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Rational points on curves

Origins

Given an explicit polynomial P(x , y) with rational coefficients, can one fully describe the set

{(x , y) ∈ Q2 : Q(x , y) = 0},

particularly in cases where it is guaranteed to be finite?

In modern language: let X be an classical1 curve of genus g over Q with some explicit
description. When g > 1, X (Q) is finite; can one describe it explicitly?

This problem has an extensive history...

1Meaning smooth, proper, geometrically irreducible. Also called “nice” by some authors.
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Rational points on curves

A brief history in photos
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Rational points on curves

Infinite descent

Let X be a classical2 curve over Q. Fermat’s method of infinite descent shows that in
certain cases,the existence of a Q-rational point on X would imply the existence of a “smaller”
Q-rational point on some other curve(s). For instance, for the curve

x4 + y4 = z2,

this forms a closed loop which shows that there are no Q-rational points other than trivial ones.

For X of genus 1 with a marked point (i.e., an elliptic curve), Mordell adapted Fermat’s
method to show that X (Q) is a finitely generated abelian group.

For X of genus g > 1, the best available analogue is the Jacobian variety J(X ) in the sense
of Weil. Weil adapted Mordell’s argument to J(X ), and even to a general abelian variety A.

2Meaning smooth, proper, geometrically irreducible. Also called “nice” by some authors.
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Rational points on curves

Descent and Selmer groups

Weil’s approach in the language of Cassels: for φ : A→ A an isogeny (e.g., multiplication by
2), one has an exact sequence

0→ A(Q)/φ(A(Q))→ Selφ(A)→X(A)[φ]→ 0

where Selφ(A) is a certain “easy” finite Galois cohomology group (the Selmer group) and
X(A) is a fixed but “hard” group (the Tate–Shafarevich group).

By composing φ, we can compare sequences:

0 // A(Q)/φn+1(A(Q)) //

����

Selφ
n+1

(A) //

����

X(A)[φn+1] //

����

0

0 // A(Q)/φn(A(Q)) // Selφ
n
(A) //X(A)[φn] // 0
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Rational points on curves

Descent and Selmer groups (continued)

By composing φ, we can compare sequences:

0 // A(Q)/φn+1(A(Q)) //

����

Selφ
n+1

(A) //

����

X(A)[φn+1] //

����

0

0 // A(Q)/φn(A(Q)) // Selφ
n
(A) //X(A)[φn] // 0

The failure of a class in Selφ
n
(A) to lift to Selφ

n+1
(A) gives rise to an element of X(A)[φn].

It is conjectured that X(A) is finite. If so, one can in principle find all of X(A)[φ∞], give the
correct upper bound on A(Q)/φ(A(Q)), and find points of A(Q) to match.

In practice this is quite challenging, but it has been carried out in many cases where Selφ(A) is
not too large (e.g., many many elliptic curves). However, when X is a curve of genus g > 1,
there is still a big gap between computing J(X )(Q) and X (Q).
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Rational points on curves
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Fundamental groups

The section conjecture

Inspired by Faltings’s proof of the Mordell conjecture, Grothendieck reinterpreted this story in
terms of étale fundamental groups. For X a classical3 curve over Q and x a fixed geometric
basepoint, we have an exact sequence

1→ π1(XQ, x)→ π1(X , x)→ GQ → 1.

For x ∈ X (Q), the inclusion x → X defines (up to conjugation) a section GQ → π1(X , x). The
section conjecture asserts that conversely every section arises in this way.

Now let U be some characteristic subgroup of π1(XQ, x). Any section of the previous section
(in particular any rational point) also defines a section of

1→ π1(XQ, x)/U → π1(X , x)/U → GQ → 1.

These may be much easier to classify, but on the other hand there might be too many of them.
3Meaning smooth, proper, geometrically irreducible. Also called “nice” by some authors.
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Fundamental groups

The abelian case

For example, let U be the kernel of the maximal abelian quotient of π1(XQ, x). Then the
sections of

1→ π1(XQ, x)/U → π1(X , x)/U → GQ → 1.

are presumptively equal to J(X )(Q)⊗Z Ẑ (this holds if X(J(X )) is finite).

Similarly, fix a prime p and let Up be the kernel of the maximal abelian pro-p quotient of
π1(XQ, x). Then the sections of

1→ π1(XQ, x)/Up → π1(X , x)/Up → GQ → 1.

are presumptively equal to J(X )(Q)⊗Z Zp.

For each n, let Up,n be the kernel of the maximal abelian quotient of π1(XQ, x) killed by pn.
Then the previous sequence is the inverse limit of the sequences

1→ π1(XQ, x)/Up,n → π1(X , x)/Up,n → GQ → 1

and this mirrors the approximation of J(X )(Q)⊗Z Ẑp via Sel[p
n](J(X )).

Kiran S. Kedlaya (UC San Diego) A brief history of nonabelian Chabauty ICMS, Edinburgh, November 25, 2024 10 / 26
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The method of Chabauty–Coleman

Chabauty’s theorem

As a partial result towards Mordell’s conjecture, Chabauty proved that if rank J(X )(Q) < g ,
then X (Q) is finite.

Sketch of Chabauty’s proof: pick any prime p of good reduction. If rank J(X )(Q) < g , then
the points of J(X )(Q)⊗Z Qp span a p-adic submanifold of J(X )(Qp) of positive codimension;
the intersection of this submanifold with X ⊂ J(X ) is finite.
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The method of Chabauty–Coleman

Coleman’s observation

Coleman observed that Chabauty’s method is in a sense effective: the intersection points of
X with J(X )(Q)⊗Z Qp form a computable finite set.

Remembering the “abelian” part of abelian varieties, Coleman reformulated Chabauty’s
argument in terms of a p-adic path integral on rigid analytic varieties (the Coleman integral):
if rank J(X )(Q) < g , then there is a positive-dimensional subspace V of Γ(X ,ΩX/Q)⊗Q Qp

such that ∫
D
ω = 0 (D ∈ Div0(X ), ω ∈ V ).

If we have a single point B ∈ X (Q) to use as a basepoint, we then have

X (Q) ⊆ {P ∈ X (Qp) :

∫ P

B
ω = 0 (ω ∈ V )}.
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Kim’s nonabelian Chabauty method

Selmer varieties

Kim realized that the Coleman picture could and should be unified with the Grothendieck
picture

1→ π1(XQ, x)/U → π1(X , x)/U → GQ → 1,

so that the former could be generalized to some characteristic subgroups U with unipotent
quotients (rather than abelian).

In this picture, the analogue of the p-adic Selmer group lim←−n
Sel[p

n](J(X ))⊗Zp Qp is a certain
Selmer set consisting of the Qp-points of a certain algebraic variety (the Selmer variety).
Note: this definition “cheats” on the Grothendieck picture by identifying a necessary condition
on sections to arise from rational points, based on p-adic Hodge theory.

The analogue of the Chabauty set is now defined by the vanishing of certain iterated path
integrals also defined by Coleman. However, now it only makes sense to integrate between
points, not over a degree-0 divisor.
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Kim’s nonabelian Chabauty method

Explicit methods for rational points on curves (Banff, February 2007)
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Kim’s nonabelian Chabauty method

Kim’s conjecture

For each n, we can construct the Chabauty–Kim set Xn corresponding to the kernel Un of the
maximal pro-p quotient of nilpotency index ≤ n. We then have

X (Q) ⊆ · · · ⊆ X2 ⊆ X1 ⊆ X (Qp).

The finiteness of Xn would follow from a certain analogue of the Chabauty rank condition,
which for n≫ 0 would follow from a suitable form of the Bloch–Kato conjecture.

Kim conjectures that for n≫ 0, not only is Xn finite, but in fact Xn = X (Q). This amounts to
a refinement of the section conjecture.
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Kim’s nonabelian Chabauty method

S-units and P1 minus three points

While we have been assuming until now that X is a proper curve, one can also work with a
nonproper hyperbolic curve, e.g., P1 \ {0, 1,∞}. In this context one is interested in S-integral
points for some finite set S of primes.

In this context, one can derive new bounds on S-unit equations (Corwin–Dan-Cohen,
Betts–Corwin–Leonhardt, Kuhne) and even prove some special cases of Kim’s conjecture. For
example, if S = ∅ then eventually Xn = ∅ (see the upcoming PhD thesis of Baiming Qiao).
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In this context, one can derive new bounds on S-unit equations (Corwin–Dan-Cohen,
Betts–Corwin–Leonhardt, Kuhne) and even prove some special cases of Kim’s conjecture. For
example, if S = ∅ then eventually Xn = ∅ (see the upcoming PhD thesis of Baiming Qiao).
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Kim’s nonabelian Chabauty method

Computing Chabauty–Kim sets

Building on work with myself and Bradshaw (initiated at the Arizona Winter School in March
2007), Balakrishnan (later Balakrishnan–Tuitman) developed an effective algorithm for
computing single and iterated Coleman integrals. This involves separate treatment of tiny
integrals with endpoints in a single residue disc (which are treated by direct power series
manipulation) and large integrals with endpoints in distinct residue discs (which are treated
using the change of variables property for an analytic Frobenius lift).

This is one key step to computing Chabauty–Kim sets, but one also needs some global Galois
cohomology to compute Selmer varieties. This seems to be quite challenging!
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Kim’s nonabelian Chabauty method

Quadratic Chabauty (Balakrishnan–Dogra)

Balakrishnan–Dogra were able to make everything more explicit for a certain group between U1

and U2, where everything can be described in terms of p-adic height pairings (Coleman–Gross).

The finiteness of the Chabauty–Kim set in this setting is guaranteed by the condition

rank(J(X )(Q)) < g + ρ(J(X )))− 1

where ρ(J(X )) is the Picard number (rank of Néron–Severi). In the generic case ρ(J(X )) = 1
and there is no improvement, but when NS(X ) is large this is extremely useful!

In fact, it would be enough to find a quotient A of J(X ) for which

rank(A(Q)) < dim(A) + ρ(A)− 1

as we can adapt the construction to cut J(X ) down to A. (Further variations are possible...)
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Kim’s nonabelian Chabauty method

A target-rich environment: modular curves

Let X be a modular curve of genus g . For every quotient A of J(X ), we usually have
rank(A(Q)) = 0 or rank(A(Q)) = dim(A) according to the sign of the relevant functional
equation. Unfortunately, there are certain cases where the latter always occurs, so there is no
hope to apply Chabauty–Coleman.

However, in these cases the quadratic Chabauty rank condition is almost always satisfied! For
every quotient of A, one has rank(NS(A)) ≥ dim(A).

This has been demonstrated spectacularly by Balakrishnan–Dogra–Müller–Tuitman–Vonk, who
computed X (Q) for some nonsplit Cartan modular curves in this manner.
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Appendix: towards model-free (abelian and nonabelian) Chabauty
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Appendix: towards model-free (abelian and nonabelian) Chabauty

What is an “explicit” curve?

At the beginning, I specified that I want to start with an “explicit” curve over Q. What does
that mean exactly?

Traditionally this would be interpreted to be mean specifying defining equations in some sense,
e.g., the single polynomial defining a singular plane model.

However, for modular curves the more natural “explicit” description is the modular group.
Working with a singular plane model creates tremendous computation complexity by
comparison.

Is it feasible to describe Chabauty–Kim sets, particularly in the quadratic regime, without
having to resort to explicit models?
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Appendix: towards model-free (abelian and nonabelian) Chabauty

Avoiding the Frobenius lift

In Balakrishnan–Tuitman, the computation of large Coleman integrals depends on applying a
Frobenius lift. For single Coleman integrals on modular curves, we can circumvent this by
using the p-th Hecke operator Tp instead.

It is less clear how to handle large iterated Coleman integrals. However, we get a canonical
Frobenius lift by splitting up Tp (Eichler–Shimura), and a close reading of Coleman’s
development of the eigencurve should reveal how to compute pullbacks via this lift.
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Appendix: towards model-free (abelian and nonabelian) Chabauty

Model-free tiny integrals

With Chen and Lau, we did some numerical experiments to compute tiny Coleman integrals
using complex analytic geometry (e.g., on X0(37)). The point is that the local integration
involves some manipulation of power series which can be arranged to have Q-coefficients (by
expanding around CM points), so in principle one can identify these from complex
approximations, then project to Qp.

However, doing this rigorously requires some control on the heights of the rational/algebraic
numbers that appear, and we were unable to explain this completely. Xu has recently made
some progress on this.
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Appendix: towards model-free (abelian and nonabelian) Chabauty

Model-free heights

We also need some global input from p-adic heights. By working with CM points, we can hope
to access these using some form of p-adic Gross–Zagier (cf. Hashimoto’s PhD thesis for the
case X0(N)+).
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