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Overview

Motivation: equidistribution for L-functions

For a motive M (with Q-coefficients), consider its L-function in the
analytic normalization:

L(s) =
∏
p

Lp(s) =
∏
p

Fp(p−s)−1, Fp(T ) = 1− apT + · · · .

Conjecture (generalized Sato-Tate conjecture; Serre, 1994)

The polynomials Fp(T ) are equidistributed for the image of Haar measure
(via the characteristic polynomial map) on a specified compact Lie group
ST(M) (the Sato-Tate group).

E.g,, the ap vary like traces of random matrices in ST(M).

Proposition

For any given degree, weight, and Hodge numbers (i.e., Gamma factors),
there are only finitely many possible Sato-Tate groups.
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Overview

Example: elliptic curves

Take M = H1(E ) with E an elliptic curve over Q.

If E has CM, then ST(M) is the normalizer of SO(2,R) in SU(2):

http://math.mit.edu/~drew/g1_D2_a1f.gif.

Equidistribution follows easily from CM theory (Hecke).

If E has no CM, then ST(M) = SU(2):

http://math.mit.edu/~drew/g1_D1_a1f.gif

Equidistribution (i.e., the original Sato-Tate conjecture) is known but hard:
it uses potential modularity of symmetric power L-functions (Taylor et al.).

If we consider E over a number field K , then the CM picture changes if
the CM field is contained in K , as ST(M) decreases to SO(2,R):

http://math.mit.edu/~drew/g1_D3_a1f.gif.
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Overview

More examples to consider

For the rest of the talk, we will be interested in the following three classes
of motives. Here K denotes an arbitrary number field (but you may
assume K = Q), w is the motivic weight, (h0,w , . . . , hw ,0) is the Hodge
vector, and d =

∑
p+q=w hp,q is the degree of the associated L-function.

M has weight 1 and Hodge vector (g , g). This means that
M = H1(A) for A/K an abelian variety of dimension g .

M has weight 2 and Hodge vector (1, 20, 1). In particular, we want1

M = H2(X ) for X/K a K3 surface.

M has weight 3 and Hodge vector (1, 1, 1, 1), e.g., a hypergeometric
motive from the Dwork pencil

x50 + x51 + x52 + x53 + x54 = λx0x1x2x3x4.

1To force this, we must fix some extra data, e.g., the intersection pairing and the
ample cone.
Kiran S. Kedlaya (UCSD/ICERM) Sato-Tate groups of higher weight motives ICERM, October 23, 2015 6 / 31
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Construction of the Sato-Tate group [S, BK1, BK2]

The Betti-Hodge realization and the Mumford-Tate group

Fix an embedding K ↪→ C. Let V denote the Betti (singular) cohomology
of M with Q-coefficients; then dimQ V = d .

The duality M ×M → Q(−w) induces a perfect bilinear pairing ψ on V .
Let GIso(V , ψ) be the associated group of symplectic (if w is odd) or
orthogonal (if w is even) similitudes.

The space VC = V ⊗Q C admits a canonical Hodge decomposition⊕
p+q=w V p,q with dimC V p,q = hp,q. Let

µ∞,V : Gm(C)→ GL(VC)

be the cocharacter acting with weight −p on V p,q.

The Mumford-Tate group of M is the minimal (connected) Q-algebraic
subgroup MT(M) of GIso(V , ψ) through which µ∞,V factors.

Kiran S. Kedlaya (UCSD/ICERM) Sato-Tate groups of higher weight motives ICERM, October 23, 2015 8 / 31
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Construction of the Sato-Tate group [S, BK1, BK2]

Another characterization of the Mumford-Tate group

The Mumford-Tate group of M is the minimal (connected) Q-algebraic
subgroup MT(M) of GIso(V , ψ) through which µ∞,V factors.

For n a positive integer for which wn is even, put p = wn/2 and

(V⊗n)p,p := (V⊗nC )p,p ∩ V⊗n.

Then MT(M) can also be characterized as the maximal subgroup of
GIso(V , ψ) fixing (V⊗n)p,p for all n.
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Construction of the Sato-Tate group [S, BK1, BK2]

The motivic Galois group

Under the Hodge conjecture2, (V⊗n)p,p is spanned by the Chern classes of
algebraic cycles defined over K . We thus have an action of the absolute
Galois group GK on (V⊗n)p,p.

The motivic Galois group Gal(M) is the subgroup of g ∈ GIso(V , ψ) for
which there exists τ = τ(g) ∈ GK such that the actions of g and τ on
(V⊗n)p,p coincide for all n. By construction, we have an exact sequence

1→ Gal(M)◦ = MT(M)→ Gal(M)→ GalL/K → 1

of algebraic groups over Q, where L is some finite extension of K . (Here
and throughout, G ◦ denotes the maximal connected subgroup of G .)

2One can make unconditional definitions using André’s motivated Hodge cycles [A].
Kiran S. Kedlaya (UCSD/ICERM) Sato-Tate groups of higher weight motives ICERM, October 23, 2015 10 / 31
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Construction of the Sato-Tate group [S, BK1, BK2]

The Sato-Tate group

Define the algebraic Sato-Tate group

AST(M) = Gal(M) ∩ GIso(V , ψ)◦;

note that GIso(V , ψ)◦ equals Sp(V , ψ) or SO(V , ψ).

Again by construction, we have an exact sequence

1→ AST(M)◦ → AST(M)→ GalL/K → 1

of algebraic groups over Q (for the same L).

The Sato-Tate group ST(A) is a maximal compact subgroup of AST(M)C.
We have an exact sequence of compact Lie groups

1→ ST(M)◦ → ST(M)→ GalL/K → 1.
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Example in weight 1: abelian varieties [FKRS]

Endomorphisms and Sato-Tate groups

Put M = H1(A) for A/K an abelian variety of dimension g > 0. Then

GIso(V , ψ) ∼= GSp(2g) and (V⊗2)1,1 ∼= End(AK )Q.

In many cases (e.g., when g ≤ 3), the map

((V⊗2)1,1)⊗n → (V⊗2n)n,n

is surjective, so AST(M) and ST(M) are determined entirely by
endomorphisms. In these cases, the exact sequence

1→ ST(M)◦ → ST(M)→ GalL/K → 1

implies that L is the minimal field for which End(AL) = End(AK )
(otherwise L may be larger).
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Example in weight 1: abelian varieties [FKRS]

Warmup: elliptic curves

If A = E is of dimension g = 1, then

GIso(V , ψ) ∼= GL(2) and (V⊗2)1,1 ∼= End(EK )Q.

If E has no CM, then AST(M) = SL(2) and ST(M) = SU(2).

If E has CM in K , then AST(M) is the norm torus for F/Q, where F
is the field of complex multiplication, and ST(M) = SO(2,R).

If E has CM in an overfield L/K , then ST(M) is the normalizer of
ST(ML) = SO(2,R) in SU(2).

This illustrates a general phenomenon: for fixed parameters, there are
generally infinitely many options for the Q-algebraic group AST(M). By
contrast, ST(M) depends only on AST(M)R, for which there are only
finitely many options.
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Example in weight 1: abelian varieties [FKRS]

Properties of Sato-Tate groups

For M as above, the group ST(M) satisfies the following conditions.

(ST1) The group ST(M) is a closed subgroup of USp(2g). (Equality
is the generic case.)

(ST2) The connected group ST(M)◦ is the closure of the subgroup
generated by Hodge circles: images of cocharacters
θ : U(1)→ ST(M)◦ with weight p − q of multiplicity hp,q.

(ST3) For each connected component C of ST(M) and each
irreducible character χ of GL(2g ,C), the average of χ on C is an
integer.

Up to conjugation within USp(2g), these conditions restrict ST(M) to a
finite set of options.
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Example in weight 1: abelian varieties [FKRS]

Mumford-Tate groups of abelian surfaces

Theorem (well-known)

For g = 2, there are exactly 6 conjugacy classes of subgroups of USp(4)
which can occur as ST(A)◦, isomorphic to

U(1), SU(2),U(1)× U(1),U(1)× U(2),U(2)× U(2),USp(4).

This list corresponds to the possibilities for End(AK )R:

M2(C),M2(R),C× C,C× R,R× R,R.

Consequently, the passage from A to ST(A)◦ conflates distinct geometric
behaviors. For instance, a simple CM abelian fourfold gives the same
group U(1)× U(1) as the product of two nonisogenous CM elliptic curves,
as in both cases End(AK )R ∼= C× C.
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Example in weight 1: abelian varieties [FKRS]

Sato-Tate groups of abelian surfaces

Theorem ([FKRS])

Take g = 2.

(a) There are 55 conjugacy classes of subgroups of USp(2g) satisfying
(ST1), (ST2), (ST3).

(b) Of these, exactly 52 are realized as ST(M) for suitable A. The
generic case ST(M) = USp(4) occurs iff End(AK ) = Z.

(c) Of these, exactly 34 are realized with K = Q.

For illustrated examples, see

http://math.mit.edu/~drew/g2SatoTateDistributions.html.
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Example in weight 1: abelian varieties [FKRS]

Consequences for abelian surfaces

For g = 2, we read off some arithmetic consequences.

Corollary (improvement of a result of Silverberg)

The minimal field L/K with End(AL) = End(AK ) has degree dividing 48.
This bound is realized even for K = Q, e.g., by the Jacobian of
y2 = x6 − 5x4 + 10x3 − 5x2 + 2x − 1.

Corollary

The density of prime ideals with zero Frobenius trace exists and belongs to{
0,

1

6
,

1

4
,

3

8
,

11

24
,

1

2
,

7

12
,

5

8
,

3

4
,

19

24
,

13

16
,

7

8

}
.

All of these cases are realized, e.g, 7/8 by y2 = x5 + 2x . (Only the case
3/8 cannot occur for K = Q.)
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Example in weight 1: abelian varieties [FKRS]

Higher-dimensional abelian varieties

For g ≥ 3, it seems difficult to get a complete classification. Most of the
cases occur when ST(M)◦ is a one-dimensional torus; these cases occur for
twisted powers of CM elliptic curves.

By contrast, suppose that M is discrete in the sense of Gross’s lecture, i.e.,
the centralizer of ST(M)◦ in USp(2g) is finite. Then one gets a finite list
of options even without (ST3). One only needs to describe the subgroups
of the group Out(ST(M)◦); that group consists (approximately) of
automorphisms of the Dynkin diagram.
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Example in weight 2: K3 surfaces [?]

Setup

Take M = H2(X ) for X/K a K3 surface.

Recall that to compute ST(M), we have to look at (V⊗n)p,p whenever
n > 0, nw is even, and p = nw/2. For n = 1, this is NS(XK )Q by the
Lefschetz (1, 1) theorem.

Put
ρ = rank NS(X ), ρ = rank NS(XK ).

Then
ST(M) ⊆ SO(22− ρ), ST(M)◦ ⊆ SO(22− ρ)

and there is a canonical surjection

ST(M)/ ST(M)◦ → image(GK → Aut(NS(XK ))).
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Example in weight 2: K3 surfaces [?]

Mumford-Tate groups are easy!

As usual, ST(M)◦ is determined by MT(M). Luckily, K3 surfaces do not
exhibit the subtleties associated to Mumford-Tate groups of abelian
varieties: ST(M)◦ is “as large as possible” (ultimately because h2,0 = 1).

Theorem (Zarhin, 1983; [Z])

Let Vtr be the orthogonal complement of V 1,1 in V .

(a) The Q-algebra E = EndMT(M)(Vtr) is either a totally real number
field or a CM field. Let E0 be the maximal totally real subfield of E ;
we may view Vtr as an E -vector space and ψ as a Hermitian pairing.

(b) If E is totally real, then AST(M)◦ = ResEQ SO(Vtr, ψ).

(c) If E is CM, then AST(M)◦ = ResEQ U(Vtr, ψ).

Aside: the Mumford-Tate conjecture holds for X (Tankeev, 1995).
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Example in weight 2: K3 surfaces [?]

Zarhin’s theorem for Kummer surfaces

For X the Kummer of an abelian surface A, we have

ST(H2(X ))◦ = ST(H1(A))◦/{±1}, ST(H2(X )) = ST(H1(A))/{±1}.

How does this relate to Zarhin’s theorem?

ST(H1(A))◦ ST(H2(X ))◦ ρ ER
U(1) U(1) 20 C

SU(2) SO(3) 19 R
U(1)× U(1) U(1)× U(1) 18 C× C

U(1)× SU(2) U(2) 18 C
SU(2)× SU(2) SO(4) 18 R

USp(4) SO(5) 17 R

Exercise (open!)

Recover the classification of Sato-Tate groups of abelian surfaces. Do
non-Kummer surfaces with ρ = 18 account for the 3 missing groups?
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Example in weight 2: K3 surfaces [?]

A classification of Sato-Tate groups?

Problem

Using Zarhin’s theorem, classify the possible Sato-Tate groups associated
to K3 surfaces of arbitrary rank. In particular, what are the possible zero
trace densities besides 0, 1/2?

Note that given ρ and ER, ST(M) is determined by its action on NS(XK )R
(because ST(M)◦ is “as large as possible”).

Beware that unlike for abelian varieties, one is unlikely to find interesting
examples “by accident” (compare Jahnel’s talk). We’ll discuss the reason
later.
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Example in weight 3: hypergeometric motives [FKS]

A class of motives

We now assume M has weight 3 and Hodge vector (1, 1, 1, 1). There is no
universal family of such motives (more on this later), so we won’t be able
to eliminate spurious group-theoretic Sato-Tate candidates.

We will need the following constructions:

A direct sum of a weight 2 newform and a weight 4 newform.

A symmetric cube of an elliptic curve.

A tensor product of an elliptic curve with the reduced symmetric
square of a CM elliptic curve.

A tensor product of a weight 2 newform and a weight 3 newform
(with nebentype).

A motive from the Dwork pencil.
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Example in weight 3: hypergeometric motives [FKS]

Classification of groups

Theorem ([FKS])

Take M as above.

(a) There are 26 conjugacy classes of subgroups of USp(4) satisfying
(ST1), (ST2), (ST3).

(b) Of these, at least 25 are realized as ST(M) for suitable M.

Due to the changed position of the Hodge circles, the options for ST(M)◦

are not the same as for abelian surfaces:

U(1) (new position),SU(2) (new position),U(2) (new group),

U(1)× U(1),U(1)× SU(2), SU(2)× SU(2),USp(4).

The maximum component order is 12. The zero densities are 0, 1/2, 3/4
and possibly 5/8.
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Example in weight 3: hypergeometric motives [FKS]

Taxonomy of sources

Let us explain how these groups arise from our examples. In all cases, the
upper bound is achieved by a “generic” example.

A direct sum of a weight 2 newform and a weight 4 newform:
ST(M)◦ ⊆ SU(2)× SU(2). We also see U(1)× U(1) and
U(1)× SU(2).

A symmetric cube of an elliptic curve: ST(M)◦ ⊆ SU(2). We also see
U(1).

A tensor product of an elliptic curve with the reduced symmetric
square of a CM elliptic curve: ST(M)◦ ⊆ U(2). We also see U(1) and
U(1)× U(1).

A tensor product of a weight 2 newform and a weight 3 newform: see
previous case.

A motive from the Dwork pencil: ST(M)◦ ⊆ USp(4). See below.
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Example in weight 3: hypergeometric motives [FKS]

Degenerations of Sato-Tate groups

Over Q, the j-line contains infinitely many CM points; similarly, any
positive-dimensional family of weight 1 motives contains infinitely many
special subvarieties of codimension 1 where the Sato-Tate group drops (as
in the André-Oort conjecture).

By contrast, for motives of weight greater than 1, a Hodge structure
cannot vary arbitrarily in families; its variation is constrained by Griffiths
transversality (thus precluding a universal family). Refining a prediction of
de Jong, the generalized André-Oort conjecture (see Klingler’s AMS SLC
2015 lecture) suggests that jumping can only occur on a Zariski dense
subset if the family “arises from a Shimura variety.”

This is consistent with our experimental data: in the Dwork pencil, one
expects that over all K , only finitely many fibers have ST(M) 6= USp(4).
Over Q, we found no such examples (excluding the Fermat fiber).

Kiran S. Kedlaya (UCSD/ICERM) Sato-Tate groups of higher weight motives ICERM, October 23, 2015 29 / 31



Example in weight 3: hypergeometric motives [FKS]

Degenerations of Sato-Tate groups

Over Q, the j-line contains infinitely many CM points; similarly, any
positive-dimensional family of weight 1 motives contains infinitely many
special subvarieties of codimension 1 where the Sato-Tate group drops (as
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[FKRS] F. Fité, K.S. Kedlaya, V. Rotger, and A.V. Sutherland, Sato-Tate
distributions and Galois endomorphism modules in genus 2, Compos.
Math. 148 (2012), 1390–1442.
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