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Hypergeometric L-functions

Hypergeometric data

For α, β ∈ (Q ∩ [0, 1))n with αi − βj /∈ Z for all i , j , there is an irreducible
variation of Hodge structures of rank n on P1 \ {0, 1,∞} for one of whose
periods the Picard–Fuchs equation is the hypergeometric diffeq

P(α;β)(z
d

dz
)(y) = 0, P(α;β)(D) := z

n∏
i=1

(D + αi )−
n∏

j=1

(D + βj − 1).

The Hodge vector/motivic weight can be read from the zigzag function

Zα,β(x) := #{j : αj ≤ x} −#{j : βj ≤ x}.

See for instance this example in LMFDB.

Hereafter we assume that α, β are balanced,� meaning that the
multiplicity of any r

s ∈ Q (in lowest terms) depends only on s. LMFDB
includes all balanced HG data with n ≤ 10.

�Otherwise we get motives defined only over some abelian extension of Q.
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Hypergeometric L-functions

L-functions

For α, β balanced, this variation of Hodge structures arises from a family
of Chow motives Mα,β over Q.

For any given z ∈ P1 \ {0, 1,∞}, the motive Mα,β
z has bad reduction� at

these primes:

wild primes p, at which α or β is not in Zn
(p);

tame primes p, which are not wild but either z or z − 1 is not a
p-adic unit.

For such z , we obtain an associated L-function; the goal of this talk is to
explain some methods for computing these L-functions at scale. These
will eventually be deployed in LMFDB.

�This is only an upper bound; there can be a “wild” or “tame” prime at which the
reduction is actually good.
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Hypergeometric L-functions

Some motivation for the project

Refining the (conjectural) formulas for conductor exponents and Euler
factors at wild primes (see below).

Tabulating L-functions of other objects (e.g., some K3 surfaces, some
Calabi–Yau threefolds), which in turn has other applications.

Finding exotic specializations (e.g., where the motive decomposes, or
more generally the Mumford–Tate group shrinks).

Investigating variation across primes in a single L-function (e.g.,
Newton polygons).

Providing “big data” to investigate using ML/AI, as in the discovery
of murmurations.
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Hypergeometric L-functions

Conductors and bad Euler factors

To “compute” a single hypergeometric L-function, we want the following.
(All “recipes” are available in Magma, Sage, and possibly GP/PARI.)

Gamma factors (i.e., Euler factors at the archimedean place). There is
a simple recipe.

Euler factors and conductor exponents for each tame p. There is a
simple recipe.

Euler factors and conductor exponents for each wild p. There is a
short list of candidates (getting shorter over time...).

Euler factors for good p. We will truncate the Dirichlet series at X−s

for some X , which means we need pa-Frobenius traces for pa ≤ X .
There is a simple recipe, but efficiency matters!

Some of these are conjectural; but given a complete guess for suitably
large X , one can numerically check the functional equation.
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Hypergeometric L-functions

Frobenius structure

For fixed α, β and p not wild, one can give a uniform description of the
action of Frobp on Mα,β

z in terms of a p-adic analytic Frobenius
structure on the hypergeometric differential equation (Dwork).

With Grubb we have implemented this in Sage; it works but in practice
seems not competitive with the trace formula (next section).

That said, it should be possible to use Frobenius structures to give a new
proof of the trace formula (possibly via the comparison between crystalline
and Dwork cohomologies). This might to some generalizations to other
families (e.g., A-hypergeometric systems) or some further variants (e.g., a
q-analogue) which seem less accessible via the current (somewhat indirect)
proof.
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The hypergeometric trace formula

Trace formula

For q a power of a good prime p, let Hq

(
α
β

∣∣∣z) be the trace of Frobq on

Mα,β
z . From work of Greene, Katz, Beukers–Cohen–Mellit,

Cohen–Rodriguez Villegas–Watkins, etc., we extract the formula:

Hq

(
α
β

∣∣∣z) =
1

1− q

q−2∑
m=0

(−p)ηm(α)−ηm(β)qD+ξm(β)

 n∏
j=1

(αj)
∗
m

(βj)∗m

 [z ]m.

Here:

ηm, ξm,D denote some combinatorial quantities (see below);

(x)∗m is a p-adic analogue of the Pochhammer symbol (see below);

[z ] ∈ Qunr
p is the multiplicative lift§ of z .

For fixed q, all of this is very easy to compute efficiently.

§Proposed replacement terminology for the historical term “Teichmüller lift”.
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The hypergeometric trace formula

Combinatorial quantities in the trace formula

In the formula

Hq

(
α
β

∣∣∣z) :=
1

1− q

q−2∑
m=0

(−p)ηm(α)−ηm(β)qD+ξm(β)

 n∏
j=1

(αj)
∗
m

(βj)∗m

 [z ]m

the powers of −p and q = pf are expressed in terms of the following:¶

ηm(x1, . . . , xn) :=
n∑

j=1

f−1∑
v=0

{
pv
(
xj +

m
1−q

)}
− {pvxj} , {x} := x − ⌊x⌋;

ξm(β) := #{j : βj = 0} −#
{
j : βj +

m
1−q = 0

}
;

D :=
w + 1−#{j : βj = 0}

2
.

In particular, if we break up [0, 1) at the values in α ∪ β, then the powers
of −p and q remain constant as m

q−1 varies within a subinterval.
¶This assumes 0 /∈ α. Otherwise, swap α ↔ β and z ↔ 1− z .
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The hypergeometric trace formula

Pochhammer symbols in the trace formula

In the formula

Hq

(
α
β

∣∣∣z) =
1

1− q

q−2∑
m=0

(−p)ηm(α)−ηm(β)qD+ξm(β)

 n∏
j=1

(αj)
∗
m

(βj)∗m

 [z ]m

the analogue of the Pochhammer symbol is given by

(x)∗m :=
Γ∗q

(
x + m

1−q

)
Γ∗q(x)

, Γ∗q(x) :=
f−1∏
v=0

Γp({pvx})

where Γp : Zp → Z×
p is the Morita p-adic Gamma function. In particular,

Γp is continuous, Γp(0) = 1, and

Γp(x + 1) =

{
−xΓp(x) x /∈ pZp

−Γp(x) x ∈ pZp.
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The hypergeometric trace formula

The prime case

Let us now focus on the case q = p. In the formula

Hp

(
α
β

∣∣∣z) :=
1

1− p

p−2∑
m=0

(−p)ηm(α)−ηm(β)pD+ξm(β)

 n∏
j=1

(αj)
∗
m

(βj)∗m

 [z ]m,

if we restrict to summands where m
p−1 lies between two consecutive values

in α ∪ β, then this looks like a truncated hypergeometric series.

Remember that we need to compute this for all good p ≤ X . If we did this
individually, each sum would be over p − 1 terms, so this would cost
roughly O(X 2) time; however, there is clearly a great deal of redundancy.
Our goal will be to leverage this redundancy to get this down to O(X 1+ϵ).

Note that this still leaves O(X 3/2) work to deal with higher powers. It may
be possible to use a similar approach to reduce this exponent also.
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Average polynomial time algorithms
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Average polynomial time algorithms

A minimal example: Wilson primes

The Alhazen–Wilson theorem says that for every prime p, (p − 1)! ≡ −1
(mod p). A Wilson prime is a prime for which (p − 1)! ≡ −1 (mod p2).
The only known examples are p = 5, 13, 563.

Costa–Gerbicz–Harvey computed the reduction of (p − 1)! + 1 mod p2 for
all p ≤ X with X = 2× 1013, using a novel technique to reduce the
complexity from O(X 2+ϵ) to O(X 1+ϵ). Harvey–Sutherland described this
in terms of accumulating remainder trees, loosely inspired by the
structure of the fast Fourier transform (FFT) algorithm.

To a first approximation, the idea is to replace the separate computation
of (p − 1)! + 1 (mod p2) with the serial computation of

n! (mod
∏

n<p≤X

p2) for n = 0, . . . ,X − 1

to eliminate redudancy. However, this must be balanced against making
the moduli so large that they slow down the computation.
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Average polynomial time algorithms

Accumulating remainder trees

Say we are given integers (or matrices) A0, . . . ,Ab−1 and integers
m1, . . . ,mb−1, and we want to compute simultaneously

Cj := A0 · · ·Aj−1 (mod mj) (j = 0, . . . , b − 1).

To simplify, assume b = 2ℓ. Form a complete binary tree of depth ℓ with
nodes (i , j) where i = 0, . . . , ℓ and j = 0, . . . , 2i−1. By computing from the
leaves to the root, we can compute products over dyadic ranges:

mi ,j := mj2ℓ−i · · ·m(j+1)2ℓ−i−1,

Ai ,j := Aj2ℓ−i · · ·A(j+1)2ℓ−i−1.

Then from the root to the leaves, we compute the products
Ci ,j := Ai ,0 · · ·Ai ,j−1 (mod mi ,j) by writing

Ci ,j =

{
Ci−1,⌊j/2⌋ (mod mi ,j) j ≡ 0 (mod 2)

Ci−1,⌊j/2⌋Ai ,j−1 (mod mi ,j) j ≡ 1 (mod 2).
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Average polynomial time algorithms

Illustration (Harvey–Sutherland, 2014)
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Average polynomial time algorithms

Example: harmonic sums

By forming a product of the matrices

(
i j 0
1 i j

)
, for any γ ∈ Q ∩ (0, 1] and

e, we can efficiently compute for all p ≤ X the sums

Hj ,γ(p) =

⌈γp⌉−1∑
i=1

i−j (mod pe) =

⌈γp⌉−1∑
i=1

(i !)j

((i + 1)!)j
(mod pe).

By applying the functional equation to obtain

log
Γp(x + ⌈γp⌉)
Γp(⌈γp⌉)

= log Γp(x)−
∞∑
j=1

(−x)j

j
Hi ,γ(j),

for any fixed γ we can efficiently compute series expansions of Γp around γ
modulo pe for all p ≤ X .
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Average polynomial time algorithms

Applications in p-adic cohomology

Harvey first observed that the remainder tree technique could be used to
speed up computation of L-functions via p-adic cohomology, by exploiting
similar redundancies. Further work in this direction has been done by
Harvey–Sutherland.

Our application to hypergeometric L-functions is more in the spirit of
Costa–Gerbicz–Harvey: we amortize the computation of the trace formula
modulo pe for all p ≤ X by exploiting the similarity to a truncated
hypergeometric sum. For e = 1, this will look very similar to the algorithm
for harmonic sums.
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Hypergeometric traces: the mod p case
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Hypergeometric traces: the mod p case

Breaking the trace formula into ranges

Returning to the hypergeometric trace formula with q = p:

Hp

(
α
β

∣∣∣z) =
1

1− p

p−2∑
m=0

(−p)ηm(α)−ηm(β)pD+ξm(β)

 n∏
j=1

(αj)
∗
m

(βj)∗m

 [z ]m,

Label the elements of α ∪ β ∪ {0, 1} as 0 = γ0 < · · · < γs = 1; set
mi := ⌊γi (p − 1)⌋; and focus on the sum over m ∈ [mi ,mi+1) for some i .
As noted earlier, there are integers σi , τi such that

(−p)ηm(α)−ηm(β)pD+ξm(β) =

{
τi m = mi

σi mi < m < mi+1.

We can thus fix i and focus on computing, for all p ≤ X ,

mi+1−1∑
m=mi+1

 n∏
j=1

(αj)
∗
m

(βj)∗m

 [z ]m.
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Hypergeometric traces: the mod p case

Change of endpoints

We need to shift indices so that the sums all run from 1. That is, we want
to take m = mi + k and sum over k = 1, . . . ,mi+1 −mi − 1.

Write γi =
ai
bi

in lowest terms, fix c ∈ (Z/biZ)×, and restrict attention to
p ≡ c (mod bi ). We then have

mi = γi (p − 1)− γi ,c where ai (p − 1) = mibi + ri , γi ,c =
ri
bi

∈ [0, 1).

For γ ∈ α ∪ β, (γ)∗m = Γp({γ + m
1−p})/Γp(γ) and{

γ +
m

1− p

}
= k + (k − γi ,c)

p
1−p + hc(γ, γi )

where

hc(γ, γi ) := γ − γi + ι(γ, γi )− γi ,c ∈ (−1, 1], ι(x , y) :=

{
1 x ≤ y

0 x > y .
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Hypergeometric traces: the mod p case

The situation mod p

Recall that we need to sum for all p ≤ X ,

mi+1−1∑
m=mi+1

 n∏
j=1

(αj)
∗
m

(βj)∗m

 [z ]m.

Say we only want the trace modulo p for each p ≤ X . Then we are
reduced to summing

mi+1−mi−1∑
k=1

k−1∏
j=0

zf fi ,c(k)

zggi ,c(k)
(mod p),

where z = zf
zg

in lowest terms and for some positive integer b,

fi ,c(k) := b
n∏

j=1

(hc(αj , γi ) + k), gi ,c(k) := b
n∏

j=1

(hc(βj , γi ) + k).
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Hypergeometric traces: the mod p case

The situation mod p (continued)

Using a remainder tree, we can compute products of matrices of the form

Ai ,c(k) :=

(
zggi ,c(k) 0
zggi ,c(k) zf fi ,c(k)

)
.

For
Si (p) := Ai ,c(1) · · ·Ai ,c(mi+1 −mi − 1),

we have

Si (p)21
Si (p)11

≡
mi+1−mi−1∑

k=1

k−1∏
j=0

zf fi ,c(k)

zggi ,c(k)
≡

mi+1−1∑
m=mi+1

 n∏
j=1

(αj)
∗
m

(βj)∗m

 [z ]m (mod p).

This is extremely fast in practice (see our paper from ANTS XIV, 2020).
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Hypergeometric traces: the general case
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Hypergeometric traces: the general case

Some complications

In the general case, it is sufficient to compute modulo pe for
e = ⌊(w + 1)/2⌋ where w is the motivic weight (at least for p > 4n2).
There are several additional complications to be overcome.

We cannot ignore the difference between [z ] and z . It is easy to
compute [z ] for any given p, but it does not behave uniformly.

We need to incorporate the expansion of Γp around some rational
arguments (which we already know how to compute in average
polynomial time).

The functional equation relates Γp(x) to Γp(x + 1), not Γp(x + 1
1−p ).

The solution we describe here will be presented at ANTS XVI in July 2024.
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Hypergeometric traces: the general case

Harvey’s generic prime construction

A key idea comes from the work of Harvey: consider products of matrices
over Z[x ]/(xe) instead of Z. Then for each prime p, we can take the result
and replace x with something divisible by p which does not need to be
computed by a matrix product.

For example, if the only issue were the discrepancy between z and [z ], we
could replace [z ] with z(1 + x) and then afterwards substitute
x 7→ [z ]/z − 1, which we can compute efficiently for individual p. (In
Harvey’s setting he needs to substitute x 7→ p.)

In practice, we instead replace Z with the noncommutative ring of lower
triangular e × e matrices over Z. This contains Z[x ]/(xe) (as banded
matrices) but allows for additional operations, crucially including x 7→ cx .

Kiran S. Kedlaya Computing hypergeometric L-functions Trieste, June 25, 2024 26 / 29



Hypergeometric traces: the general case

Factorization of the quotient

The ratio of the k-th term in our sum to the 1st term can be interpreted as

[z ]k−1
γ∈α∏
γ∈β

Γp
(
hc(γ, γi ) + k +

(k−γi,c )p
1−p

)
Γp
(
hc(γ, γi ) + 1 +

(1−γi,c )p
1−p

)
where

∏γ∈α
γ∈β means take the product over γ = α1, . . . , αn divided by the

product over γ = β1, . . . , βn.

Define the power series

Ri (x) :=

γ∈α∏
γ∈β

Γp(x + hc(γ, γi ) + 1)

Γp(hc(γ, γi ) + 1)
.

We can then write the above ratio as(
[z]
z

)k−1 Ri ((k − γi ,c)
p

1−p )

Ri ((1− γi ,c)
p

1−p )
·
k−1∏
j=1

fi ,c(x + j)

gi ,c(x + j)

∣∣∣∣∣∣
x=(k−γi,c )

p
1−p

.
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Hypergeometric traces: the general case

Factorization of the quotient (continued)

In the previous expression, the factor not involving j , namely(
[z]
z

)k−1 Ri ((k − γi ,c)
p

1−p )

Ri ((1− γi ,c)
p

1−p )
,

depends on k in a usefully simple way: it can be written as

e−1∑
h=0

ci ,h(p)
(
(k − γi ,c)

p
1−p

)h
(mod pe)

for some ci ,h(p) independent of k . Conveniently, we do not have to worry
about how these are computed when forming the matrix product!
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Hypergeometric traces: the general case

Form of the matrix product

We apply remainder trees to multiply block matrices with e × e blocks:

Ai ,c(k) := (scalar)

(
δh1,h2 0

(k − γi ,c)
e−h2δh1,h2

(
fi,c (x+k)
gi,c (x+k)

)[h1−h2]

)

where f (x)[h] means the coefficient of xh in f (x). The effect of adding
Ai ,c(k) to the product is to increment (lower left)/(upper left) by

Qh1,h2(k) = (k − γi ,c)
h2

k−1∏
j=1

fi ,c(x + j)

gi ,c(x + j)

[h2−h1]

which we combine with the ci ,h(p) to get what we want:∑
k

∑
h1,h2

ci ,e−h1Qh1,h2(k)

(
p

1− p

)e−h2

.
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