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Motivation

Motivation: complex differential equations

Let f0, . . . , fn−1 be holomorphic functions on some simply connected
domain U ⊆ C. Then the differential equation

y (n) + fn−1y (n−1) + · · ·+ f0y = 0

has a full set of solutions in the space of holomorphic functions on U. In
particular, for z0 ∈ U, the formal power series solutions at z0 converge on
the largest disc centered at z0 contained in U.
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Motivation

Motivation: p-adic differential equations

By contrast, consider the differential equation y ′ − y = 0, but consider
p-adic power series solutions at 0. These solutions are multiples of the
exponential function, which has radius of convergence p−1/(p−1) <∞
despite the absence of any singularities!

By contrast, there exist many examples of differential equations whose
p-adic power series solutions do converge as far as can reasonably be
expected. For instance, this is typical for Picard-Fuchs equations (also
known as Gauss-Manin connections).

Dwork et al. studied this phenomenon by considering “convergence in
generic discs”. In modern language, this can be described in terms of the
geometry of some Berkovich analytic spaces. This can be done for general
Berkovich curves, but for this talk we discuss only the case of discs.
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A bit of Berkovich spaces

Berkovich discs

Let K be a field complete for a nonarchimedean absolute value, e.g.,
K = Qp, or K = Cp is a completed algebraic closure of Qp.

For r > 0, the r -Gauss norm | · |r on K [T ] is defined by

|a0 + a1T + · · ·+ anT n|r = max
i
{|ai |r i}.

Complete to get K{T/r} ⊆ KJT K (a Tate algebra).

The Berkovich closed disc Dr ,K of radius r is the set of multiplicative
seminorms on K{T/r} which are bounded by | · |r . This set is topologized
as a subset of the product RK{T/r}; it is thus compact.

The geometry of this space turns out to be much simpler than the
previous definition might suggest! We will see a picture later.
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A bit of Berkovich spaces

Some points inside a Berkovich disc

For a ∈ K with |a| ≤ r and ρ ∈ [0, r ], let ζa,ρ ∈ Dr ,K be the ρ-Gauss norm
in the parameter T − a. This acts as a generic point of the disc
|z − a| ≤ ρ. (For ρ = 0, this is the evaluation-at-a seminorm.)

Not every point of Dr ,K is of this form (more on this later). However,
every point of Dr ,K is the restriction of a point of this form over some
larger field, by the following construction.

For α ∈ Dr ,K , let H(α) be the α-completion of Frac(K{T/r}/ ker(α)).
Let xα ∈ H(α) be the image of T . Then α is the restriction of
ζxα,0 ∈ Dr ,H(α). (One might view α as a generic point of a disc centered
at xα.)
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A bit of Berkovich spaces

Some segments inside a Berkovich disc

For any a ∈ K , the map ρ 7→ ζa,ρ defines a continuous injection
[0, r ]→ Dr ,K . Using extension of scalars, for any α ∈ Dr ,K we can
construct a segment from α to the Gauss point ζ0,r . A skeleton in Dr ,K is
a finite union of such segments; it is homeomorphic to a tree.

Theorem

The space Dr ,K is homeomorphic to the inverse limit of its skeleta. In
particular, it is contractible.
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A bit of Berkovich spaces

A picture for r = 1

Illustration stolen from Joe Silverman via Matt Baker.
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A bit of Berkovich spaces

Points of Berkovich discs

When K is algebraically closed, points of a Berkovich closed disc are
traditionally classified as follows.

I A seminorm ζa,0 for some a ∈ K .

II A norm ζa,ρ for some a ∈ K and ρ ∈ |K×|.
III A norm ζa,ρ for some a ∈ K and ρ /∈ |K×|.
IV A point not equal to any ζa,ρ. Such points act as generic points of

“virtual discs” which contais no points of K ; these cannot exist if K
is spherically complete (which Cp is not!).

For general K , extend scalars to a completed algebraic closure of K and
classify there.
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Radii of convergence

Differential modules

Instead of a differential equation, it is more convenient to use a more
algebraic structure. A first step is to consider a system of first-order linear
differential equations:y1

...
yn


′

=

A11 · · · A1n
...

. . .
...

An1 · · · Ann


y1

...
yn

 .

A second step is to consider a finite free module M over a ring R such
that R carries a derivation d and M carries an additive map D such that

D(rm) = d(r)m + rD(m).

Such a structure will be called a differential module over R. Finding
solutions of a differential equation then corresponds to finding elements in
the kernel of D, also called horizontal sections.
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Radii of convergence

Local horizontal sections

Assume from now on that K is of characteristic 0. Let M be a nonzero
differential module over K{T/r}. For each α ∈ Dr ,K , let Mα,0 be the
extension of scalars of M along the homomorphism

K{T/r} → H(α)JT − xαK.

Then Mα,0 admits a basis in the kernel of D; that is, the natural map

MD=0
α,0 ⊗H(α) H(α)JT − xαK→ Mα,0

is an isomorphism. The elements of MD=0
α,0 may be viewed as formal

horizontal sections of M at α. (If we started with a differential equation,
these corerspond to formal power series solutions at a point.)
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Radii of convergence

Radii of convergence

For ρ ∈ (0, r ], let Mα,ρ be the extension of scalars of M along the
homomorphism

K{T/r} → H(α){(T − xα)/ρ}.

For ρ sufficiently small, we have MD=0
α,ρ = MD=0

α,0 , i.e., the formal
horizontal sections at α converge in some disc. (This is already nontrivial!)

Put n = rank(M). For i = 1, . . . , n, let si (M, α) be the supremum of those
ρ for which dimK (MD=0

α,ρ ) ≥ n− i + 1, i.e., the radius of the maximal open
disc around xα on which M admits n − i + 1 linearly independent
horizontal sections. We have

0 < s1(M, α) ≤ · · · ≤ sn(M, α).

Handy fact: these radii are invariant under enlarging K .
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Radii of convergence

Continuity of the radii of convergence

All of the following results are due to Baldassarri for i = 1 and are new for
i > 1. However, the techniques build upon 50+ years of prior work (by
Dwork, Robba, Christol, Young, Pons, etc.)

Theorem (Baldassarri for i = 1, K for i > 1)

For i = 1, . . . , n, the function si (M, α) on Dr ,K is continuous. Moreover,
there exists a skeleton S in Dr ,K such that for every α ∈ Dr ,K ,
si (M, α) = si (M, β) for β the first point at which the path from α to the
Gauss point meets S.

The minimal such S is sometimes called the controlling polygon of M.
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Radii of convergence

Integrality of the radii of convergence

From now on, let p be the characteristic of the residue field of K .

Theorem (Baldassarri for i = 1, K for i > 1)

Suppose either that p = 0 or that p > 0 and |K×| is p-divisible. Then for
all a ∈ K , ρ ∈ (0, r ], and i ∈ {1, . . . , n},

si (M, ζa,ρ)n! ∈ |K×| · ρZ.

Moreover, if i = n or if i < n and si (M, ζa,ρ) < min{ρ, si+1(M, ζa,ρ)}, then

i∏
j=1

sj(M, ζa,ρ) ∈ |K×| · ρZ.
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Radii of convergence

Subharmonicity of the radii of convergence

Theorem (Baldassarri for i = 1, K for i > 1)

For any i ∈ {1, . . . , n} and any a ∈ K , the function ρ 7→ si (M, ζa,ρ) is
nondecreasing and log-concave.

Theorem (Baldassarri for i = 1, K for i > 1)

For any i ∈ {1, . . . , n}, the function ρ 7→ − log si (M, ζa,ρ) is
subharmonic: at any vertex of the skeleton S, the slope “from above”
(which is ≤ 0) is at most the sum of the slopes “from below”.
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Radii of convergence

Some proof techniques

By extension of scalars, we can always reduce to looking at ζa,ρ.

If si (M, ζa,ρ) > ρ, then si (M, ζa,ρ) = si (M, ζa,ρ+ε) since the discs in
question coincide.

Put ω = 1 if p = 0 or ω = p−1/(p−1) if p > 0. If si (M, ζa,ρ) < ωρ,
then si (M, ζa,ρ) can be read off from a certain Newton polygon.

If ωρ ≤ si (M, ζa,ρ) < ρ, then we can study si (M, ζa,ρ) by pushing
forward along the map T − a 7→ (T − a)p; this has the effect of
moving si (M, ζa,ρ) closer to the visible range.

If si (M, ζa,ρ) = ρ, it is hard to get any information directly; we must
work around this!
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If si (M, ζa,ρ) = ρ, it is hard to get any information directly; we must
work around this!
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Radii of convergence

Some stronger results

Theorem (Baldassarri for i = 1, K for i > 1)

Suppose either p = 0 or that p > 0, |K×| is p-divisible, and (see below).

(a) The functions si (M, α) are constant near any point of type IV.

(b) If i = n or if i < n and si (M, ζa,ρ) < si+1(M, ζa,ρ), then

i∏
j=1

sj(M, ζa,ρ) ∈ |K×| · ρZ.

(c) The functions si (M, α)n! and
∏n

i=1 si (M, α) each have the form
α 7→ min{α(f1), . . . , α(fm)} for some f1, . . . , fm ∈ K{T/r}.

If p > 0, one must assume that rank(M) < p or that “no exponent
differences are p-adic Liouville numbers.” For example, this is true for
Picard-Fuchs equations (which have Frobenius structures).
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