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Outline of the talk

1. Review of zeta functions

2. p-adic cohomology and zeta func-
tions

3. The case of hyperelliptic curves

4. Computational issues

5. Where to go from here
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Zeta functions

zeta function of a variety X/Fq:

ζX(t) = exp

( ∞∑
n=1

tn

n
#X(Fqn)

)
.

By the Weil conjectures, this is a rational
function of t with integer coefficients.
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Zeta functions

zeta function of a variety X/Fq:

ζX(t) = exp

( ∞∑
n=1

tn

n
#X(Fqn)

)
.

By the Weil conjectures, this is a rational
function of t with integer coefficients.

C: a smooth, projective, geometrically
connected curve of genus g over Fq. By
Riemann-Roch,

ζC(t) =
Q(t)

(1− t)(1− qt)

where Q(t) ∈ Z[t], deg(Q) = 2g.
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Zeta functions

zeta function of a variety X/Fq:

ζX(t) = exp

( ∞∑
n=1

tn

n
#X(Fqn)

)
.

By the Weil conjectures, this is a rational
function of t with integer coefficients.

C: a smooth, projective, geometrically
connected curve of genus g over Fq. By
Riemann-Roch,

ζC(t) =
Q(t)

(1− t)(1− qt)

where Q(t) ∈ Z[t], deg(Q) = 2g.

Relevance to cryptography: the order of
the Jacobian group J(C)(Fq) is Q(1).
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More on zeta functions

We have

Q(t) = (1− tα1) · · · (1− tα2g)

for some algebraic integers αi with

αiαi+g = q, |αi| =
√

q.

Moreover,

#C(Fqi) = qi + 1− αi
1 − · · · − αi

2g.

Thus Q(t) is determined by #C(Fqi) for
i = 1, . . . , g, or even by these counts
modulo a suitably large integer N .
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The situation in genus 1

For g = 1, the best general algorithm for
computing Q(t) is due to Schoof. (Roughly,
compute #C(Fq) modulo ` for enough
small primes `.)
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The situation in genus 1

For g = 1, the best general algorithm for
computing Q(t) is due to Schoof. (Roughly,
compute #C(Fq) modulo ` for enough
small primes `.)

In small characteristic (q = pn for p a
small prime), methods of Satoh, Fouquet,
Gaudry, Harley, Skjernaa, Mestre, etc.,
work better. (Roughly, compute #C(Fq)
modulo a large power of p.)
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The situation in genus 1

For g = 1, the best general algorithm for
computing Q(t) is due to Schoof. (Roughly,
compute #C(Fq) modulo ` for enough
small primes `.)

In small characteristic (q = pn for p a
small prime), methods of Satoh, Fouquet,
Gaudry, Harley, Skjernaa, Mestre, etc.,
work better. (Roughly, compute #C(Fq)
modulo a large power of p.)

But all of these methods are specific to
genus 1 (though some may be pushed to
genus 2). We will focus on more general
methods in the small characteristic case.
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Cohomology and zeta functions

There are various constructions in alge-
braic geometry that associate to C a vec-
tor space H1(C) over some field of char-
acteristic zero and an endomorphism F
of H1(C) such that

#C(Fqi) = qi + 1−Tr(F i).

In this case, the characteristic polynomial
of F is precisely Q(t).
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Cohomology and zeta functions

There are various constructions in alge-
braic geometry that associate to C a vec-
tor space H1(C) over some field of char-
acteristic zero and an endomorphism F
of H1(C) such that

#C(Fqi) = qi + 1−Tr(F i).

In this case, the characteristic polynomial
of F is precisely Q(t).

In the case of small characteristic (q =
pn), using p-adic analysis one can con-
struct such an H1(C) in a computation-
ally effective manner. The resulting algo-
rithms are polynomial in p, n, g.
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p-adic cohomology

Qq: the unramified extension of Qp with
residue field Fq
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p-adic cohomology

Qq: the unramified extension of Qp with
residue field Fq

For any variety X over Fq, Berthelot’s
rigid cohomology produces vector spaces
Hj

rig(X) and Hj
c,rig(X) over Qq (which

coincide for X proper), and endomorphisms
F such that

#X(Fqi) =
∑

j

(−1)j Tr(F i, Hj
c,rig(X)).
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p-adic cohomology

Qq: the unramified extension of Qp with
residue field Fq

For any variety X over Fq, Berthelot’s
rigid cohomology produces vector spaces
Hj

rig(X) and Hj
c,rig(X) over Qq (which

coincide for X proper), and endomorphisms
F such that

#X(Fqi) =
∑

j

(−1)j Tr(F i, Hj
c,rig(X)).

Goal: make this fact computationally use-
ful by working in a related theory for smooth
affine varieties (Monsky-Washnitzer co-
homology).
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Monsky-Washnitzer cohomology

Let Wn be the ring of power series in
x1, . . . , xn over Zq which converge for

|x1|, . . . , |xn| ≤ 1 + ε

for some ε > 0. That is,∑
I

cIx
I ∈ Wn ⇔ lim inf

|I|→∞

vp(cI)

|I|
> 0.
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Monsky-Washnitzer cohomology

Let Wn be the ring of power series in
x1, . . . , xn over Zq which converge for

|x1|, . . . , |xn| ≤ 1 + ε

for some ε > 0. That is,∑
I

cIx
I ∈ Wn ⇔ lim inf

|I|→∞

vp(cI)

|I|
> 0.

Given a smooth affine variety

X = SpecA over Fq,

choose a saturated ideal a of some Wn

such that (Wn/a)⊗Zq
Fq
∼= A. Put A =

Wn/a. Then Hi
MW(X) is the de Rham

cohomology of A[1
p
], and F is induced

by any ring map A → A reducing to q-
powering mod p.
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Hyperelliptic curves in odd characteristic

We illustrate the construction for

C : y2 = P (x)

for P (x) a monic polynomial of degree
2g + 1 over Fq, where q = pn for p
an odd prime; i.e., C is hyperelliptic of
genus g with a rational Weierstrass point.
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Hyperelliptic curves in odd characteristic

We illustrate the construction for

C : y2 = P (x)

for P (x) a monic polynomial of degree
2g + 1 over Fq, where q = pn for p
an odd prime; i.e., C is hyperelliptic of
genus g with a rational Weierstrass point.

We work with the affine subvariety C ′ ob-
tained from C by removing the Weier-
strass points; its coordinate ring is

A = Fq[x, y, z]/(y2 − P (x), yz − 1).
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The MW ring of C ′

Choose a monic polynomial P (x) over
Zq congruent to P (x) modulo p. Then
the ring A consists of power series

∞∑
i=0

∞∑
j=−∞

aijx
iyj

over Zq such that vp(aij)/(i+|j|) is even-
tually bounded away from 0, modulo the
relation y2 = P (x). (One can assume
aij = 0 for i > 2g.)
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The MW cohomology of C ′

Ω1: module over A[1
p
] generated by dx

and dy, modulo relation 2y dy = P ′(x) dx
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The MW cohomology of C ′

Ω1: module over A[1
p
] generated by dx

and dy, modulo relation 2y dy = P ′(x) dx

H1
MW(A): quotient of Ω1 by Qq-span of

elements fx dx + fy dy for f ∈ A[1
p
]
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The MW cohomology of C ′

Ω1: module over A[1
p
] generated by dx

and dy, modulo relation 2y dy = P ′(x) dx

H1
MW(A): quotient of Ω1 by Qq-span of

elements fx dx + fy dy for f ∈ A[1
p
]

H+, H−: eigenspaces of H1
MW(A) of eigen-

value +1 and −1 under y 7→ −y.
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The MW cohomology of C ′

Ω1: module over A[1
p
] generated by dx

and dy, modulo relation 2y dy = P ′(x) dx

H1
MW(A): quotient of Ω1 by Qq-span of

elements fx dx + fy dy for f ∈ A[1
p
]

H+, H−: eigenspaces of H1
MW(A) of eigen-

value +1 and −1 under y 7→ −y.

Then

H−
∼= H1

rig(C)

H+
∼= H1

rig(P1 − {branch points})
so we need only compute on H−.
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A basis for H−

H− is spanned over Qq by

xi dx

y
(i = 0, . . . ,2g − 1).
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A basis for H−

H− is spanned over Qq by

xi dx

y
(i = 0, . . . ,2g − 1).

To put elements in this form, use the re-
lations

B(x)P (x) + C(x)P ′(x)

y2s+1
dx

≡
(2s− 1)B(x) + 2C ′(x)

(2s− 1)y2s−1
dx

and

0 ≡
2mxm−1P (x) + xmP ′(x)

2y
dx

derived on the next two slides.
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More on the relations (part 1)

Given A(x) with degA ≤ 2g, write

A(x) = B(x)P (x) + C(x)P ′(x)

degB ≤ 2g − 1, degC ≤ 2g.
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More on the relations (part 1)

Given A(x) with degA ≤ 2g, write

A(x) = B(x)P (x) + C(x)P ′(x)

degB ≤ 2g − 1, degC ≤ 2g.

In H−, we have the relation

0 ≡ d(C(x)y−2s+1)

≡ C ′(x)y−2s+1 dx

+ C(x)(−2s + 1)y−2s dy.

28



More on the relations (part 1)

Given A(x) with degA ≤ 2g, write

A(x) = B(x)P (x) + C(x)P ′(x)

degB ≤ 2g − 1, degC ≤ 2g.

In H−, we have the relation

0 ≡ d(C(x)y−2s+1)

≡ C ′(x)y−2s+1 dx

+ C(x)(−2s + 1)y−2s dy.

Since P ′(x) dx ≡ 2y dy, we get

C(x)P ′(x) dx

y2s+1
≡

2C ′(x) dx

(2s− 1)y2s−1
.
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More on the relations (part 1)

Given A(x) with degA ≤ 2g, write

A(x) = B(x)P (x) + C(x)P ′(x)

degB ≤ 2g − 1, degC ≤ 2g.

In H−, we have the relation

0 ≡ d(C(x)y−2s+1)

≡ C ′(x)y−2s+1 dx

+ C(x)(−2s + 1)y−2s dy.

Since P ′(x) dx ≡ 2y dy, we get

C(x)P ′(x) dx

y2s+1
≡

2C ′(x) dx

(2s− 1)y2s−1
.

Thus we have as promised

A(x)

y2s+1
dx ≡

(2s− 1)B(x) + 2C ′(x)

(2s− 1)y2s−1
dx.
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Source of the relations (part 2)

Given A(x)y2s+1 dx, first rewrite it as

A(x)P (x)s+1 dx/y.

We use the relation

0 ≡ d(xmy)

≡ mxm−1y dx + xm dy

≡
2mxm−1P (x) + xmP ′(x)

2y
dx

to successively eliminate the highest pow-
ers of x. (The coefficient of x2g+m in the
numerator is 2m + (2g + 1) 6= 0.)
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A Frobenius map

Recall that Zq has a canonical map σ lift-
ing the map t 7→ tp modulo p.

Define a σ-linear ring map Fp : A → A
by

x 7→ xp

y 7→ yp

(
P (x)σ

P (x)p

)1/2

= yp
∞∑

i=0

(1/2

i

)
pi

(
P (x)σ − P (x)p

pP (x)p

)i

.

Then Fq = (Fp)n is Zq-linear, and

#C(Fqi) = qi + 1−Tr(F i
q , H−).
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The recipe for computing ζC (part 1)

We now have a recipe for computing ζC:

1. Determine the degree of p-adic ac-
curacy to which the following com-
putations should be performed.
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The recipe for computing ζC (part 1)

We now have a recipe for computing ζC:

1. Determine the degree of p-adic ac-
curacy to which the following com-
putations should be performed.

2. Use a Newton iteration to compute
an approximation to Fp(y) (truncat-
ing high powers of y).
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The recipe for computing ζC (part 1)

We now have a recipe for computing ζC:

1. Determine the degree of p-adic ac-
curacy to which the following com-
putations should be performed.

2. Use a Newton iteration to compute
an approximation to Fp(y) (truncat-
ing high powers of y).

3. Apply Fp to xi dx/y for i = 0, . . . ,2g−
1 in succession (again truncating)
and rewrite the result in terms of
xi dx/y using the relations in H−.
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The recipe for computing ζC (part 2)

4. Form the matrix M over Qq with

Fp

(
xj dx

y

)
≡

2g−1∑
i=0

Mij
xi dx

y

and compute N = Mσn−1 · · ·MσM .
Then N is the matrix through which
Fq = F n

p acts on the xi dx/y.
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The recipe for computing ζC (part 2)

4. Form the matrix M over Qq with

Fp

(
xj dx

y

)
≡

2g−1∑
i=0

Mij
xi dx

y

and compute N = Mσn−1 · · ·MσM .
Then N is the matrix through which
Fq = F n

p acts on the xi dx/y.

5. Compute the characteristic polyno-
mial of N modulo a high power of
p, and replace each coefficient with
its smallest integer approximation.
The result is the numerator Q(t) of
the zeta function ζC(t).
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Estimating precision

The most mysterious part of analyzing
the p-adic precision requirement is what
happens when one reduces differentials.
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Estimating precision

The most mysterious part of analyzing
the p-adic precision requirement is what
happens when one reduces differentials.

Fact: when reducing ω = B(x) dx/y2s+1

for degB ≤ 2g − 1 with integral coeffi-
cients, the final answer only involves de-
nominators of valuation ≤ logp |2s + 1|.
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Estimating precision

The most mysterious part of analyzing
the p-adic precision requirement is what
happens when one reduces differentials.

Fact: when reducing ω = B(x) dx/y2s+1

for degB ≤ 2g − 1 with integral coeffi-
cients, the final answer only involves de-
nominators of valuation ≤ logp |2s + 1|.

Idea of proof: the difference between ω
and its reduction can be found by inte-
grating the polar parts at the zeroes of
P .
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Estimating precision

The most mysterious part of analyzing
the p-adic precision requirement is what
happens when one reduces differentials.

Fact: when reducing ω = B(x) dx/y2s+1

for degB ≤ 2g − 1 with integral coeffi-
cients, the final answer only involves de-
nominators of valuation ≤ logp |2s + 1|.

Idea of proof: the difference between ω
and its reduction can be found by inte-
grating the polar parts at the zeroes of
P .

Upshot: one can perform the reduction
in fixed precision, filling in undetermined
high-order digits arbitrarily. These garbage
digits will cancel themselves out in the
end.
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Hyperelliptic curves in characteristic 2

Denef and Vercauteren extend this recipe
to p = 2. They take the hyperelliptic to
be

C : y2 + h(x) = f(x)

with deg(f) = 2g + 1, deg(h) = g,
and each root of h also a root of f .
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Hyperelliptic curves in characteristic 2

Denef and Vercauteren extend this recipe
to p = 2. They take the hyperelliptic to
be

C : y2 + h(x) = f(x)

with deg(f) = 2g + 1, deg(h) = g,
and each root of h also a root of f .

In this case, one works with the affine
curve

C ′ = C−{branch points of x : C → P1},

lifts f and h to polynomials f and h of the
same degree, and forms the MW algebra
of overconvergent series∑

i,j,k

ci,j,kx
iyjh(x)k

modulo y2 + h(x)y = f(x).
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Complexity analysis

For p 6= 2 fixed, the algorithm requires
O(g4n3) time andO(g3n3) memory when
performed using asymptotically fast arith-
metic. (Optimal methods for g = 1 re-
quire O(n2) time and memory.) For p =
2, the runtime is currently O(g5n3).

Frederik Vercauteren has computed some
examples, e.g., of a genus 2 curve over
F348 (in Magma), of a genus 2 curve over
F2160, and of a genus 350 curve over F2

(both in C).
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Generalizations and variations (part 1)

The Monsky-Washnitzer theory applies
to any smooth affine scheme; the main
difficulties are:

• Computing a Frobenius lift;

• Finding an efficient reduction pro-
cedure for differentials;

and to a lesser extent analyzing the pre-
cision requirements.
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Generalizations and variations (part 2)

Gaudry and Gurel consider “superellip-
tic” curves

yr = P (x) (p6 |r);
Vercauteren is studying Ca,b curves (which
admit a map to P1 totally ramified at some
place).

One can also think about higher dimen-
sional varieties; e.g., see Gerkmann’s talk.

Related methods have been developed
by Lauder and Wan. In particular, Lauder’s
“deformation theory” method seems well-
suited to higher dimensional varieties.
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