Relative p-adic Hodge theory and Rapoport-Zink period domains

Kiran S. Kedlaya

Department of Mathematics, Massachusetts Institute of Technology
Department of Mathematics, University of California, San Diego
kedlaya@(mit|ucsd).edu

International Congress of Mathematicians
Hyderabad International Conference Centre, August 20, 2010

Work in progress with Ruochuan Liu; inconvenience regretted. Slides available at http://math.mit.edu/~kedlaya/papers/talks.shtml; see there also for slides from my related ICM satellite lecture.

Supported by NSF, DARPA, MIT, IAS.
Contents

1. p-adic Hodge theory

2. Moduli of filtered isocrystals (Rapoport-Zink problem)

3. Geometric construction of crystalline representations (after Berger)

4. Construction of a crystalline local system
Contents

1. p-adic Hodge theory

2. Moduli of filtered isocrystals (Rapoport-Zink problem)

3. Geometric construction of crystalline representations (after Berger)

4. Construction of a crystalline local system
What is Hodge theory?

To an algebraic variety X over \mathbb{C}, we can associate Betti cohomology $H^i_{\text{Betti}}(X, \mathbb{R})$ and de Rham cohomology $H^i_{\text{dR}}(X, \mathbb{C})$. These \mathbb{R}-vector spaces are canonically isomorphic, but carry different additional structures: Betti cohomology carries an integral lattice (the image of cohomology with \mathbb{Z}-coefficients) while de Rham cohomology carries a complex structure and a decreasing filtration (the Hodge filtration).

One defines a Hodge structure to be a finite-dimensional \mathbb{R}-vector space equipped with a \mathbb{Z}-lattice, a complex structure, and a decreasing filtration. Hodge theory is the study of such objects and how they can arise from the cohomology of varieties, individually and in families.
What is p-adic Hodge theory?

Let K_0 be a finite unramified extension of \mathbb{Q}_p, and let K be a finite totally ramified extension of K_0. Let \mathfrak{o}_K, k be the valuation ring and residue field of K. Let \overline{K} be an algebraic closure of K.

To a smooth proper scheme X over \mathfrak{o}_K, we can associate:

- étale cohomology $H^i_{\text{et}}(X_{\overline{K}}, \mathbb{Q}_p)$, which carries an action of the absolute Galois group G_K;
- de Rham cohomology $H^i_{\text{dR}}(X_K, K)$, which carries a Hodge filtration;
- rigid cohomology $H^i_{\text{rig}}(X_k, K_0)$, which carries a Frobenius map φ.

The relationship among these structures is the concern of p-adic Hodge theory.
Filtered isocrystals

Since K_0 is unramified, it carries a unique automorphism φ lifting the p-th power (Frobenius) map mod p. For any field L containing K_0, a filtered isocrystal over L (with respect to K_0) consists of

- a finite-dimensional K_0-vector space D equipped with a semilinear bijective φ-action (an isocrystal);
- an exhaustive decreasing filtration Fil^\bullet on $D_L = D \otimes_{K_0} L$.

We get such an object over K from the canonical comparison isomorphism

$$H^{i}_{dR}(X_K, K) \cong H^{i}_{\text{rig}}(X_k, K_0) \otimes_{K_0} K.$$

Consequently, filtered isocrystals may be viewed as p-adic Hodge structures.
The relationship between de Rham and étale cohomologies is subtler. Following a suggestion of Grothendieck, Fontaine proposed and Faltings confirmed the existence of a comparison isomorphism

\[H^i_{\text{et}}(X_K, \mathbb{Q}_p) \otimes_{\mathbb{Q}_p} B_{\text{crys}} \cong H^i_{\text{dR}}(X_K, K) \otimes_K B_{\text{crys}} \]

for a certain topological K-algebra B_{crys} equipped with a G_K-action, a Frobenius action, and a filtration (the *ring of crystalline periods*).

The resulting module over B_{crys} carries a G_K-action, a Frobenius action, and a filtration. One recovers étale cohomology by taking the φ-invariants of Fil^0. One recovers de Rham and rigid cohomologies by taking Galois invariants.
Contents

1. p-adic Hodge theory

2. Moduli of filtered isocrystals (Rapoport-Zink problem)

3. Geometric construction of crystalline representations (after Berger)

4. Construction of a crystalline local system
Let D be a filtered isocrystal over L with respect to K_0. For any basis of D, the action of φ is specified by a matrix A; changing basis by the matrix U replaces A by $U^{-1}A\varphi(U)$. The p-adic valuation of $\det(A)$ is thus independent of the choice of basis; it is called the \textit{Frobenius degree} of D.

The \textit{Hodge-Tate weights} of D are the integers i with $\text{Fil}^i \neq \text{Fil}^{i+1}$, counted with multiplicity $\dim(\text{Fil}^i / \text{Fil}^{i+1})$. In the case of de Rham cohomology, these compute Hodge numbers.
Weak admissibility for filtered isocrystals

Let D be a filtered isocrystal over L with respect to K_0. Let $t_N(D)$ be the Frobenius degree of D. Let $t_H(D)$ be the sum of the Hodge-Tate weights of D. Put $\deg(D) = t_H(D) - t_N(D)$.

By analogy with semistability for vector bundles, D is weakly admissible if:

(a) $\deg(D) = 0$; and
(b) for each φ-stable subspace D' of D (over K_0), $\deg(D') \leq 0$.

This holds whenever D arises from cohomology. More generally, if D is weakly admissible, there exist a continuous representation of G_K on a finite-dimensional \mathbb{Q}_p-vector space V and an isomorphism

$$V \otimes_{\mathbb{Q}_p} \mathbb{B}_{\text{crys}} \cong D \otimes_{K_0} \mathbb{B}_{\text{crys}}$$

respecting extra structures (Colmez-Fontaine). Such representations are said to be crystalline.
Interpolating Galois representations

We may view V as a local system in finite-dimensional \mathbb{Q}_p-vector spaces on Spec K for the étale topology, i.e., as a étale \mathbb{Q}_p-local system.

Let D be an isocrystal over K_0, and let H be a finite multiset of integers. Let $\mathcal{F}_{D,H}$ be the moduli space of filtrations on D with weights H; it is a partial flag variety. Each weakly admissible closed point of $\mathcal{F}_{D,H}$ gives rise to a crystalline representation.

Problem (Rapoport-Zink)

Interpolate these representations by an étale \mathbb{Q}_p-local system on some analytic subspace of $\mathcal{F}_{D,H}$ (in a sense to be clarified shortly).

In some cases, this space receives a period morphism from a certain deformation space; e.g., for weights in $\{0, 1\}$, there is a period morphism from the deformation space of a suitable p-divisible group or abelian variety (as in ordinary Hodge theory!).
Analytic spaces over nonarchimedean fields

There are multiple notions of analytic spaces over K_0. In all cases, the basic objects arise from *affinoid algebras*, the Banach algebras receiving surjections from a Tate algebra (the completion of some $K_0[T_1, \ldots, T_n]$ for the Gauss norm).

Tate’s *rigid analytic spaces* are formed from spectra of maximal ideals, glued using Grothendieck topologies. These spaces carry totally disconnected ordinary topologies.

We use Berkovich’s *nonarchimedean analytic spaces*, formed from Gel’fand spectra, i.e., spaces of bounded multiplicative seminorms. These carry locally path-connected topologies, and are inverse limits of finite polyhedral complexes (hence “tropical”).

Each point in a Berkovich space has a *residue field*, which is complete but (unlike in Tate’s theory) possibly infinite over K_0.
The admissible locus and its local system

For fixed isocrystal D and weights H, the moduli space of weakly admissible filtrations on D (defined over complete field extensions of K) is an open subspace $\mathcal{F}_{D,H}^{wa}$ of $\mathcal{F}_{D,H}$, the weakly admissible locus.

Theorem

There exist an open subspace $\mathcal{F}_{D,H}^a$ of $\mathcal{F}_{D,H}^{wa}$ (the admissible locus) containing all weakly admissible closed points of $\mathcal{F}_{D,H}$, and an étale \mathbb{Q}_p-local system on $\mathcal{F}_{D,H}^a$ specializing to the associated crystalline representation at each weakly admissible closed point.

In general $\mathcal{F}_{D,H}^a \neq \mathcal{F}_{D,H}^{wa}$. The admissible locus is defined using a related but subtler notion of semistability, using vector bundles with Frobenius actions (analogues of Drinfel’d’s shtukas).

For varying D, the situation is only partly understood (Pappas-Rapoport, Hellmann). One must replace Berkovich spaces with Huber’s adic spaces.
Contents

1. p-adic Hodge theory

2. Moduli of filtered isocrystals (Rapoport-Zink problem)

3. Geometric construction of crystalline representations (after Berger)

4. Construction of a crystalline local system
Semistability over the Robba ring

The Robba ring \mathcal{R} consists of formal Laurent series $\sum_{i=-\infty}^{\infty} c_i \pi^i$ over K_0 which converge in some annulus $* \leq |\pi| < 1$. Extend the Frobenius φ on K_0 to \mathcal{R} so that $\varphi(\pi) = (1 + \pi)^p - 1$.

A φ-module over \mathcal{R} is a finite free module M plus an isomorphism $\varphi^* M \cong M$. Since units of \mathcal{R} have bounded coefficients and hence p-adic valuations, we may again define Frobenius degree as the p-adic valuation of the matrix via which φ acts on a basis.

M is étale if on some basis, φ acts via a matrix U for which U, U^{-1} have all coefficients in \mathfrak{o}_{K_0} (the valuation ring of K_0).

Theorem (K, 2004)

A φ-module over \mathcal{R} of Frobenius degree 0 is étale if and only if it is semistable (admits no φ-stable submodule of negative Frobenius degree).
\((\varphi, \Gamma)\)-modules

The group \(\Gamma = \mathbb{Z}_p^\times\) acts \(K_0\)-linearly on \(R\) with \(\gamma \in \Gamma\) acting as \(\pi \mapsto (1 + \pi)^\gamma - 1\). An (étale) \((\varphi, \Gamma)\)-module is an (étale) \(\varphi\)-module \(M\) plus a (continuous) semilinear \(\Gamma\)-action commuting with \(\varphi\).

Theorem (Fontaine, Cherbonnier-Colmez, Berger, K, etc.)

The category of étale \((\varphi, \Gamma)\)-modules is equivalent to the category of continuous representations of \(G_{K_0}\) on finite-dimensional \(\mathbb{Q}_p\)-vector spaces.

Sketch of the passage from \((\varphi, \Gamma)\)-modules to representations:

- construct \(\varphi\)-invariant sections over a pro-étale cover of an annulus;
- restrict to \(\pi = \epsilon_n - 1\) for \(\epsilon_n\) a primitive \(p^n\)-th root of 1 for some large \(n\), producing a representation of \(G_K(\epsilon_n)\);
- use \(\Gamma\) to descend to a representation of \(G_K\).

A similar result holds for \(K\) finite over \(K_0\) (replacing \(R\) with a certain finite étale extension).
Let D be a filtered isocrystal over K_0. Extend D trivially to a vector bundle V_D over the open unit disc over K_0, carrying semilinear actions of φ and Γ (with Γ acting trivially on D).

Modify V_D at 0 to change the π-adic filtration on $V_D \otimes K_0((\pi))$ by tensoring with the provided filtration on D. By pullback by φ, move this modification to $\pi = \zeta - 1$ for each p-power root of unity ζ. Glue to obtain a vector bundle V'_D plus an isomorphism $\varphi^*V'_D \cong V_D$ away from $\pi = 0$.

Theorem (Berger)

The (φ, Γ)-module $M_D = V'_D \otimes \mathcal{R}$ is étale iff D is weakly admissible. If so, M_D gives rise to the crystalline representation associated to D.

Again, a similar construction works for K finite over K_0.
Illustration

First modify M_D here...

...then pull back to copy this modification.

\[\pi = \epsilon_0 - 1 = 0 \]

\[\pi = \epsilon_1 - 1 \]

\[\pi = \epsilon_2 - 1 \]

\[\pi = \epsilon_3 - 1 \]
Contents

1. p-adic Hodge theory

2. Moduli of filtered isocrystals (Rapoport-Zink problem)

3. Geometric construction of crystalline representations (after Berger)

4. Construction of a crystalline local system
Fix an isocrystal D over K_0 and some weights H. We work on a piece of $\mathcal{F}_{D,H}$ isomorphic to a closed unit polydisc, i.e., the analytic space associated to a Tate algebra in the variables T_1, \ldots, T_n. To globalize, use glueing for relative (φ, Γ)-modules (described in my ICM satellite lecture).

We work on X, the product of the closed polydisc in T_1, \ldots, T_n with the open π-disc. The analytic functions on X are power series in T_1, \ldots, T_n, π; we extend the Frobenius lift φ to this ring by

$$\pi \mapsto (1 + \pi)^p - 1, \quad T_i \mapsto T_i^p.$$

For $J = \{1, \ldots, n\}$, we also have an action of $\Gamma_J = \mathbb{Z}_p^\times \times \mathbb{Z}_p^J$ generated by the action of $\Gamma = \mathbb{Z}_p^\times$ as before, plus the substitutions $T_i \mapsto (1 + \pi) T_i$.
Define a trivial vector bundle on X with fibres D, with semilinear actions of φ and Γ_J (again with Γ_J fixing D).

As before, we modify along $\pi = 0$ to change the π-adic filtration, but now using the universal filtration from $\mathcal{F}_{D,H}$. Again, pull back using φ to $\pi = \zeta - 1$ for each p-power root of unity ζ. Glueing now gives a (φ, Γ_J)-module M_D on X.

The goal: construct an open subspace V of X on which M_D is “étale”. In particular, M_D will admit φ-invariant sections on some pro-étale cover of V; restricting to $\pi = 0$ will cut out a subspace of $\mathcal{F}_{D,H}$ on which we obtain a local system. (See my ICM satellite lecture for more discussion.)

We’ll use *Witt vectors* for this. In a similar spirit, see recent work on Fargues-Fontaine on foundations of p-adic Hodge theory.
Witt vectors and their geometry

Theorem (Teichmüller, Witt)

For R a perfect ring in which $p = 0$ (i.e., Frobenius is bijective), there is a unique p-adically separated and complete ring $W(R)$ with $W(R)/(p) \cong R$. There is also a multiplicative map $[\bullet] : R \rightarrow W(R)$, using which each $x \in W(R)$ can be written uniquely as $\sum_{i=0}^{\infty} p^i [\bar{x}_i]$ with $\bar{x}_i \in R$.

Although $[\bullet]$ is not a ring homomorphism, restriction along $[\bullet]$ does define a map $\mu : \mathcal{M}(W(R)) \rightarrow \mathcal{M}(R)$, where $\mathcal{M}(A)$ denotes the space of bounded multiplicative seminorms on a commutative Banach ring A. (Here R carries the trivial norm and $W(R)$ the p-adic norm.)

A one-sided inverse to μ is given by $\lambda : \mathcal{M}(R) \rightarrow \mathcal{M}(W(R))$:

$$\lambda(\alpha)(\sum_i p^i [\bar{x}_i]) = \max_i \{p^{-i} \alpha(\bar{x}_i)\}.$$

The maps λ and μ induce a homotopy equivalence!
Construction of a crystalline local system

Interpolation using Witt vectors

The inverse limit of
\[\cdots \xrightarrow{\varphi} X \xrightarrow{\varphi} X \]
embeds into \(\mathcal{M}(W(R)) \) for \(R = k[\overline{T}_1, \ldots, \overline{T}_n][[\overline{\pi}]]^{\text{perf}} \).

Theorem

There is an open analytic subspace \(V \) of \(X \) which is the projection of

\[\bigcup \{ \mu^{-1}(\alpha^s) : \alpha \in U, s > 0 \} \]

for some open subspace \(U \) of \(\mathcal{M}(R) \), such that \(V \cap \{ \pi = 0 \} \) contains all weakly admissible closed points, and \(M_D \) is étale on \(V \).

We initially get a slightly smaller set (concentrated near the boundary) on which \(\Gamma_J \) acts. The \(\Gamma_J \)-action then provides descent data, so that we can replace \(V \) by its \(\varphi^* \)-image to grow \(V \) towards \(\pi = 0 \).
Illustration

\[\pi = \epsilon_3 - 1 \]
\[\pi = \epsilon_2 - 1 \]
\[\pi = \epsilon_1 - 1 \]
\[\pi = \epsilon_0 - 1 = 0 \]

We show \(M_D \) is étale on \(V \) above the dashed line. We then use \(\Gamma_J \) to descend along \(\varphi^* \), and get a local system over the bottom gray region. Here \(\epsilon_n \) is a primitive \(p^n \)-th root of 1.