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. Hypergeometric Lifunctions
Hypergeometric data

For o, 3 € (QN[0,1))" with o — B; ¢ Z for all i, j, there is an irreducible
variation of Hodge structures of rank n on P1\ {0,1,00} for one of whose
periods the Picard—Fuchs equation is the hypergeometric diffeq

P(a; 5)(2%)@) =0, P(a;8)(D):= zH(D + o) — H(D + Bj — 1).
i=1

j=1

The Hodge vector/motivic weight can be read from the zigzag function

Zop(x) = oy < xp — 9 fj < x}.
See for instance this example in LMFDB.

Hereafter we assume that «, 8 are balanced,! meaning that the
multiplicity of any £ € Q (in lowest terms) depends only on s. LMFDB
includes all balanced HG data with n < 10.

tOtherwise we get motives defined only over some abelian extension of Q.
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https://beta.lmfdb.org/Motive/Hypergeometric/Q/A5.2_B8.1

L-functions

For «, B balanced, this variation of Hodge structures arises from a family
of Chow motives M*B over Q.

For any given z € P1\ {0,1, 00}, the motive M2 has bad reduction? at
these primes:
@ wild primes p, at which « or 3 is not in ZFP);

@ tame primes p, which are not wild but either z or z — 1 is not a
p-adic unit.
For such z, we obtain an associated L-function; the goal of this talk is to
explain some methods for computing these L-functions at scale. These
will eventually be deployed in LMFDB.

This is only an upper bound; there can be a “wild” or “tame” prime at which the
reduction is actually good.
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Some motivation for the project

@ Refining the (conjectural) formulas for conductor exponents and Euler
factors at wild primes (see below).

e Tabulating L-functions of other objects (e.g., some K3 surfaces, some
Calabi—Yau threefolds), which in turn has other applications.

e Finding exotic specializations (e.g., where the motive decomposes, or
more generally the Mumford—Tate group shrinks).

@ Investigating variation across primes in a single L-function (e.g.,
Newton polygons).

e Providing “big data” to investigate using ML/AI, as in the discovery
of murmurations.
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Conductors and bad Euler factors

To “compute” a single hypergeometric L-function, we want the following.
(All "recipes” are available in Magma, Sage, and possibly GP/PARI.)
e Gamma factors (i.e., Euler factors at the archimedean place). There is
a simple recipe.
@ Euler factors and conductor exponents for each tame p. There is a
simple recipe.
@ Euler factors and conductor exponents for each wild p. There is a
short list of candidates (getting shorter over time...).

@ Euler factors for good p. We will truncate the Dirichlet series at X—*°
for some X, which means we need p?-Frobenius traces for p? < X.
There is a simple recipe, but efficiency matters!

Some of these are conjectural; but given a complete guess for suitably
large X, one can numerically check the functional equation.
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Frobenius structure

For fixed «, 8 and p not wild, one can give a uniform description of the
action of Frob, on MZO"'B in terms of a p-adic analytic Frobenius
structure on the hypergeometric differential equation (Dwork).

With Grubb we have implemented this in Sage; it works but in practice
seems not competitive with the trace formula (next section).

That said, it should be possible to use Frobenius structures to give a new
proof of the trace formula (possibly via the comparison between crystalline
and Dwork cohomologies). This might to some generalizations to other
families (e.g., A-hypergeometric systems) or some further variants (e.g., a

g-analogue) which seem less accessible via the current (somewhat indirect)
proof.
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Trace formula

For g a power of a good prime p, let H, (g)z) be the trace of Frob, on

I\/Iza’ﬁ. From work of Greene, Katz, Beukers—Cohen—Mellit,
Cohen—Rodriguez Villegas—Watkins, etc., we extract the formula:

—q

q—2 n %
p)im(@)=1n(8) gD-+6m(5) ()m | rogm
(i) = T\ e

Here:
® Nm,E&m, D denote some combinatorial quantities (see below);
@ (x)r, is a p-adic analogue of the Pochhammer symbol (see below);

o [z] € Qi™ is the multiplicative lift® of z.
For fixed g, all of this is very easy to compute efficiently.

$Proposed replacement terminology for the historical term “Teichmiiller lift”.
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Combinatorial quantities in the trace formula

In the formula

q—2 n )k
H, (g‘) Zo pY1n(@)=1m(3) gD +6n(5) Hligjim (2]

—q j= J/m

the powers of —p and q = p’ are expressed in terms of the following:¥

(X1, - -+ Xn) ::if{pv (3 +125) |~ {p"g}s Ixhi=x = LxJ;
j=1v=0
En(B) = #Ui: B =0 —# {j: B+ 2 = 0}
w+1—#{j: =0}
. .

In particular, if we break up [0,1) at the values in aU 3, then the powers
of —p and g remain constant as q—’fl varies within a subinterval.
I This assumes 0 ¢ . Otherwise, swap a <> 3 and z <+ 1 — z.
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. Thehypergeometric trace formula
Pochhammer symbols in the trace formula

In the formula

q—2 n )
o (3f7) = g Scprer g (T[a |
=0

i1 (Bi)m

the analogue of the Pochhammer symbol is given by

(x);:zw, r3(x) —Hr {p'x})

where I',: Zj, — Z is the Morita p-adic Gamma function. In particular,
[p is continuous, I',(0) =1, and

_ —xTp(x) x & pZp
Tl 1) = {—Fp(x) X € pZp.
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The prime case

Let us now focus on the case g = p. In the formula

]_ p72 n (a)*
H, (¢ = — p)Im(@)=1m(B) ,D+Em(B) j)m m
p<5‘z> - p 2P ’ 1-1:[1(61)*57 2]

if we restrict to summands where p—’fl lies between two consecutive values
in U B, then this looks like a truncated hypergeometric series.

Remember that we need to compute this for all good p < X. If we did this
individually, each sum would be over p — 1 terms, so this would cost
roughly O(X?) time; however, there is clearly a great deal of redundancy.
Our goal will be to leverage this redundancy to get this down to O(X'*¢).

Note that this still leaves O(X3/2) work to deal with higher powers. It may
be possible to use a similar approach to reduce this exponent also.
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A minimal example: Wilson primes

The Alhazen—Wilson theorem says that for every prime p, (p —1)! = -1
(mod p). A Wilson prime is a prime for which (p — 1)! = —1 (mod p?).
The only known examples are p = 5,13,563.

Costa—Gerbicz—Harvey computed the reduction of (p — 1)! + 1 mod p? for
all p < X with X =2 x 10'3, using a novel technique to reduce the
complexity from O(X?7€) to O(X+¢). Harvey-Sutherland described this
in terms of accumulating remainder trees, loosely inspired by the
structure of the fast Fourier transform (FFT) algorithm.

To a first approximation, the idea is to replace the separate computation
of (p—1)! + 1 (mod p?) with the serial computation of

n!  (mod H p?) forn=0,...,X -1
to eliminate redudancy. However, this must be balanced against making

the moduli so large that they slow down the computation.
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Accumulating remainder trees

Say we are given integers (or matrices) Ao, ..., Ap_1 and integers
mi,...,mp_1, and we want to compute simultaneously

CJ'::A()-HAj_l (modmj) (jZO,...,b—l).
To simplify, assume b = 2¢. Form a complete binary tree of depth ¢ with
nodes (i,j) where i =0,...,£ and j =0,...,2~1. By computing from the
leaves to the root, we can compute products over dyadic ranges:
m;; = mj2l—i ce m(j+1)2e7i_1,
Ai,j = Ajzé—i R A(J'+1)2(Z—i71.
Then from the root to the leaves, we compute the products

C;J = A,'70 s A,'J_l (mod m,-J-) by writing

C.— Cf—17U/2J (mod m;,j) jE 0 (mod 2)
J Ci—l,[j/2in,j—1 (mod m;J) jE 1 (mod 2).
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_ Average polynomial time algorithms |
lllustration (Harvey—Sutherland, 2014)

105 143 40320 2162160 1 137
VNN VA NN VNN
3 35 11 13 24 1680 11880 182 1 24 5 12

VANVANRVAN VANVANVA
1 3 5 7 1 1113 1 2 12 30 56 90132182 1 0 2 4 0 10 12 0
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Example: harmonic sums

By forming a product of the matrices </11 2) for any v € QN (0, 1] and
e, we can efficiently compute for all p < X the sums
[vpl-1 iy [vp]-1 (Y
Hj~(p) = ; i (mod p%) = ; oy (medpo):

By applying the functional equation to obtain

FICRAGT) SRR SN C)
log r(p)) = loglp(x) = > 7 Hi~ (),

j=1

for any fixed v we can efficiently compute series expansions of I, around
modulo p¢ for all p < X.

Kiran S. Kedlaya Computing hypergeometric L-functions Trieste, June 25, 2024 17 /29



Applications in p-adic cohomology

Harvey first observed that the remainder tree technique could be used to
speed up computation of L-functions via p-adic cohomology, by exploiting
similar redundancies. Further work in this direction has been done by
Harvey—Sutherland.

Our application to hypergeometric L-functions is more in the spirit of
Costa—Gerbicz—Harvey: we amortize the computation of the trace formula
modulo p€ for all p < X by exploiting the similarity to a truncated
hypergeometric sum. For e = 1, this will look very similar to the algorithm
for harmonic sums.
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Breaking the trace formula into ranges

Returning to the hypergeometric trace formula with g = p:
LR " (o)
@ .
H ‘Z) = — _p ﬂm(a)—ﬂm(ﬂ)pD+§m(ﬁ) J/m z m7
p<ﬁ T 2P J.HI(B,-):; i

Label the elements of « USU{0,1} as 0 =y < -+ < s = 1; set
mj := |7i(p — 1)|; and focus on the sum over m € [m;, mj;1) for some i.
As noted earlier, there are integers o;, 7; such that

p
m

(—p)m(@)=nm(B) pD+m(8) — T m=mj
o mp<m<mjig.

We can thus fix i and focus on computing, for all p < X,
i+1—1 %
e . (aj)m m
> |Gy =

m=m;+1 \j=1 m
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Change of endpoints

We need to shift indices so that the sums all run from 1. That is, we want
to take m=m; + k and sumover k =1,... ., mjy; — m; — 1.
Write 77 = £ in lowest terms, fix ¢ € (Z/biZ)*

, and restrict attention to
p=c (mod b) We then have

m; = 7i(p — 1) — i c where aj(p — 1) = mjb; + rj,vic = g € [0,1).
1

Fory e aUp, (v)m =To({7+ 155})/Tp(7) and

{7+1Tp}—k+(k Vie) 155 + he(v,7i)

where

1 x<Zy
he(v,7i) =y =7+ (v,7) = vie € (=L 1], ux,y) = {
0 x>vy.
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The situation mod p

Recall that we need to sum for all p < X,
mit1—1 n

(@))m | 1m
2\, )=

m=m;+1 \j=1

Say we only want the trace modulo p for each p < X. Then we are
reduced to summing

where z = i—; in lowest terms and for some positive integer b,

fic(k) = b [(he(aj,m) + k), gie(k) = b] [(he(Bj ) + k)-

J=1 J=1
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The situation mod p (continued)

Using a remainder tree, we can compute products of matrices of the form

et = (350 nan)
For
Si(p) == Aic(1) - Aic(miyr — mi — 1),
we have
mi1—mi—1 k—1

Si(p)21 _ zefi (k)
Si(p)u kz_:l 11 (k)

=0 Zg8i,c

) M (mo
@)y, | T (mod P)

mj1—1 n (

> \1

m=m;+1 \j=1

This is extremely fast in practice (see our paper from ANTS XIV, 2020).
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Some complications

In the general case, it is sufficient to compute modulo p€ for
e = |(w 4 1)/2] where w is the motivic weight (at least for p > 4n?).
There are several additional complications to be overcome.

@ We cannot ignore the difference between [z] and z. It is easy to
compute [z] for any given p, but it does not behave uniformly.

@ We need to incorporate the expansion of ', around some rational
arguments (which we already know how to compute in average
polynomial time).

e The functional equation relates [',(x) to 'p(x + 1), not [p(x + ﬁ)

The solution we describe here will be presented at ANTS XVI in July 2024.
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Harvey's generic prime construction

A key idea comes from the work of Harvey: consider products of matrices
over Z[x]/(x€) instead of Z. Then for each prime p, we can take the result
and replace x with something divisible by p which does not need to be
computed by a matrix product.

For example, if the only issue were the discrepancy between z and [z], we
could replace [z] with z(1 + x) and then afterwards substitute

x +— [z]/z — 1, which we can compute efficiently for individual p. (In
Harvey's setting he needs to substitute x — p.)

In practice, we instead replace Z with the noncommutative ring of lower
triangular e x e matrices over Z. This contains Z[x]/(x¢) (as banded
matrices) but allows for additional operations, crucially including x — cx.
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Factorization of the quotient

The ratio of the k-th term in our sum to the 1st term can be interpreted as

2]~ 1ﬁ ( ’777:)+k+w)

1o Tp (helom) + 14 0722)

where HYEZ means take the product over v = ag, ..., o, divided by the
product over v = fB1,..., .

Define the power series

0 Tolx + he(r,7) + 1)
Filx) = g Co(he(y,7i) + 1)

We can then write the above ratio as

(H)k 1 Ri((k = 7ie)125) 7 ficlx +J)

=) R0 M gr)) ,
1= x=(k=7i,c)1=p
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Factorization of the quotient (continued)

In the previous expression, the factor not involving j, namely

(By—l Ri((k — i) 125)
Ri((1 = vie)t25)’

depends on k in a usefully simple way: it can be written as

z

ei ¢i.n(p) ((k - v;,c)ﬁ)h (mod p®)
h=0

for some ¢;j 4(p) independent of k. Conveniently, we do not have to worry
about how these are computed when forming the matrix product!
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© Hypergeometric traces: the general case |
Form of the matrix product

We apply remainder trees to multiply block matrices with e x e blocks:

Ohy o 0
Ai,C(k) = (scalar) (k f,-,c(x—&-k))[hl_h?]

) P (G165
where f(x)["] means the coefficient of x” in f(x). The effect of adding
Aj c(k) to the product is to increment (lower left)/(upper left) by

y (ha—h]
fie(x +J)

Qhy.hy (k) = (k — i) :
h1,h2( ) ( 7'7C) s gi,c(X+J)

which we combine with the ¢; (p) to get what we want:

e—hy
Z Z Ci.e—hy Qhy by (K) <lf> -

k  hi,hy P
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