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Origins

Starting point: polynomials and congruences

Theorem (Chen, 1995; some special cases known previously)

For any positive integers m, n, the number of distinct maps
f : {0, . . . , n − 1} → Z/mZ induced by polynomials in Z[x ] is

n−1∏
k=0

m

gcd(m, k!)
=

min{n−1,m−1}∏
k=0

m

gcd(m, k!)
.

To see this, represent a general polynomial F ∈ Z[x ] as a (finite) sum

F =
∞∑
k=0

Fkx(x − 1) · · · (x − k + 1) with Fk ∈ Z.

The represented function f : {0, . . . , n − 1} → Z/mZ depends only on
F0, . . . ,Fn−1. It will suffice to verify that f vanishes if and only if Fk is
divisible by m/ gcd(m, k!) for k = 0, . . . , n − 1.
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Origins

Polynomials and congruences (continued)

If m/ gcd(m, k!) divides Fk for all k ∈ {0, . . . , n − 1}, then the evaluation
of the k-th summand Fkx(x − 1) · · · (x − k + 1) at any x ∈ {0, . . . , n − 1}
is divisible by Fkk! and hence by m.

Otherwise, let x be the smallest k ∈ {0, . . . , n − 1} for which
m/ gcd(m, k!) does not divide Fk . Then the evaluation of the k-th
summand at x is divisible by m for all k < x ; zero for all k > x ; and not
divisible by m for k = x .

Note the analogy with an observation of Pólya (1919): every polynomial in
Q[x ] has a unique representation as

∞∑
k=0

Fk

(
x

k

)
=
∞∑
k=0

Fk
x(x − 1) · · · (x − k + 1)

k!
with Fk ∈ Q,

and a polynomial in Q[x ] maps Z to Z if and only if Fk ∈ Z for all k .
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Origins

An undergraduate research problem

Any function f : {0, . . . , n − 1} → Z/mZ represented by a polynomial is
congruence-preserving: for all d dividing m, if a, b ∈ {0, . . . , n − 1} satisfy
a ≡ b (mod d), then f (a) ≡ f (b) (mod d). Chen observed that the
converse sometimes fails (e.g., for n = m = 8), and asked the following.

Problem (Gallian; University of Minnesota, Duluth; REU 1995)

For which pairs (n,m) are all congruence-preserving functions
f : {0, . . . , n − 1} → Z/mZ represented by a polynomial in Z[x ]?

Theorem (Bhargava, 1995)

Let
∏

p p
ep be the prime factorization of m. Then every

congruence-preserving function f : {0, . . . , n − 1} → Z/mZ is represented
by a polynomial in Z[x ] if and only if for each p < n/2, either (p = 2 and
ep ≤ 2) or (p > 2 and ep ≤ 1).
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p-orderings and integer-valued polynomials

Don’t stop there: Bhargava’s senior honors thesis

What if we replace {0, . . . , n − 1} with some infinite1 subset S of Z? Can
we again explicitly describe the maps from S into Z/mZ represented by
polynomials?

Better yet, replace Z and Q with a Dedekind domain R and its fraction
field K . Can we explicitly describe the polynomials in K [x ] that map some
subset S ⊆ R into R? Many special cases had been studied previously.

Bhargava discovered a simple uniform answer to this question. In the
special case where R is a discrete valuation ring, one gets an analogue of
Pólya’s result using suitably modified versions of the binomial polynomials(x
k

)
, which are easily computable in many examples.

1The finite case is similar, but for ease of exposition we omit it.
Kiran S. Kedlaya (UCSD) Bhargava’s work on p-adic analytic functions 8 / 26
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p-orderings and integer-valued polynomials

The p-ordering construction: local version

Suppose that R is a discrete valuation ring with maximal ideal p. Given an
infinite subset S ⊆ R, a p-ordering2 of S is a sequence a0, a1, . . . such that
for each k, ak minimizes the p-adic valuation of

k!S := (ak − a0) · · · (ak − ak−1).

Such a sequence (which obviously exists) does the job: a polynomial in
K [x ] maps S into R if and only if it has the form

∞∑
k=0

Fk
(x − a0) · · · (x − ak−1)

k!S
with Fk ∈ R.

As a corollary, we have the following elementary but puzzling fact.

Lemma (Bhargava)

The ideal (k!)S generated by k!S is independent of all choices. (!?)

2The name is slightly misleading: this sequence does not usually exhaust S .
Kiran S. Kedlaya (UCSD) Bhargava’s work on p-adic analytic functions 9 / 26
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p-orderings and integer-valued polynomials

The p-ordering construction: global version

Now, R is again a general Dedekind domain and S ⊂ R an infinite subset.

For each maximal ideal p of R, we may project S into the localization Rp,
which is a discrete valuation ring; identify the resulting ideals (k!)S,p with
powers of p in R. For each k, the ideal (k!)S ,p is trivial for all but finitely
many p; we may thus form the product ideal (k!)S =

∏
p(k!)S,p.

In case (k!)S is principal for all k, we may use the Chinese remainder
theorem to compute a sequence of polynomials Pk ∈ K [x ] of degree k
with the property that any F =

∑∞
k=0 FkPk(x) ∈ K [x ] maps S into R if

and only if Fk ∈ R for all k ≥ 0.

Otherwise, no such sequence3 Pk exists. However, one can still
characterize the polynomials taking S into R by working locally.

3If it did, the reciprocal of the leading coefficient of Pk would generate (k!)S .
Kiran S. Kedlaya (UCSD) Bhargava’s work on p-adic analytic functions 10 / 26
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p-orderings and integer-valued polynomials

Global p-orderings

Even when the ideals (k!)S are principal, we may not be able to force Pk

to have the form of a generalized binomial coefficient

Pk =
(x − a0) · · · (x − ak−1)

(ak − a0) · · · (ak − ak−1)

for some sequence a0, a1, . . . . This only works if a0, a1, . . . is a p-ordering
for all p at once (or for short, a global p-ordering).

Global p-orderings exist in a few natural examples, but not in any great
generality even when R is a principal ideal domain.

Theorem (Wood, 2003; from the Duluth REU)

Let R be the ring of integers in an imaginary quadratic field and take
S = R. Then there exists no global p-ordering.

Kiran S. Kedlaya (UCSD) Bhargava’s work on p-adic analytic functions 11 / 26
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p-orderings and integer-valued polynomials

Examples

Example

Take S = R = Z. Then 0, 1, . . . is a global p-ordering for which k!S = k!.

Example

Take S = R = Fq[t]. Write Fq = {0 = c0, . . . , cq−1}. Write k in base q as
· · · k2k1k0; setting ak = ck0 + ck1t + ck2t

2 + · · · gives a global p-ordering.
Here k!S reproduces the Carlitz factorials.

Example

Let S be the set of primes in Z. There is no global p-ordering, but

(k!)S =
∏
p

(p)ep,k , ep,k =
∞∑
j=0

⌊
k − 1

(p − 1)pj

⌋
(k > 0).

(Hint: compute a local p-ordering starting with p itself.)

Kiran S. Kedlaya (UCSD) Bhargava’s work on p-adic analytic functions 12 / 26
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Continuous functions on local fields

Uniform approximation by polynomials

And now for something completely different.

Theorem (Stone–Weierstrass approximation theorem, 1937)

Let S be a compact subset of Rn. Then every continuous function from S
to R can be uniformly approximated by polynomials.

Does this have a nonarchimedean analogue? Here is one with n = 1.

Theorem (Mahler, 1958)

Every continuous function f : Zp → Qp has a unique representation as
f (x) =

∑∞
k=0 fk

(x
k

)
for some fk ∈ Qp with limk→∞ fk = 0.

It is easy to generalize this to functions Zn
p → Qp. But what if the domain

is an arbitrary compact (= closed and bounded) subset? Or Qp is replaced
by another local field (i.e., a complete discretely valued field with finite
residue field)?
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Continuous functions on local fields

An explicit nonarchimedean Stone-Weierstrass theorem

Let K be a local field whose valuation ring R has maximal ideal p.

Theorem (Bhargava-K, 1997; generalizes Amice, 1967)

Let S ⊆ R be an infinite compact subset. Choose a p-ordering a0, a1, . . .
of S and define(

x

k

)
S

:=
(x − a0) · · · (x − ak−1)

(ak − a0) · · · (ak − ak−1)
(k = 0, 1, . . . ).

Then every continuous function f : S → K has a unique representation as
f (x) =

∑∞
k=0 fk

(x
k

)
S

for some fk ∈ K with limk→∞ fk = 0.

Corollary (just now!)

Let S be a compact subset of Kn for some positive integer n. Then every
continuous function from S to K can be uniformly approximated by
polynomials. (Hint: identify Kn with an extension of K .)
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Continuous functions on local fields

A lemma from the proof

The previous theorem does not depend on the choice of the p-ordering;
but restricting the p-ordering provides useful extra precision.

We say that a p-ordering a0, a1, . . . of S is proper if for all m, k ≥ 0, ak is
chosen4 in a new residue class modulo pm only if no other option exists.
For example, for S ⊆ Z and p > 2, 0, 1, p, 2p, p2 + 1, . . . cannot be proper.

Lemma

Choose a proper p-ordering a0, a1, . . . of S . If ak is in a new residue class
modulo pm and x , y ∈ S satisfy x ≡ y (mod pm), then(

x

k

)
S

≡
(
y

k

)
S

(mod p).

This generalizes a classical lemma of Lucas on binomial coefficients.
4Why can this be achieved for all m at once? If ak is too congruent to some previous

ai , then (ak − a0) · · · (ak − ak−1) will have no chance to achieve its minimum valuation.
Kiran S. Kedlaya (UCSD) Bhargava’s work on p-adic analytic functions 16 / 26
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Differentiable functions on local fields
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Differentiable functions on local fields

Beyond continuous functions

In p-adic analysis, it is common to consider functions on local fields which
are not merely continuous, but obey some stronger differentiability
conditions. For instance, in the representation theory of p-adic groups, it
is common to form such a function space, then interpret a suitable
topological dual space as a space of distributions.

Bhargava showed that our theorem on continuous functions could be
modified to handle continuously differentiable functions and locally
analytic functions. For this, however, one must replace p-orderings by
slightly modified concepts which are also related to certain integrality
conditions on polynomials. (Most of this work was done before 2000, but
only published in 2009.)
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Differentiable functions on local fields

Divided differences

Again, let R be a Dedekind domain with fraction field K . (On this slide,
we only use that R is a domain.)

For F ∈ K [x ], define the difference quotient of F as

ΦF (x , y) =
F (x)− F (y)

x − y
∈ K [x , y ].

More generally, for r > 0, define the r -th difference quotient as

ΦrF (x0, . . . , xr ) =
Φr−1F (x0, . . . , xr−1)− Φr−1F (x0, . . . , xr−2, xr )

xr−1 − xr
.

One shows that F ∈ R[x ] if and only if ΦrF (R r+1) ⊆ R for all r ≥ 0.
(Hint: do the case F (x) = cxk for each k .)
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Differentiable functions on local fields

Divided differences and p-orderings

Switch back to the local case: R is a DVR with maximal ideal p.

Let S ⊆ R be an infinite subset and let r be a nonnegative integer. An
r -removed p-ordering is a sequence a0, a1, . . . ∈ S in which ak is chosen to
minimize the valuation of the ideal generated by
(ak − ai0) · · · (ak − aik−r−1

) for all (k − r)-element subsets
{i0, . . . , ik−r−1} ⊆ {0, . . . , k − 1}. Denote this ideal by (k!)S ,r .

Theorem (Bhargava, 2009)

For F ∈ K [x ], we have ΦkF (Sk+1) ⊆ R for k = 0, . . . , r if and only if
F =

∑∞
k=0 Fk(x − a0) · · · (x − ak−1) with Fk(k!)S ,r ⊆ R for all k ≥ 0.

Again, it follows that (k!)S ,r is independent of all choices.
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Differentiable functions on local fields

Continuously differentiable functions of order r

Let K be a local field with valuation ring R. Let S ⊆ R be an infinite
compact subset. We say that f : S → K is continuously differentiable of
order r if for k = 0, . . . , r , the difference quotient Φk f extends to a
continuous function on Sk (i.e., over the big diagonal).

Theorem (Bhargava, 2009)

Let k!S ,r be any generator of (k!)S,r and define(
x

k

)
S ,r

:=
(x − a0) · · · (x − ak−1)

k!S ,r
(k = 0, 1, . . . ).

Then f : S → K is continuously differentiable of order r if and only if
f (x) =

∑∞
k=0 fk

(x
k

)
S ,r

for some fk ∈ K with limk→∞ fk = 0.

Again, for the proof it is convenient to reduce to considering p-orderings
which are proper in a suitably modified sense.
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Differentiable functions on local fields

Polynomials with modulus

Let R be a domain with fraction field K , let m be an ideal of R, and let S
be a subset of R. We say that f ∈ K [x ] is R-valued on S of modulus m if

f (mx + a) ∈ R[x ] for all m ∈ m, a ∈ S .

Now take R to be a discrete valuation ring and m = ph. A p-ordering of
order h is a sequence a0, a1, . . . ∈ S in which ak is chosen to minimize the
valuation of the ideal

∏k−1
i=0 (ph, ak − ai ). (That is, the valuation of each

factor in the product is truncated down to h.) Denote this ideal by (k!)S,h.

Theorem (Bhargava, 2009)

For F ∈ K [x ], F is R-valued on S of modulus ph if and only if
F =

∑∞
k=0 Fk(x − a0) · · · (x − ak−1) with Fk(k!)S ,h ⊆ R for all k ≥ 0.
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Differentiable functions on local fields

Locally analytic functions

Let K be a local field with valuation ring R. Let S ⊆ R be an infinite
compact subset. We say that f : S → K is locally analytic of order h if for
each a ∈ S , the restriction of f to S ∩ (a + ph) extends to some analytic
function on a + ph (i.e., a function given by a convergent5 power series).

Theorem (Bhargava, 2009)

Let k!S ,h be any generator of (k!)S ,h and define(
x

k

)
S ,h

:=
(x − a0) · · · (x − ak−1)

k!S ,h
(k = 0, 1, . . . ).

Then f : S → K is locally analytic of order h if and only if
f (x) =

∑∞
k=0 fk

(x
k

)
S ,h

for some fk ∈ K with limk→∞ fk = 0.

This extends a result of Amice (for sufficiently “regular” S).
5Meaning convergence on the ball over a completed algebraic closure of K .
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function on a + ph (i.e., a function given by a convergent5 power series).

Theorem (Bhargava, 2009)

Let k!S ,h be any generator of (k!)S ,h and define(
x

k

)
S ,h

:=
(x − a0) · · · (x − ak−1)

k!S ,h
(k = 0, 1, . . . ).

Then f : S → K is locally analytic of order h if and only if
f (x) =

∑∞
k=0 fk

(x
k

)
S ,h

for some fk ∈ K with limk→∞ fk = 0.

This extends a result of Amice (for sufficiently “regular” S).
5Meaning convergence on the ball over a completed algebraic closure of K .
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Conclusions

There is a robust link between integrality properties of polynomials and
topological/analytic properties of functions on local fields. The strategy of
p-orderings provides an approach to dealing with both in surprising
generality.

Are there more results to be found in this direction? For example, can one
extend to some noncommutative rings, such as Iwasawa algebras
(completed group algebras of p-adic Lie groups)?
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