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Zeta functions of algebraic varieties

Finite fields

For every prime power q, there is a unique (up to isomorphism) finite field of q elements,
denoted Fq. For example, if q = p is prime, these are just the integers modulo p.

For every positive integer n, we can view Fqn as an extension of Fq. Consequently, if we
consider a system of polynomial equations

P1(x1, . . . , xm) = · · · = Pk(x1, . . . , xm) = 0

with coefficients in Fq, we can form the set of solutions over Fqn for each n.

These solutions can formally be reinterpreted as the Fqn -valued points of the affine algebraic
variety

X := SpecFq[x1, . . . , xm]/(P1, . . . ,Pk).

The dimension of X is (roughly) m − k. The complexity of X is also controlled by the
degrees of the Pi .
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Zeta functions of algebraic varieties

Zeta functions

The infinite sequence
#X (Fq),#X (Fq2),#X (Fq3), . . .

can be represented in a finitistic way: the formal power series

Z (X ,T ) = exp

( ∞∑
n=1

T n

n
#X (Fqn)

)

represents a rational function of T . Concretely, this means that there exist some
α1, . . . , αr , β1, . . . , βs ∈ C such that

#X (Fqn) = αn
1 + · · ·+ αn

r − βn
1 − · · · − βn

s .

Moreover, the degree of the rational function (equivalently, the values of r and s) can be
bounded in terms of n and the degrees of the Pi .
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Zeta functions of algebraic varieties

Examples

For X equal to the affine space (i.e., no equations!), we have #X (Fqn) = qmn, so

Z (X ,T ) =
1

1− qmT
.

Let Q(x) ∈ Fq[x ] be a squarefree cubic polynomial. For X the associated affine elliptic curve:

X = SpecFq[x , y ]/(y
2 − Q(x))

we have

Z (X ,T ) =
1− aT + qT 2

1− qT

for some integer a with |a| ≤ 2
√
q. There is no “easy” formula for a in terms of Q.
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The (classical) zeta function problem and some classical results

Formulation of the problem

Problem

Given on input a prime power q and a sequence of polynomials P1, . . . ,Pk ∈ Fq[x1, . . . , xm],
return Z (X ,T ) in the form of a rational function in T .

As formulated this might appear to be NP-hard, since the data of Z (X ,T ) includes #X (Fq),
and 3-SAT can be expressed as the question of whether a certain sequence of polynomials has
a common zero.

However, one must measure polynomiality in the length of the input and the output, and the
degree of Z (X ,T ) grows exponentially with m.

In any case, we will generally treat m as fixed, in which case the input (in a dense
representation) and the output both have length polynomial in log q degP1 · · · degPk . It is an
open question to give a randomized polynomial time algorithm.
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The (classical) zeta function problem and some classical results

Zeta functions and cohomology

Most approaches to studying or computing Z (X ,T ) use some sort of Lefschetz trace
formula for Frobenius, i.e., the data of some finite-dimensional vector spaces Vi over some
field K of characteristic 0, plus invertible linear transformations F : Vi → Vi for which

#X (Fqn) =
∑
i

(−1)i Trace(F n,Vi ).

The existence of any such data already implies that Z (X ,T ) is a rational function: its poles
(resp. zeroes) are the reciprocals of the eigenvalues of F n acting on the Vi for i even (resp. for
i odd).
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The (classical) zeta function problem and some classical results

Schoof’s algorithm

Theorem (Schoof, 1985)

For X = SpecFq[x , y ]/(y
2 − P(x)) with P ∈ Fq[x ] a squarefree cubic polynomial, there is a

deterministic algorithm to compute Z (X ,T ) in time polynomial in log q.

This follows from the corresponding statement for X an arbitrary elliptic curve over Fq. The
latter has the structure of an algebraic group; for every prime ℓ not dividing q, the ℓ-torsion
points (over an algebraic closure of Fq) form a two-dimensional Fℓ-vector space on which
Frobenius acts.

This is not quite a trace formula because the characteristic of Fℓ is not 0, so we only get
Z (X ,T ) modulo ℓ. To fix this, we use several primes ℓ plus the Chinese remainder theorem.
This “multimodular” strategy also occurs in my work with Umans on polynomial factorization
(FOCS 2008), and work of Lin–Mook–Wichs on private information retrieval (STOC 2023).

Aside: there has been some speculation that this could be use to derandomize polynomial
factorization over Fq (Agrawal, Poonen, etc.) but as yet no results.
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The (classical) zeta function problem and some classical results

The one-dimensional case

Theorem (Pila, 1990; Adleman–Huang, 2001)

For X = SpecFq[x , y ]/(P) with P ∈ Fq[x , y ] of fixed degree, there is a deterministic
algorithm to compute Z (X ,T ) in time polynomial in log q.

This uses a similar (not quite a) trace formula for the Jacobian variety associated to a
projective algebraic curve. This can also be interpreted in terms of the étale cohomology of
the curve with coefficients in Fℓ.

Unfortunately, there seems to be way to reduce the complexity in degP below exponential.
More on this later.

It is expected that one can do something similar in dimension > 1 if we again fix the
characteristic and the polynomial degrees, but this depends on ongoing work to make étale
cohomology computationally explicit; more on this later.
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The (classical) zeta function problem and some classical results

Fixed characteristic

Theorem (Lauder–Wan, 2008)

Fix a positive integer m and a prime p. For X = SpecFq[x1, . . . , xm]/(P1, . . . ,Pk) where q is
a power of p, there is a deterministic algorithm to compute Z (X ,T ) in time polynomial in
log q degP1 · · · degPk .

This uses a different trace formula arising from p-adic cohomology, which can be computed
efficiently in terms of differential forms. Variants of this method for special classes of varieties
even work well in practice!

Unfortunately, there seems to be no way to reduce the complexity in p below square-root
(Harvey).

Aside: if one starts with polynomials over Z and reduces modulo various primes p, there are
ways to amortize that cost over p (Harvey–Sutherland etc.). This use case comes up in
number theory when studying L-functions, as in the Langlands program.
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The (apparent) quantum advantage

Shor’s algorithm, version 1

Theorem (Shor, 1994)

For G a “black box abelian group”, there is a quantum polynomial time algorithm to compute
the order of the subgroup generated by a list of elements.

Clarification: a “black box abelian group” is a group whose underlying elements are a set of
bitstrings, together with an oracle that can:

test a bitstring for membership;

compute the inverse of a bitstring;

compute the group operation on two bitstrings.

By generating random elements of G , this promotes to an algorithm for computing the order
of G itself.

Kiran S. Kedlaya (UC San Diego) Zeta functions of algebraic varieties over finite fields Location, August 6, 2024 13 / 19



The (apparent) quantum advantage

Shor’s algorithm, version 1

Theorem (Shor, 1994)

For G a “black box abelian group”, there is a quantum polynomial time algorithm to compute
the order of the subgroup generated by a list of elements.

Clarification: a “black box abelian group” is a group whose underlying elements are a set of
bitstrings, together with an oracle that can:

test a bitstring for membership;

compute the inverse of a bitstring;

compute the group operation on two bitstrings.

By generating random elements of G , this promotes to an algorithm for computing the order
of G itself.

Kiran S. Kedlaya (UC San Diego) Zeta functions of algebraic varieties over finite fields Location, August 6, 2024 13 / 19



The (apparent) quantum advantage

Shor’s algorithm, version 1

Theorem (Shor, 1994)

For G a “black box abelian group”, there is a quantum polynomial time algorithm to compute
the order of the subgroup generated by a list of elements.

Clarification: a “black box abelian group” is a group whose underlying elements are a set of
bitstrings, together with an oracle that can:

test a bitstring for membership;

compute the inverse of a bitstring;

compute the group operation on two bitstrings.

By generating random elements of G , this promotes to an algorithm for computing the order
of G itself.

Kiran S. Kedlaya (UC San Diego) Zeta functions of algebraic varieties over finite fields Location, August 6, 2024 13 / 19



The (apparent) quantum advantage

A quantum advantage for zeta functions: dimension 1 case

Theorem (K, 2006)

For X = SpecFq[x , y ]/(P(x , y)), there is a quantum algorithm to compute Z (X ,T ) in time
polynomial in log q degP.

It suffices to compute Z (C ,T ) where C is the associated smooth projective curve. This has
the form

Z (C ,T ) =
Q(T )

(1− T )(1− qT )

where Q is a polynomial of degree 2g where g is the genus of C (roughly the degree of P).

The Jacobian variety J has the property that for every n,

Q(1)Q(e2πi/n) · · ·Q(e2πi(n−1)/n) = #J(Fqn).

Treating J(Fqn) as a black box abelian group and using Shor to compute its order for O(g)
values of n, we can (classically) recover Q(T ).
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where Q is a polynomial of degree 2g where g is the genus of C (roughly the degree of P).

The Jacobian variety J has the property that for every n,

Q(1)Q(e2πi/n) · · ·Q(e2πi(n−1)/n) = #J(Fqn).

Treating J(Fqn) as a black box abelian group and using Shor to compute its order for O(g)
values of n, we can (classically) recover Q(T ).
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The (apparent) quantum advantage

Shor’s algorithm, version 2

For ℓ a prime, by a “black box Fℓ-vector space” I mean a black box abelian group in which
every element is killed by ℓ.

Let V be a black box Fℓ-vector space with a known basis v1, . . . , vm. Given another element
w , we can find the coefficients c1, . . . , cm for which c1v1 + · · ·+ cmvm = w , by recovering the
kernel of the linear transformation Fm

ℓ × V → V taking (a1, . . . , am, v) to
a1v1 + · · ·+ amvm − v .

Now let F : V → V be a “black box endomorphism” of V . We can then recover the matrix
expressing F in terms of v1, . . . , vm, and from that the characteristic polynomial of V . (If we
don’t start with a basis of V , pick enough elements to generate with high probability, then
make a similar kernel computation to reduce to a basis.)

Kiran S. Kedlaya (UC San Diego) Zeta functions of algebraic varieties over finite fields Location, August 6, 2024 15 / 19



The (apparent) quantum advantage

Shor’s algorithm, version 2

For ℓ a prime, by a “black box Fℓ-vector space” I mean a black box abelian group in which
every element is killed by ℓ.

Let V be a black box Fℓ-vector space with a known basis v1, . . . , vm. Given another element
w , we can find the coefficients c1, . . . , cm for which c1v1 + · · ·+ cmvm = w , by recovering the
kernel of the linear transformation Fm

ℓ × V → V taking (a1, . . . , am, v) to
a1v1 + · · ·+ amvm − v .

Now let F : V → V be a “black box endomorphism” of V . We can then recover the matrix
expressing F in terms of v1, . . . , vm, and from that the characteristic polynomial of V . (If we
don’t start with a basis of V , pick enough elements to generate with high probability, then
make a similar kernel computation to reduce to a basis.)

Kiran S. Kedlaya (UC San Diego) Zeta functions of algebraic varieties over finite fields Location, August 6, 2024 15 / 19



The (apparent) quantum advantage

Shor’s algorithm, version 2

For ℓ a prime, by a “black box Fℓ-vector space” I mean a black box abelian group in which
every element is killed by ℓ.

Let V be a black box Fℓ-vector space with a known basis v1, . . . , vm. Given another element
w , we can find the coefficients c1, . . . , cm for which c1v1 + · · ·+ cmvm = w , by recovering the
kernel of the linear transformation Fm

ℓ × V → V taking (a1, . . . , am, v) to
a1v1 + · · ·+ amvm − v .

Now let F : V → V be a “black box endomorphism” of V . We can then recover the matrix
expressing F in terms of v1, . . . , vm, and from that the characteristic polynomial of V . (If we
don’t start with a basis of V , pick enough elements to generate with high probability, then
make a similar kernel computation to reduce to a basis.)

Kiran S. Kedlaya (UC San Diego) Zeta functions of algebraic varieties over finite fields Location, August 6, 2024 15 / 19



The (apparent) quantum advantage

A quantum advantage for zeta functions: dimension 1 case (again)

Theorem (K, 2006 but not with this proof)

For X = SpecFq[x , y ]/(P(x , y)), there is a quantum algorithm to compute Z (X ,T ) in time
polynomial in log q degP.

For each prime ℓ not divisible by p, we can represent the ℓ-torsion of the Jacobian variety of C
as a black box Fℓ-vector space of dimension 2g , and Frobenius as a black box endomorphism.
In the expression

Z (C ,T ) =
Q(T )

(1− T )(1− qT )
,

Q(T ) reduces modulo ℓ to the characteristic polynomial of Frobenius; we can thus recover
Q(T ) by another multimodular calculation.
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The (apparent) quantum advantage

A quantum advantage for zeta functions: higher dimensional case?

Conjecture

For fixed m, for X = SpecFq[x1, . . . , xm]/(P1, . . . ,Pk), there is a quantum algorithm to
compute Z (X ,T ) in time polynomial in log q degP1 · · · degPk .

This would follow if one had an efficient black box representation of étale cohomology with
coefficients in Fℓ. So far this is only known for the first cohomology group
(Roy–Saxena–Venkatesh, 2024).
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The (apparent) quantum advantage

Some food for thought

Question for the audience: The use of Shor’s algorithm and its variants means that we are
talking about quantum circuits of (currently) impractically large depth. Is there a “time-depth
tradeoff”?

This would of course have much more significant consequences, including to the security of
classical (not quantum-resistant) public key cryptography.
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The (apparent) quantum advantage

Thank you!

Questions?
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