over Sr. For n a sufficiently large positive integer, the

isomorphism M [t−1] ∼= M ′[t−1] induces an isomorphism

Mr ⊗S,θn K(µpn)((t)) ∼= M ′
r ⊗S,θn K(µpn)((t)). (1.3.13.1)

Theorem 1.3.14. Let K be a finite totally ramified extension of K0. Let D be a filtered
φ-module over K, and view M(D) = D ⊗K0 B†

K,rig as a (φ,ΓK)-module over B†
K,rig.

(a) There exists a unique modification M ′(D) of M(D) such that for n a sufficiently large
positive integer, the t-adic filtration on the right side of (1.3.13.1) coincides with the fil-
tration on the left side given by tensoring the t-adic filtration with the filtration provided
by D.

(b) The φ-module M ′(D) is étale if and only if D is weakly admissible.

Proof. It is apparent that M ′(D) exists and is unique in the category of coherent locally free
sheaves on an open annulus with outer radius 1, equipped with actions of φ and Γ. However,
by Remark 1.2.15, these are exactly the (φ,Γ)-modules over B†

K,rig. This yields (a). (For a
more explicit approach, see [5, §3.1].)

For (b), one first calculates that the slope of M(D) is tN(D)− tH(D), so condition (i) of
the definition of weak admissibility is equivalent to the condition µ(M(D)) = 0. Moreover,
if condition (ii) fails, we can produce a φ-submodule of M(D) of negative slope, so M(D)
cannot be étale. Conversely, if M(D) is not étale, then by Theorem 1.2.21, it contains a
maximal φ-submodule of negative slope. Since this submodule is stable under the action of
ΓK , it corresponds to a filtered φ-submodule of D violating condition (ii).
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Remark 1.3.15. The representations corresponding to filtered φ-modules are precisely those
which are crystalline. We will not define this class of representations explicitly; it is in some
sense the smallest reasonable class containing the p-adic étale cohomology of XK for any
smooth proper scheme X over oK . For such a representation, the crystalline comparison
theorem implies that the associated filtered φ-module is canonically isomorphic to the al-
gebraic de Rham cohomology of X, equipped with the Hodge filtration and the action of
Frobenius coming from the comparison between de Rham cohomology on the generic fibre
and crystalline cohomology on the special fibre. There is an analogous setup for semistable
schemes over oK , in which the crystalline representations are replaced by the larger class
of semistable representations, and the filtered φ-modules are replaced by filtered (φ,N)-
modules (carrying the extra structure of a monodromy operator N which intertwines with
φ in a suitable manner). For references, see for instance the introduction to [38].

Remark 1.3.16. A distinct but related construction of the Galois representations associ-
ated to filtered φ-modules has been given by Kisin [31], using a variant of (φ,Γ)-module
theory in which the role of the cyclotomic extension Qp(µp∞) is played by the (non-Galois)
Kummer extension Qp(p

1/p∞). Kisin’s construction has certain technical advantages in some
situations, because it produces modules with a φ-action over a complete open unit disc,
rather than a Robba ring (although the φ-action is not an isomorphism everywhere). This
makes it particularly useful for studying integral structures on p-adic representations.

Remark 1.3.17. We would be remiss in neglecting to mention Berger’s original motivation
for working with (φ,Γ)-modules over the Robba ring: to prove Fontaine’s conjecture that
any de Rham representation is potentially semistable. Berger’s proof reduces this problem to
a theorem from p-adic differential equations, the p-adic local monodromy theorem of André,
Mebkhout, and Kedlaya. The basic construction is to replace the action of the group ΓK ,
viewed as a one-dimensional p-adic Lie group, by the action of its Lie algebra; we will use
this construction later to study Galois cohomology (see Lemma 2.6.14). See [29, §20–21]
for discussion of the p-adic local monodromy theorem, and [4] for the application to Galois
representations.

What one sees from Berger’s approach is that some invariants of a Galois representation of
an analytic nature can be detected more easily on the side of (φ,Γ)-modules. For instance,
if one starts with a p-adic étale cohomology group of a smooth proper scheme over oK ,
Grothendieck’s “mysterious functor” (constructed by Fontaine) converts this data into the
p-adic (crystalline/rigid) cohomology of the same scheme. However, the latter can be read
off immediately from the (φ,Γ)-module, as described in [4].

More recently, Colmez and others have discovered that even more subtle analytic invari-
ants, such as those appearing in the study of p-adic L-functions, also can be constructed
from (φ,Γ)-modules. Indeed, for K = Qp one can construct a p-adic local Langlands corre-
spondence for two-dimensional representations that interpolates the usual local Langlands
correspondence; whether this can be done more generally is a rich topic of current research.
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1.4 Dieudonné-Manin decompositions

It will be convenient to have, in addition to the theory of slope filtrations over the Robba
ring, an analogue of the Dieudonné-Manin classification. We cannot hope to do this over
the Robba ring itself, essentially because the residue field of Rbd

K is not difference-closed.
Instead, we must pass to a larger ring, whose construction can be carried out somewhat more
generally. That extra level of generality will play a crucial role in the study of geometric
families of (φ,Γ)-modules in the third lecture.

Hypothesis 1.4.1. Throughout § 1.4, continue to retain Hypothesis 1.1.1, again changing
the name of the endomorphism from φ to φK . Unless otherwise specified, assume also that
K is of characteristic 0, k is of characteristic p > 0, K is absolutely unramified (i.e., mK is
the ideal generated by p), and k is perfect and difference-closed under φK . We will write vp
instead of v for the p-adic valuation on K, to help distinguish it from a second valuation v`
which we will also consider.

We start with a construction parallel to the construction of the Robba ring.

Definition 1.4.2. Let ` be a perfect overfield of k which is complete for a real valuation v`
trivial on k, and carries an extension φ of φK . Let W (`) be the ring of Witt vectors over
`; this ring admits a unique Frobenius lift φ compatible with both φK and φ, induced by
functoriality of the Witt vector construction.

Each element of W (`) has a unique representation as a convergent sum
∑∞

i=0 p
i[xi], where

xi ∈ ` and [xi] is the Teichmüller lift of xi, the unique lift of xi admitting all p-power roots
in W (`). For any r > 0, let R̃int

` be the subset of W (`) consisting of those sums
∑

i p
i[xi]

for which i + v`(xi)r → +∞ as i → +∞. This turns out to be a subring of W (`), and the
function wr on R̃int given by the formula

wr

(
∞∑
i=0

pi[xi]

)
= min

i
{i+ v`(xi)r}

turns out to be a valuation. (We will give a detailed proof of this later; see Lemma 3.2.4.)
For ρ = e−r, we write | · |ρ = exp(−wr(·)) for the corresponding “Gauss” norm. Note that
the analogue of Exercise 1.2.12 is immediate: one has φ([x]) = [φ(x)] for all x ∈ ` (because
φ([x]) admits all p-power roots of unity), so

|x|ρ = |φ(x)|ρ1/q (x ∈ W (`), ρ ∈ (0, 1)).

For r > 0, define the ring R̃r
` to be the Fréchet completion of R̃bd

` = R̃int
` [1

p
] for the

valuations ws for all s ∈ (0, r]. Define the extended Robba ring R̃` to be the union of the
R̃r
` . This turns out to be a Bézout domain, and the Frobenius φ on W (`) (which carries [xi]

to [xi]
p) extends by continuity to R̃`.

We define φ-modules, degrees, slopes, and purity by analogy with RK .
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Remark 1.4.3. Beware that an arbitrary element of R̃` cannot in general be written as
a doubly infinite sum

∑
i∈Z p

i[xi]. However, it is possible to present any element (non-
canonically) in the form

∑
i∈Z p

iui in which each ui ∈ W (`) has the form
∑∞

j=0 p
i[uij] with

v`(ui0) ≤ v`(uij) for all j > 0. (See for instance the errata to [27].)

Exercise 1.4.4. Prove the following analogue of the Hadamard three circles inequality. For
ρ, σ ∈ (0, 1] and t ∈ [0, 1], put τ = ρtσ1−t. Then

| · |τ ≤ | · |cρ|f |1−cσ . (1.4.4.1)

Example 1.4.5. Suppose that ` is the completed perfect closure of k((z)). We may then
identify R̃` with formal sums

∑
i∈Z[1/p] ciz

i satisfying the same growth conditions as in the
definition of the Robba ring, plus the following additional condition: for any a, b ∈ R, the set
of indices i ≤ a for which vp(ci) ≤ b has bounded denominators. If RK carries a Frobenius
lift φ for which φ(z) = zp, then RK embeds into R` by identifying the two elements both
called z.

If the Frobenius lift on RK carries another shape, then things are a bit less straightfor-
ward. Using φ, we construct the p-adic completion of the direct limit

Rint
K

φ→ Rint
K

φ→ · · · .

This ring admits a map from W (`) with [x] mapping to limn→∞ φ−nS (xq
n
) for any x ∈ Rint

K .
This map turns out to be an isomorphism; by mapping Rint

K into the first term of the direct
system, we form a map Rint

K → W (`). It further turns out that this map is an isometry with
respect to the wr for all r as in Exercise 1.2.12; see [27, Lemma 2.3.5] or [28, Proposition 2.2.6].
It thus extends by continuity to a map Rr

K → R̃r
` for all r as in Exercise 1.2.12, and hence

to a map RK → R̃`.

Remark 1.4.6. One obtains a construction similar to Example 1.4.5 in case ` is a field of
Mal’cev-Neumann series. That is, for Γ a totally ordered subgroup of R, take the set of
formal sums

∑
i∈Γ ciz

i whose support is well-ordered (contains no decreasing subsequence).
This example figures prominently in [28].

The analogue of the Dieudonné-Manin classification in this context is the following result.
(This implies a slope filtration theorem for ` arbitrary, which we leave to the reader to
formulate.)

Theorem 1.4.7. Suppose ` is difference-closed under φ. Then any φ-module over R̃` is
isomorphic to a direct sum in which each summand is an Mp,c,d for some coprime integers
c, d with d > 0.

Proof. As in [28, Theorem 2.1.8]. (See also [29, Corollary 16.5.8].)

We now relax Hypothesis 1.4.1 by dropping the condition that k be perfect and difference-
closed. One could also make the following assertions without assuming K is of characteristic
0 and absolutely unramified, at the expense of having to complicate notation somewhat in
the preceding statements.
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Remark 1.4.8. It was noted earlier that Theorem 1.2.21 is proved via Theorem 1.4.7.
Namely, given an embedding RK → R̃` with ` perfect and difference-closed under φ, any
φ-module over RK acquires a slope filtration over R̃`. One then uses faithful flat descent to
push the slope filtration back down to RK ; see [28, §3]. (In the case of an absolute Frobenius
lift, one can use a Galois descent instead; see [27].)

It remains to construct an embedding RK → R̃`. For this, apply Exercise 1.1.24 to
replace K by a larger field K ′ carrying an extension of φ, whose residue field k′ is perfect and
difference-closed. Then apply Exercise 1.1.24 again to extend k′((z)) to a perfect difference-
closed field `. To embed RK into R̃`, first argue as in Example 1.4.5 to perfect the residue
field of Rint

K , then use Witt vector functoriality.

Remark 1.4.9. While there is little difficulty in extending Theorem 1.4.7 to cases where K
is discretely valued but not absolutely unramified, it is not known how to extend to the case
where K is an arbitrary complete discretely valued field.

The dependence on the discreteness hypothesis can be seen from the following brief
summary of the proof of Theorem 1.4.7. One first constructs an auxiliary filtration of the
given module and associates a slope polygon to it. One then makes a series of successive
modifications to the filtration in order to raise the slope polygon. This process terminates
after finitely many steps, at which point one can show that the filtration splits and gives the
desired decomposition.

The difficulty in extending Theorem 1.4.7 to nondiscretely valued fields is a serious issue
in the theory of arithmetic families of φ-modules. We will see this in the second lecture.

2 Arithmetic families of φ-modules

In this lecture, we consider families of φ-modules over a rigid analytic base space on which
φ does not act. Our discussion is driven by potential applications in the study of families of
p-adic Galois representations, such as those arising from p-adic modular forms.

2.1 Nonarchimedean analytic spaces

It will be convenient to use Berkovich’s language of nonarchimedean analytic spaces, rather
than Tate’s language of rigid analytic spaces. We will avoid the full force of this theory, as
developed in [8, 9], and instead concentrate on subspaces of an affinoid space. See [14] for
an introduction.

Hypothesis 2.1.1. Throughout § 2.1, let K be any complete nonarchimedean field.

Definition 2.1.2. For r1, . . . , rn > 0, define the generalized Tate algebra of (poly)radius
(r1, . . . , rn) to be the ring

K〈T1/r1, . . . , Tn/rn〉 =

{
∞∑

i1,...,in=0

ci1,...,inT
i1
1 · · ·T inn ∈ KJT1, . . . , TnK : |ci1,...,in|ri11 · · · rinn → 0

}
,
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i.e., the completion of K[T1, . . . , Tn] for the (r1, . . . , rn)-Gauss norm. In Berkovich’s theory,
an affinoid algebra over K is a Banach algebra over K which can be written as a quotient
of a generalized Tate algebra (equipped with the quotient norm).

This notion of an affinoid algebra is somewhat more expansive than the usual definition
due to Tate, in which one only takes quotients of K〈T1, . . . , Tn〉 (that is, one requires r1 =
· · · = rn = 1). This gives the same effect as restricting r1, . . . , rn to the divisible closure of
the image of K× under | · |. Berkovich identifies these as strictly affinoid algebras, as will
we.

Remark 2.1.3. A general affinoid algebra can be equipped with many different norms,
coming from different presentations. These are all equivalent, in the sense that for any two
such norms | · |1, | · |2, there exists c > 0 such that | · |1 ≤ c| · |2. In general, there is no
distinguished choice among these. However, on a reduced affinoid algebra, there is a unique
minimal norm called the spectral norm | · |sp. It can be computed from any other norm | · |
by the formula |x|sp = lims→∞ |xs|1/s.

Definition 2.1.4. Let S be any commutative Banach algebra over K (e.g., an affinoid
algebra). The Gel’fand spectrum (or Berkovich spectrum, or simply spectrum) of S, denoted
M(S), is the set of multiplicative seminorms on S which are bounded above by the specified
norm on S. This set (as well as the topology on it; see Definition 2.1.7) depends only on the
equivalence class of Banach norms on S, not on the specific norm chosen.

Remark 2.1.5. For S a strictly affinoid algebra, one has an analogue of the Nullstellensatz:
for any maximal ideal m of S, the residue field S/m is finite over K [10, Corollary 6.1.2/3],
and hence admits a unique extension of the norm on K. In this way, one obtains a natural
map from the maximal spectrum Spm(S) to M(S), but in general this map is far from
surjective. For instance, if S = K〈T 〉, then M(S) contains the ρ-Gauss norm for each
ρ ∈ (0, 1], none of which belongs to Spm(S). (The ρ-Gauss norm corresponds to a “generic
point” of the closed disc of radius ρ centered at the origin in A1

K .)

Definition 2.1.6. For S an affinoid algebra over K and x ∈ M(S), let H(x) denote the
residue field of x. This field is constructed by forming the quotient of S by the kernel of x,
inducing a true norm on this quotient, passing to the fraction field (which carries a unique
extension of the norm), and then completing. This is a complete extension of K, but need
not be finite over K unless x ∈ Spm(S).

For f ∈ S, we write f(x) to mean the image of f in H(x). This allows us to write x(f),
the value at f of the seminorm defined by x, in the more suggestive form |f(x)|.

We now introduce a topology on M(S).

Definition 2.1.7. For S a commutative Banach algebra over K, we topologize M(S) with
the coarsest topology under which for each f ∈ S, the evaluation map M(S) → [0,+∞)
taking α to α(f) is continuous. This coincides with the subspace topology if we embed
M(S) into

∏
f∈S[0, |f |S]; in fact, the image is seen to be closed (i.e., the property of being a

multiplicative seminorm is defined by closed conditions). Since the factors of the product are
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compact, M(S) is compact by Tikhonov’s theorem. Any bounded K-algebra homomorphism
S → T of Banach algebras induces a map M(T ) →M(S) by composition.

Lemma 2.1.8. If S → T is an isometric homomorphism of commutative Banach algebras,
then M(T ) →M(S) is surjective.

Proof. Using the isometric hypothesis, this reduces to the case where S = K and T is
nonzero, and the claim is that M(T ) 6= ∅. For this, see [8, §1].

Remark 2.1.9. A useful basis of open sets for the topology on M(S) is given by the sets
of the form

{x ∈M(S) : |f1(x)| ∈ I1, . . . , |fm(x)| ∈ Im} (2.1.9.1)

for all positive integers m, all choices of f1, . . . , fm ∈ S, and all choices of open intervals
I1, . . . , Im.

Definition 2.1.10. Let S be a (strictly) affinoid algebra over K. A (strictly) affinoid
subdomain of M(S) is a subset U ⊆ M(S) for which there exists a bounded K-algebra
homomorphism from S to another (strictly) affinoid algebra T over K, which is initial for
the property that the image of M(T ) in M(S) is contained in U . It then turns out that
M(T ) = U , and that U is closed in S. By an affinoid neighborhood of a point x ∈M(S), we
will mean an affinoid subdomain of M(S) which contains an open neighborhood of x.

For example, for any f1, . . . , fm ∈ S and any closed intervals I1, . . . , Im for which Ij ∩
[0,+∞) 6= [0, 0] for any j, the set

{x ∈M(S) : |f1(x)| ∈ I1, . . . , |fm(x)| ∈ Im}

is an affinoid subdomain of M(S). An affinoid subdomain of this form is said to be rational ;
note that the rational subdomains are exactly the closures of the basic open sets, so every
point of M(S) has a neighborhood basis consisting of rational subdomains. A somewhat
deeper fact (which we will not need) is the Gerritzen-Grauert theorem: every affinoid subdo-
main of M(S) is a finite union of rational subdomains. (See [42] for a proof in the language
and spirit of Berkovich’s theory.)

For gluing constructions, one normally considers the G-topology defined by finite covers
of affinoid spaces by affinoid subdomains. This is because of the following glueing property.

Theorem 2.1.11 (Kiehl). Let S be an affinoid algebra over X. Let M(T1), . . . ,M(Tn) be a
finite cover of M(S) by affinoid subdomains. Suppose we are given the following data.

(a) For i = 1, . . . , n, a finite Ti-module Ni.

(b) For i, j = 1, . . . , n, an isomorphism ψi,j : Ni⊗Ti
(Ti⊗STj) ∼= Nj⊗Tj

(Ti⊗STj), satisfying
the cocycle condition.

Then there exists a unique (up to unique isomorphism) finite S-module N equipped with
isomorphisms N ⊗S Ti ∼= Ni inducing the ψi,j. Moreover, N maps bijectively to the subset of∏

iN ⊗S Ti consisting of tuples (ni) such that for any i, j, ni and nj have the same image
in N ⊗S Ti ⊗S Tj.
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Definition 2.1.12. Theorem 2.1.11 states on one hand that M(Ti) 7→ N ⊗S Ti is a coherent
sheaf for the G-topology, and on the other hand any coherent sheaf for the G-topology arises
from a finite S-module. We will use this language in referring to finite S-modules as coherent
sheaves. For M(T ) an affinoid subdomain of M(S), we will also refer to the restriction of
such a sheaf to M(T ), meaning the sheaf associated to N ⊗S T .

The relationship between the G-topology and Berkovich’s topology can be seen in the
following lemma.

Lemma 2.1.13. Let S be a (strictly) affinoid algebra over K. Then any open cover of
X = M(S) can be refined to a finite cover of X by (strictly) affinoid subdomains.

Proof. Since X is compact, we may assume that the original cover consists of finitely many
basic open subsets. Let U be an open set in the cover, of the form (2.1.9.1). For η ∈ (0, 1),
define the open subset

Uη = {x ∈ X : |fi(x)| ∈ ηIi ∩ η−1Ii (i = 1, . . . ,m)}.

Note that each Ii is the union of the ηIi ∩ η−1Ii over all η ∈ (0, 1), so U is the union of the
Uη over all η ∈ (0, 1). Again because X is compact, we can choose η ∈ (0, 1) so that the sets
Uη, for U running over the cover, again cover X.

Let Ji be a closed interval with ηIi ∩ η−1Ii ⊆ Ji ⊆ Ii. In case X is strictly affinoid, we
may force Ji to have endpoints which are norms of elements of Kalg. For U as above, the set

Vη = {x ∈ X : |fi(x)| ∈ Ji (i = 1, . . . ,m)}

is a (strictly) affinoid subdomain of X, and the Vη form a finite cover of X.

2.2 Relative annuli

We need an observation about relative annuli in nonarchimedean analytic geometry, made
most naturally in Berkovich’s language.

Hypothesis 2.2.1. Throughout § 2.2, let K be any complete nonarchimedean field.

Definition 2.2.2. For I ⊆ [0,+∞) an interval, let AK(I) be the annulus |z| ∈ I within
the affine z-line over K. When I is written out explicity, we usually drop the enclosing
parentheses; for instance, if I = [α, β), we write AK [α, β) instead of AK([α, β)).

Lemma 2.2.3. Let X be an affinoid space over K. Let I ⊆ [0,+∞) be a closed interval.
Let V be a vector bundle (coherent locally free sheaf) on X ×K AK(I). Then there exists a
finite open cover U1, . . . , Un of X such that for each i ∈ {1, . . . , n}, the restriction of V to
Ui ×K AK(I) is freely generated by global sections.
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Proof. Note that for each Berkovich point x ∈ X with residue field H(x), x ×K AK(I) ∼=
AH(x)(I) is an affinoid space over H(x) whose coordinate ring is a principal ideal domain.
Hence the restriction of V to x×K AK(I) is free; let e1, . . . , en be a basis.

Since X×KAK(I) is also an affinoid space, by Theorem 2.1.11, V is generated over X×K

AK(I) by finitely many global sections v1, . . . ,vm. We can thus choose cij ∈ O(x×K AK(I))
for which ej =

∑
i cijvi as sections of V over x×K AK(I).

For any ε > 0, we can choose dij ∈ O(X×KAK(I)) and eij ∈ O(X) so that eij(x) 6= 0 and
|cij − dij/eij|x < ε. Given such a choice, put e =

∏
ij eij, and let U ⊆ X be the complement

of the zero locus of e. Put e′j =
∑

i(dij/eij)vi as a section of V over U ×K AK(I), and define
the n × n matrix A over O(x ×K AK(I)) by the formula e′j =

∑
iAijei. For ε sufficiently

small, the supremum norm of A− 1 over x×K AK(I) is less than 1, so A is invertible; that
is, e′1, . . . , e

′
n form another basis of V over x×K AK(I). Fix a choice of such an ε hereafter.

Define the matrix B over O(X×KAK(I)) by Bij = (e/eij)dij. The common zero locus of
the maximal minors of B is a closed analytic subspace of X×K AK(I) which by the previous
paragraph does not meet x ×K AK(I). It thus fails to meet U ′ ×K AK(I) for some open
neighborhood U ′ of x (since x×KAK(I) is compact). Over U ′×KAK(I), e′1, . . . , e

′
n generate

V .
We conclude that for each x ∈ X, there exists an open neighborhood U of x in X such

that V is freely generated by global sections over U ×K AK(I). Since X is compact, this
yields the claim.

By Lemma 2.1.13, this yields the following corollary.

Corollary 2.2.4. With notation as in Lemma 2.2.3, there exists a finite cover Y1, . . . , Yn
of X by affinoid subdomains, such that for each i ∈ {1, . . . , n}, the restriction of V to
Yi ×K AK(I) is freely generated by global sections. Moreover, if X is strictly affinoid over
K, each of the Yi may be taken to be strictly affinoid over K as well.

Remark 2.2.5. It would be interesting to extend Lemma 2.2.3 by replacing AK(I) by a
product AK(I1)×K · · · ×K AK(In); this would be a nonarchimedean analytic version of the
Quillen-Suslin theorem. In the case where X is strictly affinoid and each Ii equals either [0, 1]
or [1, 1], the desired result has been established by Lütkebohmert [35]; although that proof
predates the language of Berkovich spaces, it is similar in spirit to our proof of Lemma 2.2.3.

Remark 2.2.6. The question of finite generation of vector bundles becomes much more deli-
cate when formulated over the product of an affinoid space with an open disc or annulus. We
have discussed already the case where the base affinoid space is M(K) itself (Remark 1.2.15).
The general case is more complicated; however, some difficulties go away when we restrict
to considering φ-modules, as we will see in the next part of this lecture.

2.3 φ-modules in families

We now introduce families of φ-modules over a base. We start out at a level of generality
sufficient to cover both the arithmetic and geometric cases we will look at, then specialize
to the arithmetic case to get some extra structural information.

25



Hypothesis 2.3.1. Throughout § 2.3, let K be a finite extension of Qp. Let S be an
affinoid algebra over K, equipped with an endomorphism φS : S → S which is isometric for
the chosen norm | · |S on S. Define vS(·) = − log | · |S.

Definition 2.3.2. For r > 0, let Rr
S be the completed tensor product Rr

K⊗̂KS for the
Fréchet topology on Rr

K . In concrete terms, Rr
S consists of formal sums

∑
i∈Z ciz

i for which
for each s ∈ (0, r], vS(ci) + is → +∞ as i → ±∞. We may also view Rr

S as the ring
of analytic functions on the product space M(S) ×K AK(e−r, 1). We call RS = ∪r>0Rr

S

the Robba ring over S. Let Rbd
S be the subring of RS consisting of series with bounded

coefficients. (Note that these constructions do not depend on the choice of the norm | · |S.)

The ring RS is even more badly behaved than RK , since we lose the Bézout property. As
a result, we are forced to consider not just modules over RS, but sheaves over a corresponding
geometric space, when talking about families of φ-modules. (This fulfills a promise made in
Remark 1.2.15.)

Definition 2.3.3. Let q be a power of p. A (q-power) Frobenius lift on RS is an endomor-
phism φ of the form

∑
i ciz

i 7→
∑

i φS(ci)φ(z)i, where φ(z) ∈ RS is an element for which
φ(z)− zq has all coefficients of norm less than 1. If φ(z) ∈ RK , we say φ is split.

As in Exercise 1.2.12, there exists some δ ∈ (0, 1) such that |φ(z)/zq − 1|δ1/q < 1, and
any ρ ∈ [δ, 1) then satisfies | · |ρ = |φ(·)|ρ1/q . In geometric terms, for any ρ ∈ [δ, 1), φ induces

a finite (of degree q) étale surjective morphism from AK [ρ1/q, 1) to AK [ρ, 1). We say that
such a δ is good for φ.

Definition 2.3.4. Let φ be a Frobenius lift on RS. A φ-module over Rbd
S or RS is a finite

locally free module over the appropriate ring, equipped with an isomorphism Φ : φ∗M →M .
A family of φ-modules over RS is a coherent locally free sheaf on M(S)×K AK [δ, 1) for

some δ ∈ (0, 1) which is good for φ, equipped with an isomorphism with its φ-pullback over
some subspace of the form M(S) ×K AK [ε, 1) for some ε ∈ (0, 1). We consider these in the
direct limit category as δ → 1−; that is, morphisms between such objects can be defined
over M(S)×K AK [ε, 1) for any ε ∈ (0, 1). With this understanding, there is a base extension
functor from φ-modules over Rbd

S or RS to families of φ-modules over RS.

Definition 2.3.5. Let Rint
S be the subring of RS consisting of series whose coefficients have

norm at most 1. We say a φ-module over Rbd
S or RS, or a family of φ-modules over RS,

is étale if it is obtained by base extension from a finitely generated module M over Rint
S

equipped with an isomorphism φ∗M → M . In particular, an étale object must descend to
an étale φ-module over Rbd

S , which we call an étale model of the original object.

Lemma 2.3.6. The étale model of an étale φ-module over Rbd
S , or an étale family of φ-

modules over RS, is unique if it exists.

Proof. See [30, Proposition 6.5].

Corollary 2.3.7. Let E be a family of φ-modules over RS. Let M(S1), . . . ,M(Sn) be a finite
covering of M(S) by affinoid subdomains, on each of which φ acts. Then E is étale if and
only if for i = 1, . . . , n, the restriction of E to a family of φ-modules over RSi

is étale.
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Proof. This follows from Lemma 2.3.6 plus the fact that the algebras Rbd
S obey an analogue

of Kiehl’s theorem, which permits the gluing of the étale models. For the latter, see [30,
Proposition 3.10].

2.4 Arithmetic families

We now restrict to the case of interest in this lecture. Throughout § 2.4, continue to retain
Hypothesis 2.3.1.

Definition 2.4.1. We say that a φ-module over Rbd
S or RS, or a family of φ-modules over

RS, is arithmetic if φ is split and acts as the identity on S. Note that this condition allows
us to perform base changes along arbitrary maps from S to another affinoid algebra. By
contrast, in cases where φ acts nontrivially on S, we can only perform base change along
φ-equivariant maps.

Definition 2.4.2. Let E be an arithmetic family of φ-modules over RS. Since we may
perform arbitrary base changes on arithmetic families, we would like to study the variation
of the polygon of E as we specialize to various points x ∈ M(S). Unfortunately, since
Theorem 1.2.21 only applies to discretely valued fields, we cannot even define the slopes at
an arbitrary point of M(S), let alone say anything meaningful about them.

However, we can at least define what it means for E to be étale at a point x ∈M(S). To
define this, choose δ ∈ (0, 1) which is good for φ, such that E is defined over M(S)×KAK [δ, 1),
and the isomorphism φ∗E ∼= E is defined over M(S) ×K AK [δ1/q, 1). We then require the
existence of an affinoid neighborhood U of x in M(S) and a basis v1, . . . ,vn of E over
U ×K AK [δ, δ1/q] on which φ acts via a matrix F which is invertible over Rint

H(x).

We define the étale locus of E to be the set of x ∈M(S) at which E is étale.

Exercise 2.4.3. Check that the definition of étaleness does not depend on the choice of δ.
Check also that in case x ∈ Spm(S), Definition 2.4.2 is consistent with the usual definition
of étaleness for φ-modules over RK .

We conjecture the following about the structure of the étale locus.

Conjecture 2.4.4. Let E be an arithmetic family of φ-modules over RS. Then the étale
locus of E is locally closed, i.e., it is the intersection of an open set and a closed set in M(S).

Example 2.4.5. One cannot expect the étale locus to be either open or closed in general.
On one hand, take S = Qp〈t〉, and take E to be free on two generators e1, e2 satisfying

φ(e1) = e2, φ(e2) = e1 + p−1te2.

The étale locus in this case is the closed set |t| ≤ |p|, which is not open.
On the other hand, one can form a universal family of extensions of two rank 1 (φ,Γ)-

modules whose slopes are nonzero but sum to 0. By Remark 1.3.9, the fibre of this family
over any rigid analytic point is étale if and only if the family is nonsplit. Hence one can find
a sequence of points with étale fibres converging to the split extension, so the étale locus is
not closed.
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Conjecture 2.4.6. Let E be a family of φ-modules over RS. Then E is étale if and only is
E is étale at each point of M(S).

The only partial results to date on these conjectures are the following. This one is [34,
Theorem 3.12]; it is stated in terms of φ-modules, but it can probably be extended to families
of φ-modules without much extra work.

Theorem 2.4.7 (Liu). Let E be a φ-module over RS. Then for any x ∈ Spm(S), there is an
affinoid neighborhood U of x in M(S) such that for each y ∈ U ∩ Spm(S), the slope polygon
of E at y lies on or above the slope polygon of E at x (with the same endpoint).

This one is [30, Theorem 7.4].

Theorem 2.4.8 (Kedlaya-Liu). Let E be a family of φ-modules over RS which is étale at
some x ∈ Spm(S). Then there exists an affinoid neighborhood of x in M(S) over which E is
étale.

2.5 Families of (φ,Γ)-modules

The main reason to consider arithmetic φ-modules is that they receive an analogue of the
(φ,Γ)-module functor from arithmetic families of Galois representations. (Although some
of the results below assume a reduced affinoid base, we suspect that reducedness is not
essential.)

Definition 2.5.1. Let K be a finite extension of Qp. Let K ′
0 be the maximal unramified

subextension of K(µp∞). Let S be an affinoid algebra over Qp. An arithmetic (φ,ΓK)-module

(resp. arithmetic family of (φ,ΓK)-modules) over B†
K,rig⊗̂QpS is an arithmetic φ-module (resp.

an arithmetic family of φ-modules) over B†
K,rig⊗̂QpS equipped with a continuous action of

ΓK commuting with φ. Such an object is étale if its underlying φ-module (resp. family of
φ-modules) is étale.

Theorem 2.5.2 (Berger-Colmez). Let K be a finite extension of Qp. Let S be a reduced
affinoid algebra over Qp. Then there exists a fully faithful functor from the category of
finite locally free S-modules equipped with continuous actions of GK, to the category of étale
arithmetic (φ,ΓK)-modules over B†

K,rig⊗̂QpS. Moreover, the construction commutes with
arbitrary base change on S.

Proof. The hard part is to check the case where the original S-module admits a basis on
which the Galois action is integral for the spectral norm on S. This is [7, Théorème 4.2.9].
The general case follows from this either by a gluing argument [30, Theorem 3.11] or by a
short calculation involving Fitting ideals [11, Lemme 3.18].

When S = Qp, the functor in Theorem 2.5.2 reduces to the usual (φ,Γ)-module functor
from Theorem 1.3.8, which is an equivalence of categories. However, even some very simple
examples indicate that no such equivalence assertion can hold for more general base spaces.
(This example is from [7, Remarque 4.2.10].)
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Example 2.5.3 (Chenevier). Take K = Qp and S = Qp〈t, t−1〉. Form the étale arithmetic

(φ,ΓK)-module over B†
K,rig⊗̂QpS which is free on a single generator v and satisfies

φ(v) = tv, γ(v) = v (γ ∈ ΓK).

This cannot belong to the essential image of the Berger-Colmez functor, otherwise it would
admit a nonzero φ-invariant element over B̃†

K,rig⊗̂QpS, which it does not. (The tensorand on

the left is the extended Robba ring R̃` for ` an algebraic closure of the residue field of B†
K .)

See also Remark 2.5.5.

On the other hand, one does have the following positive result.

Theorem 2.5.4 (Kedlaya-Liu). Let K be a finite extension of Qp. Let S, T be reduced
affinoid algebras over Qp equipped with a homomorphism S → T which is inner (i.e., M(T )
is an affinoid subdomain of M(S) contained in the interior of M(S)). Let E be an étale
arithmetic (φ,ΓK)-module over B†

K,rig⊗̂QpS. Then E⊗̂ST belongs to the essential image of
the functor described in Theorem 2.5.2.

Proof. See [30, Theorem 4.3].

Remark 2.5.5. One can describe an obstruction to inverting the functor of Theorem 2.5.2
in terms of residual representations. For instance, in Example 2.5.3, one recovers from
E a family of representations over each residue disc. If E came from a global family of
representations, these local families would have their mod p reductions all simultaneously
trivialized upon replacing K by some finite extension. However, no such uniform choice is
possible in this case. See [30] for further discussion.

2.6 Galois cohomology

As originally observed by Herr [23, 24], there is a close relationship between the Galois
cohomology of a p-adic Galois representation and the structure of the associated (φ,Γ)-
module. It is natural to attempt to extend this relationship to families, but in doing so one
immediately encounters many open questions.

For technical reasons, we consider only (φ,ΓK)-modules over a relative Robba ring rather
than honest families. We leave the necessary modifications to handle families to the reader.

Hypothesis 2.6.1. Throughout § 2.6, let K be a finite extension of Qp. Let S be an affinoid

algebra over Qp. Let D be an arithmetic (φ,ΓK)-module over B†
K,rig⊗̂QpS.

Definition 2.6.2. Suppose that ΓK is procyclic; let γ be a topological generator. The Herr
complex of D is the complex Cφ,γ(D) given by

0 → D → D ⊕D → D → 0

where the first D is placed in degree 0, the map D → D ⊕ D is x 7→ ((φ − 1)x, (γ − 1)x),
and the map D ⊕ D → D is (x, y) 7→ (γ − 1)x − (φ − 1)y. The cohomology of Cφ,γ(D)
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is canonically independent of the choice of γ; we simply denote it as H i(D) here. (This
construction does not have a standard name; we call it the Herr cohomology of D, but it
might also make sense to call it Herr-Liu cohomology or even Galois cohomology.)

Let E be another arithmetic (φ,ΓK)-module over B†
K,rig⊗̂QpS. One has cup product maps

∪ : H i(D)×Hj(E) → H i+j(D ⊗ E); these are obvious to write down except for i = j = 1,
in which case one puts

(x, y), (z, w) 7→ y ⊗ γ(z)− x⊗ φ(w).

The only case where ΓK is not procyclic is where p = 2 and ΓK ∼= Z×p . In this case, we
take γ to be a generator of Z×p /{±1}, and replace D with its invariants under the action of
−1 ∈ Z×p everywhere in the definition of the Herr complex.

Remark 2.6.3. The Herr complex may be viewed as computing the continuous group co-
homology (or rather monoid cohomology) associated to the action of the monoid Z≥0 × ΓK .

Theorem 2.6.4 (Herr, Liu). Let V be a finite-dimensional Qp-vector space equipped with
a continuous action of GK. Then the continuous Galois cohomology of V is functorially
isomorphic to the cohomology of the Herr complex of the étale (φ,ΓK)-module D†

rig(V ) over

B†
K,rig associated to V . Moreover, this isomorphism is compatible with cup products.

Proof. It was shown by Herr [23] that the Galois cohomology is computed by the cohomology
of the Herr complex of the (φ,ΓK)-module over BK associated to V . The comparison of the
latter with the cohomology of the Herr complex over B†

K,rig was then made by Liu [33,
Theorem 1.1].

If we consider not necessarily étale (φ,ΓK)-modules, we still have a form of Tate local
duality; this can be used for instance to study the Galois cohomology of trianguline repre-
sentations.

Theorem 2.6.5 (Liu). The following hold for any D.

(a) The Herr cohomology groups H i(D) are finite dimensional over K for i = 0, 1, 2.

(b) The Euler characteristic χ(D) =
∑2

i=0(−1)i dimK H
i(D) equals −[K : Qp] rank(D).

(c) Let ω be the (φ,ΓK)-module associated to the Galois representation Qp(1) (i.e., the
cyclotomic character). Then the cup product pairing

H i(D)×H2−i(D∨ ⊗ ω) → H2(D ⊗D∨ ⊗ ω) → H2(ω) ∼= Qp

is perfect for i = 0, 1, 2.

Proof. See [33, Theorem 1.2].

Remark 2.6.6. Liu’s proof does not include an independent proof of Tate local duality for
Galois representations. However, Herr did give a proof of Tate duality using (φ,ΓK)-modules;
see [24].
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The study of Herr cohomology in families is in its infancy, so many questions remain
open. Here are a few of them, formulated as conjectures.

Conjecture 2.6.7. The Herr cohomology groups H i(D) are finite S-modules.

Conjecture 2.6.8. The formation of the Herr cohomology groups H i(D) commutes with
base change along a flat morphism S → T of affinoid algebras.

Remark 2.6.9. Conjecture 2.6.8 is plausible because for any affinoid subdomain M(T ) of
M(S), the morphism S → T of affinoid algebras is flat. This does not imply the conjec-
ture, however, because forming the base change of D involves a completed tensor product.
However, Conjecture 2.6.8 follows from Conjecture 2.6.7; see [40, Proposition 3.7].

Remark 2.6.10. For the Galois cohomology of a family of p-adic representations, the ana-
logue of Conjecture 2.6.7 has been proved by Belläıche; see [3, §2.3]. The analogue of
Conjecture 2.6.8 should follow by a similar argument.

These arguments do not suffice to imply the cases of Conjectures 2.6.7 and 2.6.8 on the
side of Herr cohomology, because one still lacks an analogue of Theorem 2.6.4. In fact, it may
be easier to first prove Conjecture 2.6.7 and then deduce a comparison theorem by invoking
Theorem 2.6.4 pointwise.

Belläıche has also established Conjecture 2.6.7 for a family of rank 1, not necessarily
arising from a family of representations. Again, see [3].

Conjecture 2.6.11. There exists a closed analytic subspace Z of M(S) such that the for-
mation of the Herr cohomology groups H i(D) commutes with any base change that factors
through the inclusion of an affinoid subdomain of M(S) \ Z.

Remark 2.6.12. Conjecture 2.6.11 (which we also expect to follow from Conjecture 2.6.7)
should allow extension of Theorem 2.6.5 to families, by induction on the dimension of S.
Compare [39, §6.1].

To conclude this lecture, we mention some techniques which may be helpful in establishing
the above conjectures. One of these is an alternate description of Herr cohomology in terms
of a one-sided inverse of φ.

Definition 2.6.13. Define the map ψ : B†
K,rig → B†

K,rig to be p−1 times the trace of φ.

Extend by continuity to B†
K,rig⊗̂QpS using the identity map on S.

One similarly obtains a map ψ : D → D which is additive and satisfies ψ(φ(r)v) = rψ(v)
for all r ∈ B†

K,rig and all v ∈ D. In particular, ψ ◦ φ = idD, so ψ is surjective and
D = φ(D)⊕ ker(ψ).

Lemma 2.6.14. For any γ ∈ ΓK of infinite order, the kernel of γ− 1 on B†
K,rig⊗̂QpS equals

L⊗Qp S, for L the subfield of K ′
0 fixed by γ.

The proof uses Berger’s differential operator, which also creates the link between p-adic
Hodge theory and p-adic differential equations (see Remark 1.3.17).
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Proof. By a calculation of Berger [4, Lemme 4.1], for γ sufficiently close to 1, the series

log(γ)

log(χ(γ))
= − 1

log(χ(γ))

∞∑
i=1

(1− γ)i

i

converges to an operator d on D, which does not depend on the choice of γ. A further
calculation [4, Lemme 4.2] shows that in fact

d = t(1 + π)
d

dπ
.

Let us specialize to the case D = B†
K,rig⊗̂QpS. If x is a ring element for which γ(x) = x

for some γ of infinite order, then in fact γ(x) = x for all γ in some open subgroup of ΓK .
Hence d(x) = 0 and so dx

dπ
= 0. If we write B†

K,rig⊗̂QpS as a Robba ring over K ′
0 ⊗Qp S in

the series variable z, we must also have dx
dz

= 0, but this forces x ∈ K ′
0 ⊗Qp S. The desired

result follows.

We expect the following to hold as in [12, Lemma I.5.1], although with a bit more work
required because the fixed subring of B†

K,rig⊗̂QpS under γ is no longer an integral domain,
let alone a field.

Conjecture 2.6.15. Suppose that γ is a topological generator of ΓK. Then the map γ − 1
is injective on Dψ=0.

We expect the following to hold as in [12, Proposition II.6.1].

Conjecture 2.6.16. Suppose that γ is a topological generator of ΓK. Then the map γ − 1
is a surjection from Dψ=0 to itself.

Assuming these lemmas, one gets the following alternate description of Herr cohomology.

Corollary 2.6.17. Suppose that γ is a topological generator of ΓK. Let Cψ,γ(D) be the
complex given by

0 → D → D ⊕D → D → 0

where the first D is placed in degree 0, the map D → D⊕D is x 7→ ((ψ−1)x, (γ−1)x), and
the map D⊕D → D is (x, y) 7→ (γ−1)x−(ψ−1)y. Then the map from Cφ,γ(D) → Cψ,γ(D)
given by the diagram

0 // D //

id
��

D ⊕D //

−ψ⊕id
��

D //

−ψ
��

0

0 // D // D ⊕D // D // 0

is a quasi-isomorphism. (If ΓK is not procyclic, one gets the same conclusion after modifying
the construction as in Definition 2.6.2.)
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Remark 2.6.18. Using ψ, it should be possible to follow Herr’s arguments in [24] to es-
tablish Conjecture 2.6.7 in case D is étale. For S = K, Liu adds two ingredients to prove
Theorem 2.6.5.

• Liu studies objects which resemble (φ,ΓK)-modules except that rather than being
locally free, they are killed by a power of t.

• Liu also makes a close analysis of objects of rank 1 (following Colmez).

Both of these steps should extend to families. What is missing is the connection between
these special cases and the general results, using slopes. For instance, for S = K, to get
finiteness of cohomology, one can start with an arbitrary module D, then replace it by a
nonsplit extension by a rank 1 module (compare Remark 1.3.9), repeat until one gets a pure
module of integer slope, then twist by a power of t to get an étale module. Since one has
finiteness for the étale module, for its twist, and for the rank 1 modules, one gets finiteness
for the original module.

Unfortunately, due to the difficulties associated with slope filtrations in families, we do
not presently have the ability to make such arguments in families. For instance, given D,
we do not have a method for forming an extension 0 → D → E → F → 0 with F of rank 1,
such that E is pure of some slope.

Remark 2.6.19. Herr cohomology in families is important for the construction and analysis
of Selmer groups, particularly for nonordinary representations. See for example the work of
Pottharst [39] and Belläıche [3].

3 Geometric families of φ-modules

In this lecture, we consider families of φ-modules over a rigid analytic base space on which φ
acts as a Frobenius lift. We will describe some results relevant to the study of Galois represen-
tations of étale fundamental groups, including an application to the study of Rapoport-Zink
period domains.

Beware that results stated in this lecture should all be considered work in progress, since
no reference is yet available. We plan to prepare a detailed manuscript later, in conjunction
with Ruochuan Liu. It is our understanding that similar results (also covering the link to
p-divisible groups, which we do not treat) have been obtained by Faltings, but as of this
writing we do not have a reference for that approach either.

3.1 Geometric families of φ-modules

In order to talk about geometric families of φ-modules, we consider only a special class of
base spaces. Throughout § 3.1, retain Hypothesis 2.3.1.

Definition 3.1.1. A reduced affinoid algebra S over K is said to have good reduction if it has
the form R⊗oK

K for Spf R a formal scheme which is smooth affine over oK , equipped with
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the spectral norm. In this case, R may be characterized as the subring S◦ of S consisting of
power-bounded elements, and mKR may be characterized as the ideal S◦◦ of S◦ consisting
of topologically nilpotent elements. Define the reduction of S as the quotient S = S◦/S◦◦.

Example 3.1.2. The simplest example of an affinoid algebra of good reduction is the Tate
algebra S = Qp〈T1, . . . , Tn〉. In this case, the spectral norm coincides with the (1, . . . , 1)-
Gauss norm, and S◦ is the completion of Zp[T1, . . . , Tn] for this norm (or equivalently, for
the ideal (p)). Another useful example is S = Qp〈T1, . . . , Tn, T

−1
1 , . . . , T−1

n 〉 again carrying
the (1, . . . , 1)-Gauss norm, in which case S◦ is the completion of Zp[T1, . . . , Tn, T

−1
1 , . . . , T−1

n ]
for this norm.

Definition 3.1.3. Let S be an affinoid algebra over K of good reduction. We say that a
φ-module over Rbd

S or RS, or a family of φ-modules over RS, is geometric if the action of φ
on S induces a power of the absolute Frobenius on S◦/S◦◦. We do not require the action of
φ on RS to be split.

Remark 3.1.4. For geometric families, one can only perform base change along maps S →
T in case T itself is equipped with a suitable Frobenius lift and the map is Frobenius-
equivariant. For instance, one can only perform base change to a point if it is fixed by
Frobenius, and such fixed points are indexed by the points of Spm(S) by Exercise 3.1.5
below. This suggests that we should be looking at the Berkovich spectrum not of S but of
its reduction; this is the point of view we adopt in the next part of the lecture.

Exercise 3.1.5. Let S be an affinoid algebra over K of good reduction, and suppose φS
induces a power of the absolute Frobenius on S. Prove that every point of Spm(S) lifts
uniquely to a point of SpmS fixed by φS. (One might call this lift the Teichmüller lift with
respect to the map φS.)

Definition 3.1.6. For e ∈ S and e ∈ S◦ a lift of e, the completed localization S〈e−1〉 =
S〈t〉/(te − 1) carries an extension of φ, and is canonically independent of the choice of the
lift e. We thus denote it by S〈e〉−1.

3.2 A lifting construction

We would like to study the variation of slope filtrations in a geometric φ-module over RS.
However, we have already seen that among the rigid analytic points of S, we can only perform
base change to one lift of each closed point of S (the Teichmüller lift). In order to carry out
more base changes, we need a richer version of the Teichmüller lift construction that applies
to Berkovich analytic points also. We will later link these lifts to p-adic Hodge theory via a
version of the field of norms construction.

Hypothesis 3.2.1. Throughout § 3.2, let R be an Fp-algebra which is perfect, i.e., for which
the p-power map is an isomorphism. Equip R with the trivial norm, for which |r| = 0 if
r = 0 and |r| = 1 otherwise. We may then view R as a Banach algebra over the field Fp
equipped with the trivial norm. Put S = W (R)[1

p
], where W (R) is the p-typical Witt ring,

viewed as a Banach algebra over Qp.
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Remark 3.2.2. Note that M(R) naturally contains not just Spm(R) but the whole prime
spectrum Spec(R); namely, each prime ideal p corresponds to the seminorm induced by the
trivial norm on Spec(R)/p.

Definition 3.2.3. Given x ∈ M(R), define the function x̃ : S → [0,+∞) as follows. Given
f ∈ S, since R is a perfect Fp-algebra, we may write f as a sum

∑∞
i=m[fi]p

i for some m ∈ Z
and some fi ∈ R (where [fi] indicates the Teichmüller lift). Moreover, this expression is
unique up to adding or removing leading zeroes from the sequence fm, fm+1, . . . . Put

x̃(f) = max
i≥m

{p−ix(fi)}.

The right side makes sense because p−ix(fi) is bounded above by p−i and so tends to 0 as
i→ +∞, forcing the maximum to exist.

Lemma 3.2.4. For any x ∈M(R), the function x̃ is a multiplicative seminorm on S bounded
above by the p-adic norm, so defines a point λ(x) ∈M(S).

Proof. Since x(r) ≤ 1 for all r ∈ R, x̃ is bounded above by the p-adic norm. To check that
x is a seminorm, we first note that for r1, r2 ∈ R, we have [r1]+[r2] =

∑∞
i=0[Qi(r1, r2)

1/pi
]pi for

some homogeneous polynomialsQi(x, y) ∈ Z[x, y] of degree pi. It follows that x(Qi(r1, r2))
1/pi ≤

max{x(r1), x(r2)}, and so

x̃([r1] + [r2]) ≤ max
i
{x(r1), x(r2)} = max

i
{x̃([r1]), x̃([r2])}. (3.2.4.1)

Given two general elements f, g ∈ S, we can write f =
∑∞

i=m[fi]p
i and g =

∑∞
i=m[gi]p

i for
some m ∈ Z and some fi, gi ∈ R. We then have

x̃(f + g) ≤ max
i
{x̃([fi]p

i + [gi]p
i)}

≤ max
i
{max{x̃([fi]p

i), x̃([gi]p
i)}}

= max
i
{x̃(f), x̃(g)}.

Hence x̃ is indeed a seminorm.
To check that x̃ is multiplicative, again take two general elements f, g ∈ S. Since x̃ is

multiplicative on Teichmüller lifts, it is easy to check that x̃(fg) ≤ x̃(f)x̃(g); it remains
to check for equality, which we need only do in case x̃(f), x̃(g) are both positive. Choose
the minimal indices j, k for which [fj]p

j and [gk]p
k attain their maximal values, define f ′ =∑

i≥j[fi]p
i, g′ =

∑
i≥k[gi]p

i, and observe that x̃(f ′) < x̃(f), x̃(g′) < x̃(g). It follows that
x̃(f ′g′) = x̃(fg), so we may replace f, g by f ′, g′ for the purposes of this calculation. That
is, we may assume fi = 0 for i < j and gi = 0 for i < k.

With this assumption, when we write fg =
∑

i[hi]p
i, we have hi = 0 for i < j + k, and

hj+k = fjgk. Hence x̃(fg) ≥ x̃(f)x̃(g), from which it follows that x̃ is multiplicative.
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Definition 3.2.5. Given y ∈ M(S), define the function y : R → [0,+∞) by the formula
y(r) = y([r]). Note that for r ∈ R and r̃ ∈ W (R) lifting r, the sequence φ−n(r̃p

n
) converges to

[r] for the p-adic norm. It thus converges under y uniformly for all y ∈M(S); in particular,
for n sufficiently large, we have y(φ−n(r̃))p

n
= y(r).

Lemma 3.2.6. For y ∈ M(S), the function y is a multiplicative seminorm on R bounded
above by the trivial norm, so defines a point µ(y) ∈M(S).

Proof. Given r, s ∈ R, choose any r̃, s̃ ∈ W (R) lifting them. As in Definition 3.2.5, for n
sufficiently large, we have y(t) = y(φ−n(t̃)) for (t, t̃) = (r, r̃), (s, s̃), (r + s, r̃ + s̃). We deduce
that y is a seminorm from this observation plus the fact that y is a seminorm. Since y is
evidently multiplicative, we have the desired result.

Theorem 3.2.7. The functions λ : M(R) →M(S) and µ : M(S) →M(R) are continuous.
Moreover, for any x ∈ M(R), y ∈ M(S), we have (µ ◦ λ)(x) = x and (λ ◦ µ)(y) ≥ y. (The
latter means that for any f ∈ S, (λ ◦ µ)(y)(f) ≥ y(f).)

Proof. We first check that λ is continuous. It suffices to check that for any f ∈ S and ε > 0,
the sets {x ∈M(R) : λ(x)(f) > ε} and {x ∈M(R) : λ(x)(f) < ε} are open in M(R). Write
f =

∑∞
i=m[fi]p

i, and choose j for which p−j < ε; then λ(x)([fi]p
i) < ε for all x ∈ M(R) and

all i ≥ j. We thus have

{x ∈M(R) : λ(x)(f) > ε} =

j−1⋃
i=m

{x ∈M(R) : x(fi) > piε}

{x ∈M(R) : λ(x)(f) < ε} =

j−1⋂
i=m

{x ∈M(R) : x(fi) < piε},

so both sets are open.
We next check that µ is continuous. It suffices to check that for any r ∈ R and ε > 0, the

sets {y ∈ M(S) : µ(y)(r) > ε} and {y ∈ M(S) : µ(y)(r) < ε} are open in M(S). However,
these sets can also be defined as {y ∈ M(S) : y([r]) > ε} and {y ∈ M(S) : y([r]) < ε}, in
which form they are manifestly open.

The equality (µ ◦λ)(x) = x is evident from the definitions. The inequality (λ ◦µ)(y) ≥ y
follows from the definition of λ and the observation that (λ ◦ µ)(y)([r]) = y([r]) for any
r ∈ R.

Remark 3.2.8. Note that we distinguish points x, y ∈M(R) even if they define equivalent
seminorms, i.e., even if x = yc for some c > 0. This is important because equivalent
seminorms do not have equivalent images under λ. This is one of several reasons why it is
better to consider multiplicative seminorms than Krull valuations in this discussion.

Here is a simple example to illustrate that λ ◦ µ need not be the identity map.
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Example 3.2.9. Put R = ∪∞n=1Fp[Xp−n
]. Put S0 = Qp〈T 〉; we may then identify S with

the completion of the direct limit of the system

S0
φ→ S0

φ→ · · · .

Under this identification, T may be identified with the Teichmüller lift [X].
Let y0 ∈M(S0) be the seminorm on S0 factoring through S0/(T − p)S0. This seminorm

extends uniquely to y ∈M(S) because the polynomials T p
n − p are all irreducible over Qp.

We now compute µ(y). Note first that µ(y)(X) = y(T ) = p−1 and that µ(y)(r) = 1 for
r ∈ F×p . These imply that µ(y)(r) ≤ p−p

−n
whenever r ∈ Fp[X1/pn

] is divisible by Xp−n
, so

µ(y)(r) = 1 whenever r ∈ F×p + Xp−nFp[Xp−n
]. We conclude that for r ∈ R, µ(y)(r) equals

the X-adic norm on R with the normalization µ(y)(X) = p−1. In particular, we have a strict
inequality (λ ◦ µ)(y) > y.

3.3 Lifting for Robba rings

We now adapt the lifting construction from the previous section to the relative Robba rings
over which we are defining geometric families of φ-modules.

Hypothesis 3.3.1. Throughout § 3.3, let K be a finite unramified extension of Qp equipped
with its unique p-power Frobenius lift, with residue field k. Let S be an reduced affinoid
algebra overK of good reduction. Let E be a geometric family of φ-modules overRS. Let δ0 ∈
(0, 1) be any value which is good for φ, such that E can be defined as a coherent locally free

sheaf over M(S)×KAK [δ0, 1), and the φ-action is an isomorphism over M(S)×KAK [δ
1/q
0 , 1);

note that the same properties hold if δ0 is replaced by any δ ∈ [δ0, 1).

Definition 3.3.2. Equip k and S with the trivial norm. Fix a choice of ω ∈ (0, 1), and

equip k′ = k((z)) and S
′
= S((z)) = S⊗̂kk

′ with the z-adic norm normalized by |z| = ω.

Let S
perf

and S
′,perf

be the completed perfect closures of S and S ′, respectively. As in

Example 1.4.5, the Frobenius lift φS defines a map from S◦ into the Witt ring W (S
perf

).

Similarly, the Frobenius lift φ defines a map from Rint
S into W (S

′,perf
).

Definition 3.3.3. Given a point x ∈ M(S
′
) = M(S

′,perf
) and a quantity ρ ∈ (0, 1), apply

the map λ from Lemma 3.2.4 to xlogω ρ ∈ M(S
′
) to produce a multiplicative seminorm on

W (S
′
). For ρ = e−r, this seminorm extends by continuity to a multiplicative seminorm

λ(x, ρ) on Rr
S. One obtains the same function by restricting the map | · |ρ on R̃r

κx
, for κx

the completion of the perfect closure of H(x), along the map Rr
S → R̃r

κx
induced by φ as in

Example 1.4.5.

Lemma 3.3.4. Choose any x ∈M(S
′
).

(a) For any f ∈ S◦((z)) with x(f) > 0, there exists δ ∈ [δ0, 1) such that for ρ ∈ [δ, 1),
λ(x, ρ)(f) = λ(x, ρ)([f ]).
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(b) For all ρ ∈ [δ0, 1), λ(x, ρ)(z) = λ(x, ρ)([z]) = ρ.

Proof. For (a), note that as ρ tends to 1, λ(x, ρ)([f ]) = x(f)logω ρ tends to 1 while λ(x, ρ)(f−
[f ]) is bounded above by p−1. Hence there exists δ ∈ [δ0, 1) such that for ρ ∈ [δ, 1), λ(x, ρ)(f−
[f ]) < λ(x, ρ)([f ]) and so λ(x, ρ)(f) = λ(x, ρ)([f ]).

For (b), note that for arbitrary ρ ∈ [δ0, 1), we have by Exercise 1.2.12

λ(x, ρ)(z) = λ(x, ρ1/q)(φ(z)) = λ(x, ρ1/q)(zq)

λ(x, ρ)([z]) = ρ = λ(x, ρ1/q)([z])q.

Hence if the desired result holds for ρ ∈ [δ, 1), it also holds for ρ ∈ [δ′, 1) for δ′ = max{δ0, δq}.
This yields the desired result.

Definition 3.3.5. For x ∈ M(S
′
) and ρ ∈ [δ0, 1), by Lemma 3.3.4, we may identify λ(x, ρ)

with a point of M(S)×K AK [ρ, ρ]. These points have the property that

φ(λ(x, ρ)) = λ(x, ρq) (x ∈M(S
′
), ρ ∈ [δ

1/q
0 , 1)).

Remark 3.3.6. Beware that a point of M(S) ×K AK [δ0, 1) is in general not determined
by its projections onto the two factors. This is because the fibred product in the category
of nonarchimedean analytic spaces is formed by taking completed tensor products at the
level of rings; as in the case of schemes, this construction is not compatible with the fibred
product in the category of sets. This is relevant for the following exercise.

Exercise 3.3.7. Suppose that x ∈ Spm(S) and y ∈ M(S
′
) is the ω-Gauss seminorm with

respect to x. Check that for ρ ∈ [δ0, 1), λ(y, ρ) is the ρ-Gauss seminorm with respect to the
Teichmüller lift of x (see Exercise 3.1.5).

3.4 Variation of slope filtrations

We are now ready to consider the variation of slope filtrations in a geometric φ-module
over RS, by adapting arguments introduced by Hartl in an analogous equal-characteristic
situation [20]. Throughout § 3.4, retain Hypothesis 3.3.1.

Definition 3.4.1. For x ∈M(S
′
), we write Ex for the base extension of E to R̃κx , and define

the slope polygon of E at x as the slope polygon of Ex. In particular, we say E is étale at x
if Ex is étale, and we refer to the set of x ∈M(S

′
) at which E is étale as the étale locus of E .

In contrast to the arithmetic case, one has fairly good control over the slope polygon in
general, and the étale locus in particular. We will describe this control in Corollary 3.4.7
below. To obtain this control, we prove a more refined result which we will use in the
application to Rapoport-Zink spaces. This requires the use of some rings defined in terms
of the seminorms | · |x,ρ, in order to perform base extension to “localize” around a point of

M(S
′
).
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Definition 3.4.2. For T an open subset of M(S
′
) and any r ∈ (0,− log δ0], let Rr

S(T ) be
the (separated) Fréchet completion of Rr

S with respect to the seminorms λ(x, ρ) for all x ∈ T
and all ρ with − log ρ ∈ (0, r]. Let RS(T ) be the union of the Rr

S(T ) over all r > 0.

Remark 3.4.3. By Theorem 3.2.7, on one hand λ(T ) ⊆ µ−1(T ) because µ◦λ is the identity
map. On the other hand, each y ∈ µ−1(T ) is dominated by (λ ◦ µ)(y) ∈ λ(T ). It follows
that RS(T ) may also be characterized as the Fréchet completion of Rr

S with respect to
the seminorms induced by the points in µ−1(T ). These form an open subset of M(S) ×K

AK [e−r, 1).

Definition 3.4.4. We say a finite algebra B over Rr
S(T ) is admissible if it is unramified

with respect to λ(x, ρ) for all x ∈ T and all ρ with − log ρ ∈ (0, r]. Such an algebra carries
a supremum seminorm over λ(x, ρ) for all x ∈ T and all ρ with − log ρ ∈ (0, r] (computed
as the supremum over all seminorms over λ(x, ρ)). We say an algebra C over Rr

S(T ) is
pro-admissible if it is the Fréchet completion of a union of finite admissible algebras over
Rr
S(T ) for the supremum seminorms.

Lemma 3.4.5. Suppose we are given a point x ∈ M(S
′
) and a finite étale algebra A over

R̃int
κx

. Then there exist r > 0, an open neighborhood T of x in M(S
′
), and an admissible

finite algebra B over Rr
S(T ) to which φ extends, such that B ⊗Rr

S(T ) R̃int
κx

contains A.

Proof. Approximate sufficiently well the minimal polynomials of some generators of A over
R̃int
κx

.

Using the rings Rr
S(T ), we can give a strong analogue for geometric families of Theo-

rem 2.4.8. The proof follows Hartl’s [20, Proposition 1.7.2], which in turn is based on [27,
Lemma 6.1.1]. (The latter is also the model for the proof of Theorem 2.4.8.)

Theorem 3.4.6. Suppose x ∈M(S
′
) belongs to the étale locus of E. Then there exist r > 0,

an open neighborhood T of x in M(S
′
), and a pro-admissible algebra C over RS(T ) to which

φ extends, such that E ⊗Rr
S
C admits a basis of horizontal sections.

Sketch of proof. Since Ex is étale, Ex is represented by a finite free module over R̃r
κx

for some

r ∈ (0,− log δ0], admitting a basis e1, . . . , en on which φ acts via a matrix A ∈ GLn(R̃r/q
κx ∩

R̃int
κx

). Let ` be an algebraic closure of κx. By Theorem 1.4.7 and the assumption that Ex is

étale, there exists U ∈ GLn(R̃r
`) such that U−1Aφ(U) is the identity matrix In.

By Lemma 3.4.5, we can choose a nonnegative integer m, an open neighborhood T of
x in M(S) an admissible finite algebra B over Rr/qm

S (T ) to which φ extends, and matrices
V,W ∈ Mn(φ−m(B)), such that λ(y, ρ)(VW − In) < 1 for all y ∈ T and all ρ ∈ [e−r, e−r/q],
and λ(y, ρ)(V −1Aφ(V ) − In) < 1 for all y ∈ T and ρ = e−r/q. By replacing r by r/qm if
necessary, we may force ourselves into the case m = 0.

By arguing now as in [27, Lemma 6.1.1, Lemma 6.2.1], we can construct W ∈ GLn(B)
with λ(y, ρ)(W−1Aφ(W ) − In) < 1 for all y ∈ T and all ρ ∈ [e−r, 1). From here, it is
straightforward to construct C.
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Corollary 3.4.7. The étale locus of E is an open subset of M(S
′
).

It should be possible to prove a slightly stronger result using a slightly more complicated
argument; since we do not need this here, we leave it as an open problem.

Conjecture 3.4.8. The slope polygon of Ex is lower semicontinuous as a function on M(S
′
).

Remark 3.4.9. Note that Corollary 3.4.7 is included in Conjecture 3.4.8 because the pos-
sible values for the slope polygon are discrete. By contrast, in the arithmetic case, lower
semicontinuity of the slope polygon would only imply that the étale locus is locally closed.

3.5 Relative p-adic Hodge theory

It is expected that the correspondence between Galois representations and (φ,Γ)-modules
should extend to a correspondence between representations of arithmetic fundamental groups
and geometric families of (φ,Γ)-modules. Using techniques introduced by Faltings, An-
dreatta and Brinon [1] have introduced such a correspondence under somewhat restrictive
hypotheses. (See the work of Andreatta and Ioviţa [2] for some typical applications.)

Although the base ring S = K〈T1, . . . , Tn, T
−1
1 , . . . , T−1

n 〉 which we will use later does
satisfy the hypotheses of Andreatta and Brinon, what we wish to do still falls outside their
framework because we do not have an étale object over that whole space. Our objects will
only be étale over a rather peculiar subspace which is not itself the product of a relative
annulus with a subspace of the base. Nonetheless, one half of the correspondence, the
passage from geometric families of (φ,Γ)-modules to representations of fundamental groups,
is sufficiently explicit that we can carry it out by hand. (By contrast, in the case of absolute
families, it is the passage from Galois representations to (φ,Γ)-modules that works most
easily.)

Hypothesis 3.5.1. Throughout § 3.5, take ω = p−p/(p−1). Let K be a complete (but not
necessarily finite) unramified extension of Qp. Put S = K〈T1, . . . , Tm, T

−1
1 , . . . , T−1

m 〉 for
some nonnegative integer m. Equip S with the absolute Frobenius lift φS taking Ti to T pi for
i = 1, . . . ,m. Fix the isomorphism B†

K,rig⊗̂KS ∼= RS taking π ⊗ 1 to z. Equip RS with the

split absolute Frobenius lift induced by the usual Frobenius lift π 7→ (π + 1)p − 1 on B†
K,rig

and the Frobenius lift φS on S.

Definition 3.5.2. Choose a coherent sequence ζpn of primitive pn-th roots of unity. Let Φn

be the minimal polynomial of ζpn over K. Identify M(W (S
perf

[1
p
])) with the inverse limit

of the system · · · φ→ M(S)
φ→ M(S). Given a sequence x = (. . . , x1, x0) in this limit, let

yn ∈ M(S((z))) be the unique extension of xn for which yn(Φn(π + 1)) = 0. These again

form a coherent sequence, so define an element y of M(W (S
′,perf

)[1
p
]). Let ψ denote the map

x 7→ y.

Definition 3.5.3. Consider the semidirect product Γ̃K ∼= ΓK n Zm
p acting on RS with ΓK

acting on B†
K,rig as usual and acting trivially on S, and with (e1, . . . , em) ∈ Zm

p sending Ti to
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(1 + π)eiTi. We define a geometric family of (φ, Γ̃K)-modules over RS by analogy with the
definition of geometric families of (φ,ΓK)-modules.

Definition 3.5.4. Let E be a geometric family of (φ, Γ̃K)-modules over RS. Let U ⊆M(S
′
)

denote the étale locus of E .
Given any x0 ∈ M(S), lift x0 to some x ∈ M(W (S

perf
)[1
p
]). Suppose that y = ψ(x)

belongs to U . By Theorem 3.4.6, we obtain a real number r > 0, an open neighborhood T of
µ(y) in M(S

′
), and a pro-admissible finite algebra C over RS(T ) to which φ extends, such

that E ⊗Rr
S
Rr
S(T ) admits a basis of horizontal sections.

By Remark 3.4.3, for n sufficiently large, Rr
S(T ) maps to the coordinate ring of an open

neighborhood of yn. By pulling back along ψ, we obtain an open neighborhood Vn of xn in
M(S) and a profinite étale cover of Vn ×K K(µpn) with automorphism group contained in
GLrank(E)(Zp).

We may use the action of Γ̃K to perform Galois descent on the profinite étale cover; this
yields a profinite étale cover of some open neighborhood V0 of x0, again with automorphism
group contained in GLrank E(Zp). We thus obtain from this data a Zp-local system on V0 in
the sense of de Jong [15].

If we compare the Zp-local systems on two overlapping open subsets of U , we only get a
canonical isomorphism of the induced Qp-local systems. (That is because in Theorem 3.4.6,
only the Qp-span of the horizontal sections is independent of the choice of the basis, not the
Zp-span.) As a result, we produce a Qp-local system on all of U .

3.6 Rapoport-Zink spaces

We conclude with an application of geometric families of φ-modules to the study of Rapoport-
Zink period domains. While the conjecture involves an arbitrary reductive Lie group, we
restrict to the case of GLn for ease of exposition. See [21, §1] for a brief introduction to the
general case, and the original book of Rapoport and Zink [41] for further details.

Definition 3.6.1. Let K0 be the completion of the maximal unramified extension of Qp.
Fix a positive integer n and a multiset HT of n integers. Let F be the flag variety over
K0 parametrizing exhaustive filtrations with Hodge-Tate weights equal to HT ; the trivial
bundle O⊕n

F carries a universal filtration Fil·.
Fix a choice of b ∈ GLn(K0). For each point x of the Berkovich analytification Fan of F ,

we obtain a filtered φ-module Dx over H(x) with underlying space H(x)n, action of φ given
by b, and filtration specified by the pullback of the universal filtration over F .

Theorem 3.6.2 (Rapoport-Zink). There exists an open subspace Fwa of the Berkovich
analytification Fan of F , such that for x ∈ Fan, x ∈ Fwa if and only if Dx is weakly
admissible.

Proof. See [41, Proposition 1.36].

At first glance, it might seem reasonable to construct a Qp-local system over Fwa whose
restriction to any rigid analytic point x is the representation space of the crystalline Galois
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representation associated to Dx. It was observed by Rapoport and Zink that this is not
possible; one must instead replace Fwa by some open subspace Fa which happens to contain
the same rigid analytic points as Fwa. Hartl defines a candidate for this space using a variant
of the field of norms construction, as follows.

Definition 3.6.3. Given x ∈ Fan, let Cx be a completed algebraic closure of H(x). Let
Ẽ+ be the set of sequences (a0, a1, . . . ) in oCx/poCx for which an = apn+1 for each n; these
naturally form a ring, and the function vẼ carrying a nonzero sequence (a0, a1, . . . ) to the
stable value of pnvp(an) is a valuation on Ẽ+.

Let ε = (ε0, ε1, . . . ) ∈ Ẽ+ be an element with ε0 = 1 and ε1 6= 1. It turns out that
Ẽ = Frac Ẽ+ is complete and algebraically closed. In case H(x) is finite over Qp, the integral
closure of Fp((ε− 1)) in Ẽ is dense in Ẽ.

Define the element t ∈ B†
K0,rig

by putting π = [ε]− 1 and

t = log[ε] =
∞∑
i=1

(−1)i−1

i
πi.

Using this homomorphism θ, one can then imitate the passage from M(D) to M ′(D) using
the filtration to make a φ-module over R̃Cx , and declare D to be admissible if the resulting
φ-module is étale. Note that admissible implies weakly admissible by elementary properties
of slope filtrations. Note also that for a rigid analytic point, weakly admissible implies admis-
sible by Theorem 1.3.14, but this fails for general points; see for instance [22, Example 3.6].

The main theorem is then the following, which answers a question of Rapoport and Zink
[41, p. 29]. In the important case where the Hodge-Tate weights belong to {0, 1}, part (a)
is due to Hartl [21, Theorem 5.2] using a slightly different argument.

Theorem 3.6.4. Let Fa be the subset of x ∈ F for which Dx is admissible.

(a) The space Fa is an open subspace of Fwa.

(b) There exists a Qp-local system on Fa whose restriction to any rigid analytic point x is
the representation space of the crystalline Galois representation associated to Dx.

Proof. Recall that F is covered by Zariski open subsets which are isomorphic to affine spaces
(the exact shape of these being unimportant here). We may thus find an affinoid subspace
of Fan containing x and isomorphic to M(S) for S = K0〈T1, . . . , Tm, T

−1
1 , . . . , T−1

m 〉 for some
m. (Note that we use polycircles rather than polydiscs; this is possible because the closed
unit disc |T | ≤ 1 can be covered by the two closed unit circles |T | = 1 and |T − 1| = 1, so a
polydisc can be covered by finitely many polycircles.)

Equip D = S⊕n with the universal filtration over M(S). Equip B†
K0,rig

⊗̂K0S
∼= RS

with the actions of φ and Γ̃K0 suggested in Hypothesis 3.5.1. If we equip M(S) with the
φ-action specified by b and the trivial action of Γ̃K0 , we obtain actions of φ and Γ̃K0 on
M(D) = B†

K0,rig
⊗̂K0D which turn it into a geometric family of (φ, Γ̃K0)-modules. We can
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modify using the universal filtration over F to obtain another geometric family M ′(D) of
(φ, Γ̃K0)-modules over RS. Using this family, we deduce (a) and (b) using the construction
of Definition 3.5.4.

Remark 3.6.5. The original case of interest is when all of the Hodge-Tate weights belong
to {0, 1}. This case pertains to p-divisible groups in the following fashion. Let G be a p-
divisible group (Barsotti-Tate group) of height h and dimension d. For any complete discrete
valuation ring oK of characteristic 0 with residue field Falg

p , and any deformation of G to a

p-divisible group G̃ over oK , Grothendieck and Messing [36] associate an extension

0 → (Lie G̃∨)∨K → D(G)K → Lie G̃K → 0

where D denotes the crystalline Dieudonné module functor. We thus end up with a K-point
in the Grassmannian F of (h− d)-dimensional subspaces of D(G)K0 .

Grothendieck asked [19] which points of F can occur in this fashion. This question
remains open; however, Rapoport and Zink proved [41, 5.16] that all such points belong
to the image of a certain period morphism from the generic fibre of a certain universal
deformation space. Using results of Faltings, Hartl [22, Theorem 3.5] has shown that his
space Fa is exactly the image of the Rapoport-Zink period morphism.
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