The *p*-adic arithmetic curve: algebraic and analytic aspects

Kiran S. Kedlaya

Department of Mathematics, Massachusetts Institute of Technology; kedlaya@mit.edu Department of Mathematics, University of California, San Diego

JAMI conference: Noncommutative geometry and arithmetic Johns Hopkins University March 25, 2011

For slides, see http://math.mit.edu/~kedlaya/papers/talks.shtml.

Supported by NSF, DARPA, MIT, UCSD.

Kiran S. Kedlaya (MIT/UCSD)

The *p*-adic arithmetic curve

Contents

Introduction

- What is p-adic Hodge theory?
- 9 p-adic representations and the Fargues-Fontaine curve
- 4 Analytic geometry for relative p-adic Hodge theory
- 5 Relative *p*-adic Hodge theory
- 6 Speculation zone: moving away from p

Contents

Introduction

- 2 What is *p*-adic Hodge theory?
- 3 p-adic representations and the Fargues-Fontaine curve
- Analytic geometry for relative p-adic Hodge theory
- 5 Relative *p*-adic Hodge theory
- 5 Speculation zone: moving away from p

Context of this talk: the *hypothetical* arithmetic curve

The properties of zeta functions and *L*-functions of algebraic varieties over finite fields (e.g., Weil's conjectures) are well explained by *cohomology theories* (étale cohomology, rigid *p*-adic cohomology). These provide *spectral interpretations* of zeros and poles as eigenvalues of Frobenius on certain vector spaces.

It is suspected that properties of zeta functions and *L*-functions over \mathbb{Z} can be similarly explained by describing an *arithmetic curve* and (foliated) cohomology thereof. Rather than a discrete Frobenius operator, one should instead find a one-parameter flow (time evolution) with a simple periodic orbit of length log *p* contributing an Euler factor at *p*.

A few formal properties of this picture are realized by the *Bost-Connes* system, in which Riemann ζ appears as a quantum-statistical partition function.

Context of this talk: the *hypothetical* arithmetic curve

The properties of zeta functions and *L*-functions of algebraic varieties over finite fields (e.g., Weil's conjectures) are well explained by *cohomology theories* (étale cohomology, rigid *p*-adic cohomology). These provide *spectral interpretations* of zeros and poles as eigenvalues of Frobenius on certain vector spaces.

It is suspected that properties of zeta functions and *L*-functions over \mathbb{Z} can be similarly explained by describing an *arithmetic curve* and (foliated) cohomology thereof. Rather than a discrete Frobenius operator, one should instead find a one-parameter flow (time evolution) with a simple periodic orbit of length log *p* contributing an Euler factor at *p*.

A few formal properties of this picture are realized by the *Bost-Connes* system, in which Riemann ζ appears as a quantum-statistical partition function.

Context of this talk: the *hypothetical* arithmetic curve

The properties of zeta functions and *L*-functions of algebraic varieties over finite fields (e.g., Weil's conjectures) are well explained by *cohomology theories* (étale cohomology, rigid *p*-adic cohomology). These provide *spectral interpretations* of zeros and poles as eigenvalues of Frobenius on certain vector spaces.

It is suspected that properties of zeta functions and *L*-functions over \mathbb{Z} can be similarly explained by describing an *arithmetic curve* and (foliated) cohomology thereof. Rather than a discrete Frobenius operator, one should instead find a one-parameter flow (time evolution) with a simple periodic orbit of length log *p* contributing an Euler factor at *p*.

A few formal properties of this picture are realized by the *Bost-Connes* system, in which Riemann ζ appears as a quantum-statistical partition function.

A *p*-adic arithmetic curve

In this talk, we describe results from p-adic Hodge theory which provide a *curve* resembling the periodic orbit corresponding to p in a putative arithmetic curve. There is also some formal resemblance to the p-adic BC system.

This *p*-adic arithmetic curve admits coefficient objects corresponding to motives over \mathbb{Q}_p , from which étale and de Rham cohomology can be read off naturally. (These are closely related to (φ, Γ) -modules.) This suggests the possibility of building an arithmetic curve with coefficients so as to provide a spectral interpretation of global zeta and *L*-functions.

Results to be described include those of Berger, Fargues-Fontaine, K, K-Liu, and Scholze.

A *p*-adic arithmetic curve

In this talk, we describe results from p-adic Hodge theory which provide a *curve* resembling the periodic orbit corresponding to p in a putative arithmetic curve. There is also some formal resemblance to the p-adic BC system.

This *p*-adic arithmetic curve admits coefficient objects corresponding to motives over \mathbb{Q}_p , from which étale and de Rham cohomology can be read off naturally. (These are closely related to (φ, Γ) -modules.) This suggests the possibility of building an arithmetic curve with coefficients so as to provide a spectral interpretation of global zeta and *L*-functions.

Results to be described include those of Berger, Fargues-Fontaine, K, K-Liu, and Scholze.

A *p*-adic arithmetic curve

In this talk, we describe results from p-adic Hodge theory which provide a *curve* resembling the periodic orbit corresponding to p in a putative arithmetic curve. There is also some formal resemblance to the p-adic BC system.

This *p*-adic arithmetic curve admits coefficient objects corresponding to motives over \mathbb{Q}_p , from which étale and de Rham cohomology can be read off naturally. (These are closely related to (φ, Γ) -modules.) This suggests the possibility of building an arithmetic curve with coefficients so as to provide a spectral interpretation of global zeta and *L*-functions.

Results to be described include those of Berger, Fargues-Fontaine, K, K-Liu, and Scholze.

Contents

Introduction

- 2 What is *p*-adic Hodge theory?
- 3 p-adic representations and the Fargues-Fontaine curve
- 4 Analytic geometry for relative p-adic Hodge theory
- 5 Relative *p*-adic Hodge theory
- 5 Speculation zone: moving away from p

What is Hodge theory?

An algebraic variety over \mathbb{C} admits both Betti (singular) and algebraic de Rham cohomologies, which are related by a *comparison isomorphism*. This provides the same \mathbb{C} -vector space H^i with both a \mathbb{Z} -lattice and a Hodge filtration. For example, if E is an elliptic curve, then H^1 has dimension 2. The \mathbb{Z} -structure on H^1 projects to a lattice in the 1-dimensional space Fil⁰ / Fil¹, the quotient by which is E.

Ordinary Hodge theory consists (in part) of studying the relationship between integral structures and filtrations, abstracted away from algebraic varieties.

p-adic Hodge theory

Over a finite extension K of \mathbb{Q}_p , Fontaine discovered deep relationships between p-adic étale cohomology and algebraic de Rham cohomology. However, in this case, these are related over some surprisingly large p-adic period rings.

One important application is to characterize *p*-adic Galois representations which can arise from étale cohomology (e.g., Fontaine-Mazur conjecture). This characterization is built into most current results on modularity of Galois representations (e.g., Khare-Wintenberger's proof of Serre's conjecture).

One also embeds continuous *p*-adic representations of G_K into a larger category of (φ, Γ) -modules in which irreducible representations may fail to remain irreducible. This is not pathological! It occurs for representations occurring in practice (e.g., those attached to *p*-adic modular forms) and has strong repercussions in the study of *eigenvarieties*.

p-adic Hodge theory

Over a finite extension K of \mathbb{Q}_p , Fontaine discovered deep relationships between *p*-adic étale cohomology and algebraic de Rham cohomology. However, in this case, these are related over some surprisingly large *p*-adic period rings.

One important application is to characterize *p*-adic Galois representations which can arise from étale cohomology (e.g., Fontaine-Mazur conjecture). This characterization is built into most current results on modularity of Galois representations (e.g., Khare-Wintenberger's proof of Serre's conjecture).

One also embeds continuous *p*-adic representations of G_K into a larger category of (φ, Γ) -modules in which irreducible representations may fail to remain irreducible. This is not pathological! It occurs for representations occurring in practice (e.g., those attached to *p*-adic modular forms) and has strong repercussions in the study of *eigenvarieties*.

p-adic Hodge theory

Over a finite extension K of \mathbb{Q}_p , Fontaine discovered deep relationships between *p*-adic étale cohomology and algebraic de Rham cohomology. However, in this case, these are related over some surprisingly large *p*-adic period rings.

One important application is to characterize *p*-adic Galois representations which can arise from étale cohomology (e.g., Fontaine-Mazur conjecture). This characterization is built into most current results on modularity of Galois representations (e.g., Khare-Wintenberger's proof of Serre's conjecture).

One also embeds continuous *p*-adic representations of G_K into a larger category of (φ, Γ) -modules in which irreducible representations may fail to remain irreducible. This is not pathological! It occurs for representations occurring in practice (e.g., those attached to *p*-adic modular forms) and has strong repercussions in the study of *eigenvarieties*.

Contents

Introduction

2 What is *p*-adic Hodge theory?

9 p-adic representations and the Fargues-Fontaine curve

- 4 Analytic geometry for relative p-adic Hodge theory
- 5 Relative *p*-adic Hodge theory
- 5 Speculation zone: moving away from p

Witt vectors

Fix a prime p and let W denote the functor of p-typical Witt vectors. For R a perfect \mathbb{F}_p -algebra, W(R) is p-adically separated and complete and $W(R)/(p) \cong R$. Also, W(R) admits a multiplicative Teichmüller map $r \to [r]$ whose composition with reduction modulo p is the identity.

One can also define *big Witt vectors* over any ring R, by imposing an exotic ring structure on sequences $(x_1, x_2, ...)$ in a manner functorial in R so that the *ghost map*

$$(x_n)_{n\in\mathbb{N}}\mapsto (w_n)_{n\in\mathbb{N}}, \qquad w_n=\sum_{d\mid n}dx_d^{n/d}$$

defines a ring homomorphism to the ordinary product $R^{\mathbb{N}}$. Retaining components indexed by powers of *p* reproduces the *p*-typical construction. The big Witt vectors always form a λ -ring.

Witt vectors

Fix a prime p and let W denote the functor of p-typical Witt vectors. For R a perfect \mathbb{F}_p -algebra, W(R) is p-adically separated and complete and $W(R)/(p) \cong R$. Also, W(R) admits a multiplicative Teichmüller map $r \to [r]$ whose composition with reduction modulo p is the identity.

One can also define *big Witt vectors* over any ring R, by imposing an exotic ring structure on sequences $(x_1, x_2, ...)$ in a manner functorial in R so that the *ghost map*

$$(x_n)_{n\in\mathbb{N}}\mapsto (w_n)_{n\in\mathbb{N}}, \qquad w_n=\sum_{d\mid n}dx_d^{n/d}$$

defines a ring homomorphism to the ordinary product $R^{\mathbb{N}}$. Retaining components indexed by powers of *p* reproduces the *p*-typical construction. The big Witt vectors always form a λ -ring.

Some rings in *p*-adic Hodge theory

Let F^+ , F be the completed perfections of $\mathbb{F}_p[\![\overline{\pi}]\!]$, $\mathbb{F}_p((\overline{\pi}))$, equipped with the $\overline{\pi}$ -adic norm with normalization $|\overline{\pi}| = p^{-p/(p-1)}$. The Witt ring $W(F^+)$ carries for each r > 0 a multiplicative *Gauss norm*

$$\left|\sum_{n=0}^{\infty} p^{n}[\overline{x}_{n}]\right|_{r} = \max_{n} \{p^{-n} |\overline{x}_{n}|^{r}\}.$$

The Frobenius φ on $W(F^+)$ satisfies

$$|\varphi(x)|_r = |x|_{pr}.$$

Let \mathbb{B}_+ denote the Fréchet completion of $W(F^+)[p^{-1}]$ with respect to all of the Gauss norms. The group $\Gamma = \mathbb{Z}_p^{\times}$ acts via

$$\gamma(1+\overline{\pi}) = (1+\overline{\pi})^{\gamma} = \sum_{i=0}^{\infty} {\gamma \choose i} \overline{\pi}^{i}.$$

The Fargues-Fontaine curve

Let P denote the graded ring

$$P = \bigoplus_{n=0}^{\infty} P_n, \qquad P_n = \mathbb{B}_+^{\varphi = p^n}.$$

The Fargues-Fontaine curve is the scheme Proj(P).

Theorem (Fargues-Fontaine, after K, Berger)

The scheme $\operatorname{Proj}(P)$ is noetherian of dimension 1, regular, and connected. It is also **complete**: it admits a homomorphism deg : $\operatorname{Div}(\operatorname{Proj}(P)) \to \mathbb{Z}$ which is surjective, nonnegative on effective divisors, and zero on principal divisors. (For $f \in P_n$ nonzero, deg(V(f)) = n.)

Vector bundles and Galois representations

Since deg factors through Pic(Proj(P)), we get a well-defined degree function on line bundles. As usual, define the *degree* of a vector bundle as the degree of its top exterior power, and define the *slope* of a nonzero vector bundle as

$$u(V) = rac{\deg(V)}{\operatorname{rank}(V)}.$$

A vector bundle V' is *semistable* if it admits no nonzero proper subbundle V' with $\mu(V') > \mu(V)$.

Theorem (Fargues-Fontaine, after K, Berger)

The category of continuous representations of $G_{\mathbb{Q}_p}$ on finite-dimensional \mathbb{Q}_p -vector spaces is equivalent to the category of Γ -equivariant semistable vector bundles of slope 0 on $\operatorname{Proj}(P)$.

(Aside: the interaction between φ and Γ resembles the BC-system.)

Vector bundles and comparison isomorphisms

Suppose that V is the vector bundle corresponding to $H^i_{\text{et}}(X \times_{\mathbb{Q}_p} \overline{\mathbb{Q}_p}, \mathbb{Q}_p)$ for some smooth proper variety X over \mathbb{Q}_p .

One recovers the étale cohomology $H^i_{\text{et}}(X \times_{\mathbb{Q}_p} \overline{\mathbb{Q}_p}, \mathbb{Q}_p)$ by taking Γ -fixed global sections of V.

One recovers the de Rham cohomology $H^i_{dR}(X, \mathbb{Q}_p)$ by taking Γ -fixed sections of V over the fraction field of the completed local ring of Proj(P) at the *de Rham point*, the unique vanishing point of

$$t = \log([1 + \overline{\pi}]) = \sum_{i=1}^{\infty} \frac{(-1)^{i-1}}{i} ([1 + \overline{\pi}] - 1)^i \in P_1.$$

This point has residue field is the completion of $\mathbb{Q}_p(\mu_{p^{\infty}})$. Note: every finite étale algebra over $\mathbb{Q}_p(\mu_{p^{\infty}})$ with Γ -action lifts uniquely to a finite étale cover of $\operatorname{Proj}(P)$ with Γ -action.

Vector bundles and comparison isomorphisms

Suppose that V is the vector bundle corresponding to $H^i_{\text{et}}(X \times_{\mathbb{Q}_p} \overline{\mathbb{Q}_p}, \mathbb{Q}_p)$ for some smooth proper variety X over \mathbb{Q}_p .

One recovers the étale cohomology $H^i_{\text{et}}(X \times_{\mathbb{Q}_p} \overline{\mathbb{Q}_p}, \mathbb{Q}_p)$ by taking Γ -fixed global sections of V.

One recovers the de Rham cohomology $H^i_{dR}(X, \mathbb{Q}_p)$ by taking Γ -fixed sections of V over the fraction field of the completed local ring of Proj(P) at the *de Rham point*, the unique vanishing point of

$$t = \log([1 + \overline{\pi}]) = \sum_{i=1}^{\infty} \frac{(-1)^{i-1}}{i} ([1 + \overline{\pi}] - 1)^i \in P_1.$$

This point has residue field is the completion of $\mathbb{Q}_p(\mu_{p^{\infty}})$. Note: every finite étale algebra over $\mathbb{Q}_p(\mu_{p^{\infty}})$ with Γ -action lifts uniquely to a finite étale cover of $\operatorname{Proj}(P)$ with Γ -action.

Vector bundles and comparison isomorphisms

Suppose that V is the vector bundle corresponding to $H^i_{\text{et}}(X \times_{\mathbb{Q}_p} \overline{\mathbb{Q}_p}, \mathbb{Q}_p)$ for some smooth proper variety X over \mathbb{Q}_p .

One recovers the étale cohomology $H^i_{\text{et}}(X \times_{\mathbb{Q}_p} \overline{\mathbb{Q}_p}, \mathbb{Q}_p)$ by taking Γ -fixed global sections of V.

One recovers the de Rham cohomology $H^i_{dR}(X, \mathbb{Q}_p)$ by taking Γ -fixed sections of V over the fraction field of the completed local ring of Proj(P) at the *de Rham point*, the unique vanishing point of

$$t = \log([1 + \overline{\pi}]) = \sum_{i=1}^{\infty} \frac{(-1)^{i-1}}{i} ([1 + \overline{\pi}] - 1)^i \in P_1.$$

This point has residue field is the completion of $\mathbb{Q}_p(\mu_{p^{\infty}})$. Note: every finite étale algebra over $\mathbb{Q}_p(\mu_{p^{\infty}})$ with Γ -action lifts uniquely to a finite étale cover of $\operatorname{Proj}(P)$ with Γ -action.

Contents

Introduction

- 2 What is *p*-adic Hodge theory?
- 3 p-adic representations and the Fargues-Fontaine curve

Analytic geometry for relative p-adic Hodge theory

- 5 Relative *p*-adic Hodge theory
- 5 Speculation zone: moving away from p

Approaches to nonarchimedean analytic geometry

Analytic spaces over a nonarchimedean field are somehow glued together from Banach algebras (always commutative here, and typically assumed to be *affinoid*). Classically this is done by taking maximal ideals and imposing a Grothendieck topology (Tate's *rigid analytic spaces*).

For this talk, it is better to follow Berkovich and take Gel'fand spectra (spaces of bounded multiplicative real-valued seminorms). These have less disconnected topology; for instance, the "closed unit disc" in this setting is *contractible*. (Related fact: the analytification of a complete curve has homotopy type related to its *semistable reduction*.)

It is better in the long run to add valuations of height greater than 1 (to get *adic spaces* as in Huber or Fujiwara-Kato), but we won't do that today.

Approaches to nonarchimedean analytic geometry

Analytic spaces over a nonarchimedean field are somehow glued together from Banach algebras (always commutative here, and typically assumed to be *affinoid*). Classically this is done by taking maximal ideals and imposing a Grothendieck topology (Tate's *rigid analytic spaces*).

For this talk, it is better to follow Berkovich and take Gel'fand spectra (spaces of bounded multiplicative real-valued seminorms). These have less disconnected topology; for instance, the "closed unit disc" in this setting is *contractible*. (Related fact: the analytification of a complete curve has homotopy type related to its *semistable reduction*.)

It is better in the long run to add valuations of height greater than 1 (to get *adic spaces* as in Huber or Fujiwara-Kato), but we won't do that today.

Approaches to nonarchimedean analytic geometry

Analytic spaces over a nonarchimedean field are somehow glued together from Banach algebras (always commutative here, and typically assumed to be *affinoid*). Classically this is done by taking maximal ideals and imposing a Grothendieck topology (Tate's *rigid analytic spaces*).

For this talk, it is better to follow Berkovich and take Gel'fand spectra (spaces of bounded multiplicative real-valued seminorms). These have less disconnected topology; for instance, the "closed unit disc" in this setting is *contractible*. (Related fact: the analytification of a complete curve has homotopy type related to its *semistable reduction*.)

It is better in the long run to add valuations of height greater than 1 (to get *adic spaces* as in Huber or Fujiwara-Kato), but we won't do that today.

Witt vectors

Let *R* be a perfect \mathbb{F}_p -algebra, equipped with the trivial norm. Equip W(R) with the trivial norm. There are natural maps on Gel'fand spectra:

$$\lambda: \mathcal{M}(R) \to \mathcal{M}(W(R)), \qquad \lambda(\alpha) \left(\sum_{n=0}^{\infty} p^n[\overline{x}_n]\right) = \max_n \{p^{-n}\alpha(\overline{x}_n)\}$$
$$\mu: \mathcal{M}(W(R)) \to \mathcal{M}(R), \qquad \mu(\beta)(\overline{x}_n) = \beta([\overline{x}_n]).$$

Theorem (K)

The maps λ, μ are continuous and preserve rational subspaces. Moreover, there is a natural (in R) vertical (for μ) homotopy on $\mathcal{M}(W(R))$ between id and $\lambda \circ \mu$.

That is, $\mathcal{M}(W(R))$ behaves like a disc bundle over $\mathcal{M}(R)$.

Relative circles

Now let R be a perfect uniform Banach \mathbb{F}_p -algebra with norm α . (Uniformity means $\alpha(x^2) = \alpha(x)^2$.) Let R^+ be the subring of elements of norm at most 1. Again, let $\mathbb{B}_{R,+}$ be the Fréchet completion of $W(R^+)[p^{-1}]$ for $\lambda(\alpha^r)$ for all r > 0. Define $\mathcal{M}(R)$ by glueing: take the Gel'fand spectrum after Fréchet completing for r in a closed interval, then take the union over intervals.

If R is a Banach algebra over an analytic field with nontrivial norm, then the action of φ^* on $\mathcal{M}(R)$ is totally discontinuous. Quotienting gives a homotopy circle bundle over $\mathcal{M}(R)$. For R = F, this acts like an *analytic skeleton* of the Fargues-Fontaine curve.

Relative circles

Now let R be a perfect uniform Banach \mathbb{F}_p -algebra with norm α . (Uniformity means $\alpha(x^2) = \alpha(x)^2$.) Let R^+ be the subring of elements of norm at most 1. Again, let $\mathbb{B}_{R,+}$ be the Fréchet completion of $W(R^+)[p^{-1}]$ for $\lambda(\alpha^r)$ for all r > 0. Define $\mathcal{M}(R)$ by glueing: take the Gel'fand spectrum after Fréchet completing for r in a closed interval, then take the union over intervals.

If R is a Banach algebra over an analytic field with nontrivial norm, then the action of φ^* on $\mathcal{M}(R)$ is totally discontinuous. Quotienting gives a homotopy circle bundle over $\mathcal{M}(R)$. For R = F, this acts like an *analytic skeleton* of the Fargues-Fontaine curve.

Contents

Introduction

- 2 What is *p*-adic Hodge theory?
- 3 p-adic representations and the Fargues-Fontaine curve
- 4 Analytic geometry for relative p-adic Hodge theory
- 5 Relative *p*-adic Hodge theory
 - 5 Speculation zone: moving away from p

Étale covers and local systems

Let R be a perfect uniform Banach F-algebra. Put

$$P_R = \bigoplus_{n=0}^{\infty} P_{R,n}, \qquad P_{R,n} = \mathbb{B}_{R,+}^{\varphi = p^n}.$$

Now $t \in P_1$ cuts out a closed subscheme of $\operatorname{Proj}(P)$ whose residue ring \tilde{R} is a Banach algebra over the completion $\mathbb{Q}_p(\mu_{p^{\infty}})$.

Theorem (K-Liu, Scholze; after Faltings, Andreatta, Gabber-Ramero)

There is a natural equivalence between finite étale R-algebras and finite étale \tilde{R} -algebras.

Theorem (K-Liu)

The categories of étale \mathbb{Q}_p -local systems on $\mathcal{M}(R)$, étale \mathbb{Q}_p -local systems on $\mathcal{M}(\tilde{R})$, and **fibrewise semistable** vector bundles of degree 0 on $\operatorname{Proj}(P_R)$ are naturally (in R) equivalent.

Kiran S. Kedlaya (MIT/UCSD)

The p-adic arithmetic curve

Deeply ramified covers

Let A be an affinoid algebra over \mathbb{Q}_p . To describe local systems on $\mathcal{M}(A)$ using the previous theorem, we make a *deeply ramified* extension \tilde{A} of A which has the form \tilde{R} for some perfect Banach *F*-algebra *R*, equipped with a Galois action which can be used to specify descent data. It is sufficient to ensure that Frobenius on $\tilde{A}^+/(p)$ is surjective.

For instance, if $\mathcal{M}(A)$ embeds into an affine space with coordinates T_1, \ldots, T_n , we can form

$$\tilde{A} = A \widehat{\otimes}_{\mathbb{Q}_p} \mathbb{Q}_p(\mu_{p^{\infty}})[T_1^{1/p^{\infty}}, \dots, T_n^{1/p^{\infty}}]$$

(with some care if the T_i are not units in A).

One can also make universal constructions using suitable sites, e.g., Scholze's *pro-étale site*. The latter is best suited for proving a *relative comparison isomorphism* between étale and de Rham cohomology.

Contents

Introduction

- 2 What is p-adic Hodge theory?
- 3 p-adic representations and the Fargues-Fontaine curve
- 4 Analytic geometry for relative p-adic Hodge theory
- 5 Relative *p*-adic Hodge theory
- **o** Speculation zone: moving away from *p*

It is desirable to force all dependence on the prime p in these constructions through the p-adic absolute value, avoiding use of algebraic properties (e.g., the Frobenius map in characteristic p). Here are some easy ways to move in this direction.

- Adjoin all roots of unity and the T_i, not just the p-power one. This is still compatible with use of the pro-étale site. (For the original Fargues-Fontaine curve, one replaces P by some sort of product over p-adic valuations on Q^{ab}.)
- Work with W(R) instead of R, as this can be reconstructed directly from W(R) by taking the inverse limit under Frobenius (Davis-K).
- Use big Witt vectors instead of *p*-typical ones.

It is desirable to force all dependence on the prime p in these constructions through the p-adic absolute value, avoiding use of algebraic properties (e.g., the Frobenius map in characteristic p). Here are some easy ways to move in this direction.

- Adjoin all roots of unity and the T_i, not just the *p*-power one. This is still compatible with use of the pro-étale site. (For the original Fargues-Fontaine curve, one replaces P by some sort of product over *p*-adic valuations on Q^{ab}.)
- Work with W(R) instead of R, as this can be reconstructed directly from $W(\tilde{R})$ by taking the inverse limit under Frobenius (Davis-K).
- Use big Witt vectors instead of *p*-typical ones.

It is desirable to force all dependence on the prime p in these constructions through the p-adic absolute value, avoiding use of algebraic properties (e.g., the Frobenius map in characteristic p). Here are some easy ways to move in this direction.

- Adjoin all roots of unity and the T_i, not just the *p*-power one. This is still compatible with use of the pro-étale site. (For the original Fargues-Fontaine curve, one replaces *P* by some sort of product over *p*-adic valuations on Q^{ab}.)
- Work with W(R) instead of R, as this can be reconstructed directly from W(R̃) by taking the inverse limit under Frobenius (Davis-K).

• Use big Witt vectors instead of *p*-typical ones.

It is desirable to force all dependence on the prime p in these constructions through the p-adic absolute value, avoiding use of algebraic properties (e.g., the Frobenius map in characteristic p). Here are some easy ways to move in this direction.

- Adjoin all roots of unity and the T_i, not just the *p*-power one. This is still compatible with use of the pro-étale site. (For the original Fargues-Fontaine curve, one replaces P by some sort of product over *p*-adic valuations on Q^{ab}.)
- Work with W(R) instead of R, as this can be reconstructed directly from W(R̃) by taking the inverse limit under Frobenius (Davis-K).
- Use big Witt vectors instead of *p*-typical ones.

- After making the changes suggested on the previous slide, can one consider an archimedean Banach algebra? And can one say anything meaningful about ordinary Hodge theory?
- Now consider an "adelic Banach algebra". Can one imitate Scholze's relative comparison theory to define "a coefficient object on the BC-system associated to a smooth proper Q-scheme"? Can one get back to de Rham cohomology or étale cohomology?
- What do *K*-theory and the de Rham-Witt complex have to do with this?
- What exactly is the arithmetic curve? How does one associate cohomology to its coefficient objects so as to give spectral interpretations of *L*-functions?

- After making the changes suggested on the previous slide, can one consider an archimedean Banach algebra? And can one say anything meaningful about ordinary Hodge theory?
- Now consider an "adelic Banach algebra". Can one imitate Scholze's relative comparison theory to define "a coefficient object on the BC-system associated to a smooth proper Q-scheme"? Can one get back to de Rham cohomology or étale cohomology?
- What do *K*-theory and the de Rham-Witt complex have to do with this?
- What exactly is the arithmetic curve? How does one associate cohomology to its coefficient objects so as to give spectral interpretations of *L*-functions?

- After making the changes suggested on the previous slide, can one consider an archimedean Banach algebra? And can one say anything meaningful about ordinary Hodge theory?
- Now consider an "adelic Banach algebra". Can one imitate Scholze's relative comparison theory to define "a coefficient object on the BC-system associated to a smooth proper Q-scheme"? Can one get back to de Rham cohomology or étale cohomology?
- What do *K*-theory and the de Rham-Witt complex have to do with this?
- What exactly is the arithmetic curve? How does one associate cohomology to its coefficient objects so as to give spectral interpretations of *L*-functions?

- After making the changes suggested on the previous slide, can one consider an archimedean Banach algebra? And can one say anything meaningful about ordinary Hodge theory?
- Now consider an "adelic Banach algebra". Can one imitate Scholze's relative comparison theory to define "a coefficient object on the BC-system associated to a smooth proper Q-scheme"? Can one get back to de Rham cohomology or étale cohomology?
- What do *K*-theory and the de Rham-Witt complex have to do with this?
- What exactly is the arithmetic curve? How does one associate cohomology to its coefficient objects so as to give spectral interpretations of *L*-functions?

- After making the changes suggested on the previous slide, can one consider an archimedean Banach algebra? And can one say anything meaningful about ordinary Hodge theory?
- Now consider an "adelic Banach algebra". Can one imitate Scholze's relative comparison theory to define "a coefficient object on the BC-system associated to a smooth proper Q-scheme"? Can one get back to de Rham cohomology or étale cohomology?
- What do *K*-theory and the de Rham-Witt complex have to do with this?
- What exactly is the arithmetic curve? How does one associate cohomology to its coefficient objects so as to give spectral interpretations of *L*-functions?