Computing hypergeometric L-functions in average polynomial time

Kiran S. Kedlaya (with Edgar Costa and David Roe)

Department of Mathematics, University of California San Diego* kedlaya@ucsd.edu
http://kskedlaya.org/slides/

Number Theory and Physics
International Centre for Theoretical Physics, Trieste, Italy June 25, 2024 2023-2024 academic year by IAS and the Simons Foundation.
*The UC San Diego campus occupies unceded ancestral homelands of the Kumeyaay Nation.

Contents

(1) Hypergeometric L-functions
(2) The hypergeometric trace formula
(3) Average polynomial time algorithms

4 Hypergeometric traces: the $\bmod p$ case
(5) Hypergeometric traces: the general case

Hypergeometric data

For $\alpha, \beta \in(\mathbb{Q} \cap[0,1))^{n}$ with $\alpha_{i}-\beta_{j} \notin \mathbb{Z}$ for all i, j, there is an irreducible variation of Hodge structures of rank n on $\mathbf{P}^{1} \backslash\{0,1, \infty\}$ for one of whose periods the Picard-Fuchs equation is the hypergeometric diffeq

$$
P(\alpha ; \beta)\left(z \frac{d}{d z}\right)(y)=0, \quad P(\alpha ; \beta)(D):=z \prod_{i=1}^{n}\left(D+\alpha_{i}\right)-\prod_{j=1}^{n}\left(D+\beta_{j}-1\right)
$$

Hypergeometric data

For $\alpha, \beta \in(\mathbb{Q} \cap[0,1))^{n}$ with $\alpha_{i}-\beta_{j} \notin \mathbb{Z}$ for all i, j, there is an irreducible variation of Hodge structures of rank n on $\mathbf{P}^{1} \backslash\{0,1, \infty\}$ for one of whose periods the Picard-Fuchs equation is the hypergeometric diffeq

$$
P(\alpha ; \beta)\left(z \frac{d}{d z}\right)(y)=0, \quad P(\alpha ; \beta)(D):=z \prod_{i=1}^{n}\left(D+\alpha_{i}\right)-\prod_{j=1}^{n}\left(D+\beta_{j}-1\right) .
$$

The Hodge vector/motivic weight can be read from the zigzag function

$$
Z_{\alpha, \beta}(x):=\#\left\{j: \alpha_{j} \leq x\right\}-\#\left\{j: \beta_{j} \leq x\right\}
$$

See for instance this example in LMFDB.

Hypergeometric data

For $\alpha, \beta \in(\mathbb{Q} \cap[0,1))^{n}$ with $\alpha_{i}-\beta_{j} \notin \mathbb{Z}$ for all i, j, there is an irreducible variation of Hodge structures of rank n on $\mathbf{P}^{1} \backslash\{0,1, \infty\}$ for one of whose periods the Picard-Fuchs equation is the hypergeometric diffeq

$$
P(\alpha ; \beta)\left(z \frac{d}{d z}\right)(y)=0, \quad P(\alpha ; \beta)(D):=z \prod_{i=1}^{n}\left(D+\alpha_{i}\right)-\prod_{j=1}^{n}\left(D+\beta_{j}-1\right) .
$$

The Hodge vector/motivic weight can be read from the zigzag function

$$
Z_{\alpha, \beta}(x):=\#\left\{j: \alpha_{j} \leq x\right\}-\#\left\{j: \beta_{j} \leq x\right\}
$$

See for instance this example in LMFDB.
Hereafter we assume that α, β are balanced, ${ }^{\dagger}$ meaning that the multiplicity of any $\frac{r}{s} \in \mathbb{Q}$ (in lowest terms) depends only on s. LMFDB includes all balanced HG data with $n \leq 10$.
${ }^{\dagger}$ Otherwise we get motives defined only over some abelian extension of \mathbb{Q}.

L-functions

For α, β balanced, this variation of Hodge structures arises from a family of Chow motives $M^{\alpha, \beta}$ over \mathbb{Q}.
these primes:

For such z, we obtain an associated L-function; the goal of this talk is to evnlain some methods for comnutins these I-functions at scale These will eventually be deployed in LMFDB

L-functions

For α, β balanced, this variation of Hodge structures arises from a family of Chow motives $M^{\alpha, \beta}$ over \mathbb{Q}.
For any given $z \in \mathbf{P}^{1} \backslash\{0,1, \infty\}$, the motive $M_{z}^{\alpha, \beta}$ has bad reduction ${ }^{\ddagger}$ at these primes:

For such z, we obtain an associated L-function; the goal of this talk is to
\#This is only an upper bound; there can be a "wild" or "tame" prime at which the reduction is actually good.

L-functions

For α, β balanced, this variation of Hodge structures arises from a family of Chow motives $M^{\alpha, \beta}$ over \mathbb{Q}.
For any given $z \in \mathbf{P}^{1} \backslash\{0,1, \infty\}$, the motive $M_{z}^{\alpha, \beta}$ has bad reduction ${ }^{\ddagger}$ at these primes:

- wild primes p, at which α or β is not in $\mathbb{Z}_{(p)}^{n}$;
\ddagger This is only an upper bound; there can be a "wild" or "tame" prime at which the reduction is actually good.

L-functions

For α, β balanced, this variation of Hodge structures arises from a family of Chow motives $M^{\alpha, \beta}$ over \mathbb{Q}.
For any given $z \in \mathbf{P}^{1} \backslash\{0,1, \infty\}$, the motive $M_{z}^{\alpha, \beta}$ has bad reduction ${ }^{\ddagger}$ at these primes:

- wild primes p, at which α or β is not in $\mathbb{Z}_{(p)}^{n}$;
- tame primes p, which are not wild but either z or $z-1$ is not a p-adic unit.

[^0]
L-functions

For α, β balanced, this variation of Hodge structures arises from a family of Chow motives $M^{\alpha, \beta}$ over \mathbb{Q}.
For any given $z \in \mathbf{P}^{1} \backslash\{0,1, \infty\}$, the motive $M_{z}^{\alpha, \beta}$ has bad reduction ${ }^{\ddagger}$ at these primes:

- wild primes p, at which α or β is not in $\mathbb{Z}_{(p)}^{n}$;
- tame primes p, which are not wild but either z or $z-1$ is not a p-adic unit.
For such z, we obtain an associated L-function; the goal of this talk is to explain some methods for computing these L-functions at scale. These will eventually be deployed in LMFDB.

[^1] reduction is actually good.

Some motivation for the project

- Refining the (conjectural) formulas for conductor exponents and Euler factors at wild primes (see below)
- Tabulating L-functions of other objects (e.g., some K3 surfaces, some Calabi-Yau threefolds), which in turn has other applications.
- Finding exotic specializations (e.g.. where the motive decomposes, or more generally the Mumford-Tate group shrinks)
- Investigating variation across primes in a single L-function (e.g., Newton polygons)
- Providing "big data" to investigate using ML/AI, as in the discovery of murmurations.

Some motivation for the project

- Refining the (conjectural) formulas for conductor exponents and Euler factors at wild primes (see below).
 of murmurations.

Some motivation for the project

- Refining the (conjectural) formulas for conductor exponents and Euler factors at wild primes (see below).
- Tabulating L-functions of other objects (e.g., some K3 surfaces, some Calabi-Yau threefolds), which in turn has other applications.
more generally the Mumford-Tate group shrinks)
of murmurations.

Some motivation for the project

- Refining the (conjectural) formulas for conductor exponents and Euler factors at wild primes (see below).
- Tabulating L-functions of other objects (e.g., some K3 surfaces, some Calabi-Yau threefolds), which in turn has other applications.
- Finding exotic specializations (e.g., where the motive decomposes, or more generally the Mumford-Tate group shrinks).

Some motivation for the project

- Refining the (conjectural) formulas for conductor exponents and Euler factors at wild primes (see below).
- Tabulating L-functions of other objects (e.g., some K3 surfaces, some Calabi-Yau threefolds), which in turn has other applications.
- Finding exotic specializations (e.g., where the motive decomposes, or more generally the Mumford-Tate group shrinks).
- Investigating variation across primes in a single L-function (e.g., Newton polygons).
of murmurations.

Some motivation for the project

- Refining the (conjectural) formulas for conductor exponents and Euler factors at wild primes (see below).
- Tabulating L-functions of other objects (e.g., some K3 surfaces, some Calabi-Yau threefolds), which in turn has other applications.
- Finding exotic specializations (e.g., where the motive decomposes, or more generally the Mumford-Tate group shrinks).
- Investigating variation across primes in a single L-function (e.g., Newton polygons).
- Providing "big data" to investigate using ML/AI, as in the discovery of murmurations.

Conductors and bad Euler factors

To "compute" a single hypergeometric L-function, we want the following. (All "recipes" are available in Magma, Sage, and possibly GP/PARI.)
a simple recipe. simple recipe.

Conductors and bad Euler factors

To "compute" a single hypergeometric L-function, we want the following. (All "recipes" are available in Magma, Sage, and possibly GP/PARI.)

- Gamma factors (i.e., Euler factors at the archimedean place). There is a simple recipe.

Conductors and bad Euler factors

To "compute" a single hypergeometric L-function, we want the following. (All "recipes" are available in Magma, Sage, and possibly GP/PARI.)

- Gamma factors (i.e., Euler factors at the archimedean place). There is a simple recipe.
- Euler factors and conductor exponents for each tame p. There is a simple recipe.

Conductors and bad Euler factors

To "compute" a single hypergeometric L-function, we want the following. (All "recipes" are available in Magma, Sage, and possibly GP/PARI.)

- Gamma factors (i.e., Euler factors at the archimedean place). There is a simple recipe.
- Euler factors and conductor exponents for each tame p. There is a simple recipe.
- Euler factors and conductor exponents for each wild p. There is a short list of candidates (getting shorter over time...).

Conductors and bad Euler factors

To "compute" a single hypergeometric L-function, we want the following. (All "recipes" are available in Magma, Sage, and possibly GP/PARI.)

- Gamma factors (i.e., Euler factors at the archimedean place). There is a simple recipe.
- Euler factors and conductor exponents for each tame p. There is a simple recipe.
- Euler factors and conductor exponents for each wild p. There is a short list of candidates (getting shorter over time...).
- Euler factors for good p. We will truncate the Dirichlet series at X^{-s} for some X, which means we need p^{a}-Frobenius traces for $p^{a} \leq X$. There is a simple recipe, but efficiency matters!

Conductors and bad Euler factors

To "compute" a single hypergeometric L-function, we want the following. (All "recipes" are available in Magma, Sage, and possibly GP/PARI.)

- Gamma factors (i.e., Euler factors at the archimedean place). There is a simple recipe.
- Euler factors and conductor exponents for each tame p. There is a simple recipe.
- Euler factors and conductor exponents for each wild p. There is a short list of candidates (getting shorter over time...).
- Euler factors for good p. We will truncate the Dirichlet series at X^{-s} for some X, which means we need p^{a}-Frobenius traces for $p^{a} \leq X$. There is a simple recipe, but efficiency matters!
Some of these are conjectural; but given a complete guess for suitably large X, one can numerically check the functional equation.

Frobenius structure

For fixed α, β and p not wild, one can give a uniform description of the action of Frob_{p} on $M_{z}^{\alpha, \beta}$ in terms of a p-adic analytic Frobenius structure on the hypergeometric differential equation (Dwork).

Frobenius structure

For fixed α, β and p not wild, one can give a uniform description of the action of Frob_{p} on $M_{z}^{\alpha, \beta}$ in terms of a p-adic analytic Frobenius structure on the hypergeometric differential equation (Dwork).

With Grubb we have implemented this in Sage; it works but in practice seems not competitive with the trace formula (next section).

Frobenius structure

For fixed α, β and p not wild, one can give a uniform description of the action of Frob_{p} on $M_{z}^{\alpha, \beta}$ in terms of a p-adic analytic Frobenius structure on the hypergeometric differential equation (Dwork).

With Grubb we have implemented this in Sage; it works but in practice seems not competitive with the trace formula (next section).

That said, it should be possible to use Frobenius structures to give a new proof of the trace formula (possibly via the comparison between crystalline and Dwork cohomologies). This might to some generalizations to other families (e.g., A-hypergeometric systems) or some further variants (e.g., a q-analogue) which seem less accessible via the current (somewhat indirect) proof.

Contents

(1) Hypergeometric L-functions
(2) The hypergeometric trace formula
(3) Average polynomial time algorithms
(4) Hypergeometric traces: the $\bmod p$ case
(5) Hypergeometric traces: the general case

Trace formula

For q a power of a good prime p, let $H_{q}\left({ }_{\beta}^{\alpha} \mid z\right)$ be the trace of Frob_{q} on $M_{z}^{\alpha, \beta}$. From work of Greene, Katz, Beukers-Cohen-Mellit, Cohen-Rodriguez Villegas-Watkins, etc., we extract the formula:

$$
H_{q}\left(\left.\begin{array}{l}
\alpha \\
\beta
\end{array} \right\rvert\, z\right)=\frac{1}{1-q} \sum_{m=0}^{q-2}(-p)^{\eta_{m}(\alpha)-\eta_{m}(\beta)} q^{D+\xi_{m}(\beta)}\left(\prod_{j=1}^{n} \frac{\left(\alpha_{j}\right)_{m}^{*}}{\left(\beta_{j}\right)_{m}^{*}}\right)[z]^{m} .
$$

Here:

Trace formula

For q a power of a good prime p, let $H_{q}\left({ }_{\beta}^{\alpha} \mid z\right)$ be the trace of Frob_{q} on $M_{z}^{\alpha, \beta}$. From work of Greene, Katz, Beukers-Cohen-Mellit, Cohen-Rodriguez Villegas-Watkins, etc., we extract the formula:

$$
H_{q}\left(\left.\begin{array}{l}
\alpha \\
\beta
\end{array} \right\rvert\, z\right)=\frac{1}{1-q} \sum_{m=0}^{q-2}(-p)^{\eta_{m}(\alpha)-\eta_{m}(\beta)} q^{D+\xi_{m}(\beta)}\left(\prod_{j=1}^{n} \frac{\left(\alpha_{j}\right)_{m}^{*}}{\left(\beta_{j}\right)_{m}^{*}}\right)[z]^{m} .
$$

Here:

- η_{m}, ξ_{m}, D denote some combinatorial quantities (see below);

Trace formula

For q a power of a good prime p, let $H_{q}\left({ }_{\beta}^{\alpha} \mid z\right)$ be the trace of Frob_{q} on $M_{z}^{\alpha, \beta}$. From work of Greene, Katz, Beukers-Cohen-Mellit, Cohen-Rodriguez Villegas-Watkins, etc., we extract the formula:

$$
H_{q}\left(\left.\begin{array}{c}
\alpha \\
\beta
\end{array} \right\rvert\, z\right)=\frac{1}{1-q} \sum_{m=0}^{q-2}(-p)^{\eta_{m}(\alpha)-\eta_{m}(\beta)} q^{D+\xi_{m}(\beta)}\left(\prod_{j=1}^{n} \frac{\left(\alpha_{j}\right)_{m}^{*}}{\left(\beta_{j}\right)_{m}^{*}}\right)[z]^{m} .
$$

Here:

- η_{m}, ξ_{m}, D denote some combinatorial quantities (see below);
- $(x)_{m}^{*}$ is a p-adic analogue of the Pochhammer symbol (see below);

Trace formula

For q a power of a good prime p, let $H_{q}\left(\left.\begin{array}{c}\alpha \\ \beta\end{array} \right\rvert\, z\right)$ be the trace of Frob_{q} on $M_{z}^{\alpha, \beta}$. From work of Greene, Katz, Beukers-Cohen-Mellit, Cohen-Rodriguez Villegas-Watkins, etc., we extract the formula:

$$
H_{q}\left(\left.\begin{array}{c}
\alpha \\
\beta
\end{array} \right\rvert\, z\right)=\frac{1}{1-q} \sum_{m=0}^{q-2}(-p)^{\eta_{m}(\alpha)-\eta_{m}(\beta)} q^{D+\xi_{m}(\beta)}\left(\prod_{j=1}^{n} \frac{\left(\alpha_{j}\right)_{m}^{*}}{\left(\beta_{j}\right)_{m}^{*}}\right)[z]^{m} .
$$

Here:

- η_{m}, ξ_{m}, D denote some combinatorial quantities (see below);
- $(x)_{m}^{*}$ is a p-adic analogue of the Pochhammer symbol (see below);
- $[z] \in \mathbb{Q}_{p}^{u n r}$ is the multiplicative lift ${ }^{\S}$ of z.

For fixed q, all of this is very easy to compute efficiently.
${ }^{\S}$ Proposed replacement terminology for the historical term "Teichmüller lift".

Combinatorial quantities in the trace formula

In the formula

$$
H_{q}\left(\left.\begin{array}{l}
\alpha \\
\beta
\end{array} \right\rvert\, z\right):=\frac{1}{1-q} \sum_{m=0}^{q-2}(-p)^{\eta_{m}(\alpha)-\eta_{m}(\beta)} q^{D+\xi_{m}(\beta)}\left(\prod_{j=1}^{n} \frac{\left(\alpha_{j}\right)_{m}^{*}}{\left(\beta_{j}\right)_{m}^{*}}\right)[z]^{m}
$$

the powers of $-p$ and $q=p^{f}$ are expressed in terms of the following:

$$
\begin{aligned}
\eta_{m}\left(x_{1}, \ldots, x_{n}\right) & :=\sum_{j=1}^{n} \sum_{v=0}^{f-1}\left\{p^{v}\left(x_{j}+\frac{m}{1-q}\right)\right\}-\left\{p^{\vee} x_{j}\right\},\{x\}:=x-\lfloor x\rfloor ; \\
\xi_{m}(\beta) & :=\#\left\{j: \beta_{j}=0\right\}-\#\left\{j: \beta_{j}+\frac{m}{1-q}=0\right\} ; \\
D & :=\frac{w+1-\#\left\{j: \beta_{j}=0\right\}}{2} .
\end{aligned}
$$

In particular, if we break up $[0,1)$ at the values in $\alpha \cup \beta$, then the powers of $-p$ and q remain constant as $\frac{m}{q-1}$ varies within a subinterval.
${ }^{\text {I }}$ This assumes $0 \notin \alpha$. Otherwise, swap $\alpha \leftrightarrow \beta$ and $z \leftrightarrow 1-z$.

Pochhammer symbols in the trace formula

In the formula

$$
H_{q}\left(\left.\begin{array}{l}
\alpha \\
\beta
\end{array} \right\rvert\, z\right)=\frac{1}{1-q} \sum_{m=0}^{q-2}(-p)^{\eta_{m}(\alpha)-\eta_{m}(\beta)} q^{D+\xi_{m}(\beta)}\left(\prod_{j=1}^{n} \frac{\left(\alpha_{j}\right)_{m}^{*}}{\left(\beta_{j}\right)_{m}^{*}}\right)[z]^{m}
$$

the analogue of the Pochhammer symbol is given by

$$
(x)_{m}^{*}:=\frac{\Gamma_{q}^{*}\left(x+\frac{m}{1-q}\right)}{\Gamma_{q}^{*}(x)}, \quad \Gamma_{q}^{*}(x):=\prod_{v=0}^{f-1} \Gamma_{p}\left(\left\{p^{v} x\right\}\right)
$$

where $\Gamma_{p}: \mathbb{Z}_{p} \rightarrow \mathbb{Z}_{p}^{\times}$is the Morita p-adic Gamma function. In particular, Γ_{p} is continuous, $\Gamma_{p}(0)=1$, and

$$
\Gamma_{p}(x+1)= \begin{cases}-x \Gamma_{p}(x) & x \notin p \mathbb{Z}_{p} \\ -\Gamma_{p}(x) & x \in p \mathbb{Z}_{p}\end{cases}
$$

The prime case

Let us now focus on the case $q=p$. In the formula

$$
H_{p}\left(\left.\begin{array}{c}
\alpha \\
\beta
\end{array} \right\rvert\, z\right):=\frac{1}{1-p} \sum_{m=0}^{p-2}(-p)^{\eta_{m}(\alpha)-\eta_{m}(\beta)} p^{D+\xi_{m}(\beta)}\left(\prod_{j=1}^{n} \frac{\left(\alpha_{j}\right)_{m}^{*}}{\left(\beta_{j}\right)_{m}^{*}}\right)[z]^{m},
$$

if we restrict to summands where $\frac{m}{p-1}$ lies between two consecutive values in $\alpha \cup \beta$, then this looks like a truncated hypergeometric series.

The prime case

Let us now focus on the case $q=p$. In the formula

$$
H_{p}\left(\left.\begin{array}{c}
\alpha \\
\beta
\end{array} \right\rvert\, z\right):=\frac{1}{1-p} \sum_{m=0}^{p-2}(-p)^{\eta_{m}(\alpha)-\eta_{m}(\beta)} p^{D+\xi_{m}(\beta)}\left(\prod_{j=1}^{n} \frac{\left(\alpha_{j}\right)_{m}^{*}}{\left(\beta_{j}\right)_{m}^{*}}\right)[z]^{m},
$$

if we restrict to summands where $\frac{m}{p-1}$ lies between two consecutive values in $\alpha \cup \beta$, then this looks like a truncated hypergeometric series.

Remember that we need to compute this for all good $p \leq X$. If we did this individually, each sum would be over $p-1$ terms, so this would cost roughly $O\left(X^{2}\right)$ time; however, there is clearly a great deal of redundancy. Our goal will be to leverage this redundancy to get this down to $O\left(X^{1+\epsilon}\right)$.

The prime case

Let us now focus on the case $q=p$. In the formula

$$
H_{p}\left(\left.\begin{array}{l}
\alpha \\
\beta
\end{array} \right\rvert\, z\right):=\frac{1}{1-p} \sum_{m=0}^{p-2}(-p)^{\eta_{m}(\alpha)-\eta_{m}(\beta)} p^{D+\xi_{m}(\beta)}\left(\prod_{j=1}^{n} \frac{\left(\alpha_{j}\right)_{m}^{*}}{\left(\beta_{j}\right)_{m}^{*}}\right)[z]^{m},
$$

if we restrict to summands where $\frac{m}{\rho-1}$ lies between two consecutive values in $\alpha \cup \beta$, then this looks like a truncated hypergeometric series.

Remember that we need to compute this for all $\operatorname{good} p \leq X$. If we did this individually, each sum would be over $p-1$ terms, so this would cost roughly $O\left(X^{2}\right)$ time; however, there is clearly a great deal of redundancy. Our goal will be to leverage this redundancy to get this down to $O\left(X^{1+\epsilon}\right)$. Note that this still leaves $O\left(X^{3 / 2}\right)$ work to deal with higher powers. It may be possible to use a similar approach to reduce this exponent also.

Contents

(1) Hypergeometric L-functions
(2) The hypergeometric trace formula
(3) Average polynomial time algorithms
(4) Hypergeometric traces: the $\bmod p$ case
(5) Hypergeometric traces: the general case

A minimal example: Wilson primes

The Alhazen-Wilson theorem says that for every prime $p,(p-1)!\equiv-1$ $(\bmod p)$. A Wilson prime is a prime for which $(p-1)!\equiv-1\left(\bmod p^{2}\right)$. The only known examples are $p=5,13,563$.

A minimal example: Wilson primes

The Alhazen-Wilson theorem says that for every prime $p,(p-1)!\equiv-1$ $(\bmod p)$. A Wilson prime is a prime for which $(p-1)!\equiv-1\left(\bmod p^{2}\right)$. The only known examples are $p=5,13,563$.
Costa-Gerbicz-Harvey computed the reduction of $(p-1)!+1 \bmod p^{2}$ for all $p \leq X$ with $X=2 \times 10^{13}$, using a novel technique to reduce the complexity from $O\left(X^{2+\epsilon}\right)$ to $O\left(X^{1+\epsilon}\right)$. Harvey-Sutherland described this in terms of accumulating remainder trees, loosely inspired by the structure of the fast Fourier transform (FFT) algorithm.

A minimal example: Wilson primes

The Alhazen-Wilson theorem says that for every prime $p,(p-1)!\equiv-1$ $(\bmod p)$. A Wilson prime is a prime for which $(p-1)!\equiv-1\left(\bmod p^{2}\right)$. The only known examples are $p=5,13,563$.
Costa-Gerbicz-Harvey computed the reduction of $(p-1)!+1 \bmod p^{2}$ for all $p \leq X$ with $X=2 \times 10^{13}$, using a novel technique to reduce the complexity from $O\left(X^{2+\epsilon}\right)$ to $O\left(X^{1+\epsilon}\right)$. Harvey-Sutherland described this in terms of accumulating remainder trees, loosely inspired by the structure of the fast Fourier transform (FFT) algorithm.

To a first approximation, the idea is to replace the separate computation of $(p-1)!+1\left(\bmod p^{2}\right)$ with the serial computation of

$$
n!\quad\left(\bmod \prod_{n<p \leq x} p^{2}\right) \quad \text { for } n=0, \ldots, X-1
$$

to eliminate redudancy. However, this must be balanced against making the moduli so large that they slow down the computation.

Accumulating remainder trees

Say we are given integers (or matrices) A_{0}, \ldots, A_{b-1} and integers m_{1}, \ldots, m_{b-1}, and we want to compute simultaneously

$$
C_{j}:=A_{0} \cdots A_{j-1} \quad\left(\bmod m_{j}\right) \quad(j=0, \ldots, b-1) .
$$

Then from the root to the leaves, we compute the products

Accumulating remainder trees

Say we are given integers (or matrices) A_{0}, \ldots, A_{b-1} and integers m_{1}, \ldots, m_{b-1}, and we want to compute simultaneously

$$
C_{j}:=A_{0} \cdots A_{j-1} \quad\left(\bmod m_{j}\right) \quad(j=0, \ldots, b-1)
$$

To simplify, assume $b=2^{\ell}$. Form a complete binary tree of depth ℓ with nodes (i, j) where $i=0, \ldots, \ell$ and $j=0, \ldots, 2^{i-1}$. By computing from the leaves to the root, we can compute products over dyadic ranges:

$$
\begin{aligned}
m_{i, j} & :=m_{j 2^{\ell-i}} \cdots m_{(j+1) 2^{\ell-i}-1} \\
A_{i, j} & :=A_{j 2^{\ell-i}} \cdots A_{(j+1) 2^{\ell-i}-1}
\end{aligned}
$$

Accumulating remainder trees

Say we are given integers (or matrices) A_{0}, \ldots, A_{b-1} and integers m_{1}, \ldots, m_{b-1}, and we want to compute simultaneously

$$
C_{j}:=A_{0} \cdots A_{j-1} \quad\left(\bmod m_{j}\right) \quad(j=0, \ldots, b-1)
$$

To simplify, assume $b=2^{\ell}$. Form a complete binary tree of depth ℓ with nodes (i, j) where $i=0, \ldots, \ell$ and $j=0, \ldots, 2^{i-1}$. By computing from the leaves to the root, we can compute products over dyadic ranges:

$$
\begin{aligned}
m_{i, j} & :=m_{j 2^{\ell-i}} \cdots m_{(j+1) 2^{\ell-i}-1} \\
A_{i, j} & :=A_{j 2^{\ell-i}} \cdots A_{(j+1) 2^{\ell-i}-1} .
\end{aligned}
$$

Then from the root to the leaves, we compute the products $C_{i, j}:=A_{i, 0} \cdots A_{i, j-1}\left(\bmod m_{i, j}\right)$ by writing

$$
C_{i, j}=\left\{\begin{array}{llll}
C_{i-1,\lfloor j / 2\rfloor} & \left(\bmod m_{i, j}\right) & j \equiv 0 & (\bmod 2) \\
C_{i-1,\lfloor j / 2\rfloor} A_{i, j-1} & \left(\bmod m_{i, j}\right) & j \equiv 1 & (\bmod 2)
\end{array}\right.
$$

Illustration (Harvey-Sutherland, 2014)

Example: harmonic sums

By forming a product of the matrices $\left(\begin{array}{ll}i^{j} & 0 \\ 1 & i^{j}\end{array}\right)$, for any $\gamma \in \mathbb{Q} \cap(0,1]$ and e, we can efficiently compute for all $p \leq X$ the sums

$$
H_{j, \gamma}(p)=\sum_{i=1}^{\lceil\gamma p\rceil-1} i^{-j}\left(\bmod p^{e}\right)=\sum_{i=1}^{\lceil\gamma p\rceil-1} \frac{(i!)^{j}}{((i+1)!)^{j}} \quad\left(\bmod p^{e}\right) .
$$

Example: harmonic sums

By forming a product of the matrices $\left(\begin{array}{cc}i^{j} & 0 \\ 1 & i^{j}\end{array}\right)$, for any $\gamma \in \mathbb{Q} \cap(0,1]$ and e, we can efficiently compute for all $p \leq X$ the sums

$$
H_{j, \gamma}(p)=\sum_{i=1}^{\lceil\gamma p\rceil-1} i^{-j}\left(\bmod p^{e}\right)=\sum_{i=1}^{\lceil\gamma p\rceil-1} \frac{(i!)^{j}}{((i+1)!)^{j}} \quad\left(\bmod p^{e}\right) .
$$

By applying the functional equation to obtain

$$
\log \frac{\Gamma_{p}(x+\lceil\gamma p\rceil)}{\Gamma_{p}(\lceil\gamma p\rceil)}=\log \Gamma_{p}(x)-\sum_{j=1}^{\infty} \frac{(-x)^{j}}{j} H_{i, \gamma}(j),
$$

for any fixed γ we can efficiently compute series expansions of Γ_{p} around γ modulo p^{e} for all $p \leq X$.

Applications in p-adic cohomology

Harvey first observed that the remainder tree technique could be used to speed up computation of L-functions via p-adic cohomology, by exploiting similar redundancies. Further work in this direction has been done by Harvey-Sutherland.

Applications in p-adic cohomology

Harvey first observed that the remainder tree technique could be used to speed up computation of L-functions via p-adic cohomology, by exploiting similar redundancies. Further work in this direction has been done by Harvey-Sutherland.

Our application to hypergeometric L-functions is more in the spirit of Costa-Gerbicz-Harvey: we amortize the computation of the trace formula modulo p^{e} for all $p \leq X$ by exploiting the similarity to a truncated hypergeometric sum. For $e=1$, this will look very similar to the algorithm for harmonic sums.

Contents

(1) Hypergeometric L-functions
(2) The hypergeometric trace formula
(3) Average polynomial time algorithms

4 Hypergeometric traces: the mod p case
(5) Hypergeometric traces: the general case

Breaking the trace formula into ranges

Returning to the hypergeometric trace formula with $q=p$:

$$
H_{p}\left(\left.\begin{array}{l}
\alpha \\
\beta
\end{array} \right\rvert\, z\right)=\frac{1}{1-p} \sum_{m=0}^{p-2}(-p)^{\eta_{m}(\alpha)-\eta_{m}(\beta)} p^{D+\xi_{m}(\beta)}\left(\prod_{j=1}^{n} \frac{\left(\alpha_{j}\right)_{m}^{*}}{\left(\beta_{j}\right)_{m}^{*}}\right)[z]^{m},
$$

As noted earlier, there are integers σ_{i}, τ_{i} such that

Breaking the trace formula into ranges

Returning to the hypergeometric trace formula with $q=p$:

$$
H_{p}\left(\left.\begin{array}{l}
\alpha \\
\beta
\end{array} \right\rvert\, z\right)=\frac{1}{1-p} \sum_{m=0}^{p-2}(-p)^{\eta_{m}(\alpha)-\eta_{m}(\beta)} p^{D+\xi_{m}(\beta)}\left(\prod_{j=1}^{n} \frac{\left(\alpha_{j}\right)_{m}^{*}}{\left(\beta_{j}\right)_{m}^{*}}\right)[z]^{m},
$$

Label the elements of $\alpha \cup \beta \cup\{0,1\}$ as $0=\gamma_{0}<\cdots<\gamma_{s}=1$; set $m_{i}:=\left\lfloor\gamma_{i}(p-1)\right\rfloor ;$ and focus on the sum over $m \in\left[m_{i}, m_{i+1}\right)$ for some i. As noted earlier, there are integers σ_{i}, τ_{i} such that

$$
(-p)^{\eta_{m}(\alpha)-\eta_{m}(\beta)} p^{D+\xi_{m}(\beta)}= \begin{cases}\tau_{i} & m=m_{i} \\ \sigma_{i} & m_{i}<m<m_{i+1}\end{cases}
$$

We can thus fix i and focus on computing, for all $p \leq X$,

$$
\sum_{m=m_{i}+1}^{m_{i+1}-1}\left(\prod_{j=1}^{n} \frac{\left(\alpha_{j}\right)_{m}^{*}}{\left(\beta_{j}\right)_{m}^{*}}\right)[z]^{m}
$$

Change of endpoints

We need to shift indices so that the sums all run from 1 . That is, we want to take $m=m_{i}+k$ and sum over $k=1, \ldots, m_{i+1}-m_{i}-1$.

Change of endpoints

We need to shift indices so that the sums all run from 1 . That is, we want to take $m=m_{i}+k$ and sum over $k=1, \ldots, m_{i+1}-m_{i}-1$.
Write $\gamma_{i}=\frac{a_{i}}{b_{i}}$ in lowest terms, fix $c \in\left(\mathbb{Z} / b_{i} \mathbb{Z}\right)^{\times}$, and restrict attention to $p \equiv c\left(\bmod b_{i}\right)$. We then have

$$
m_{i}=\gamma_{i}(p-1)-\gamma_{i, c} \text { where } a_{i}(p-1)=m_{i} b_{i}+r_{i}, \gamma_{i, c}=\frac{r_{i}}{b_{i}} \in[0,1)
$$

Change of endpoints

We need to shift indices so that the sums all run from 1 . That is, we want to take $m=m_{i}+k$ and sum over $k=1, \ldots, m_{i+1}-m_{i}-1$.

Write $\gamma_{i}=\frac{a_{i}}{b_{i}}$ in lowest terms, fix $c \in\left(\mathbb{Z} / b_{i} \mathbb{Z}\right)^{\times}$, and restrict attention to $p \equiv c\left(\bmod b_{i}\right)$. We then have

$$
m_{i}=\gamma_{i}(p-1)-\gamma_{i, c} \text { where } a_{i}(p-1)=m_{i} b_{i}+r_{i}, \gamma_{i, c}=\frac{r_{i}}{b_{i}} \in[0,1)
$$

For $\gamma \in \alpha \cup \beta,(\gamma)_{m}^{*}=\Gamma_{p}\left(\left\{\gamma+\frac{m}{1-p}\right\}\right) / \Gamma_{p}(\gamma)$ and

$$
\left\{\gamma+\frac{m}{1-p}\right\}=k+\left(k-\gamma_{i, c}\right) \frac{p}{1-p}+h_{c}\left(\gamma, \gamma_{i}\right)
$$

where

$$
h_{c}\left(\gamma, \gamma_{i}\right):=\gamma-\gamma_{i}+\iota\left(\gamma, \gamma_{i}\right)-\gamma_{i, c} \in(-1,1], \quad \iota(x, y):= \begin{cases}1 & x \leq y \\ 0 & x>y\end{cases}
$$

The situation $\bmod p$

Recall that we need to sum for all $p \leq X$,

$$
\sum_{m=m_{i}+1}^{m_{i+1}-1}\left(\prod_{j=1}^{n} \frac{\left(\alpha_{j}\right)_{m}^{*}}{\left(\beta_{j}\right)_{m}^{*}}\right)[z]^{m}
$$

Say we only want the trace modulo p for each $p \leq X$. Then we are

reduced to summing

The situation $\bmod p$

Recall that we need to sum for all $p \leq X$,

$$
\sum_{m=m_{i}+1}^{m_{i+1}-1}\left(\prod_{j=1}^{n} \frac{\left(\alpha_{j}\right)_{m}^{*}}{\left(\beta_{j}\right)_{m}^{*}}\right)[z]^{m}
$$

Say we only want the trace modulo p for each $p \leq X$. Then we are reduced to summing

$$
\sum_{k=1}^{m_{i+1}-m_{i}-1} \prod_{j=0}^{k-1} \frac{z_{f} f_{i, c}(k)}{z_{g} g_{i, c}(k)}(\bmod p)
$$

where $z=\frac{z_{f}}{z_{g}}$ in lowest terms and for some positive integer b,

$$
f_{i, c}(k):=b \prod_{j=1}^{n}\left(h_{c}\left(\alpha_{j}, \gamma_{i}\right)+k\right), \quad g_{i, c}(k):=b \prod_{j=1}^{n}\left(h_{c}\left(\beta_{j}, \gamma_{i}\right)+k\right)
$$

The situation $\bmod p($ continued $)$

Using a remainder tree, we can compute products of matrices of the form

$$
A_{i, c}(k):=\left(\begin{array}{cc}
z_{g} g_{i, c}(k) & 0 \\
z_{g} g_{i, c}(k) & z_{f} f_{i, c}(k)
\end{array}\right) .
$$

The situation $\bmod p$ (continued)

Using a remainder tree, we can compute products of matrices of the form

$$
A_{i, c}(k):=\left(\begin{array}{cc}
z_{g} g_{i, c}(k) & 0 \\
z_{g} g_{i, c}(k) & z_{f} f_{i, c}(k)
\end{array}\right)
$$

For

$$
S_{i}(p):=A_{i, c}(1) \cdots A_{i, c}\left(m_{i+1}-m_{i}-1\right)
$$

we have

$$
\frac{S_{i}(p)_{21}}{S_{i}(p)_{11}} \equiv \sum_{k=1}^{m_{i+1}-m_{i}-1} \prod_{j=0}^{k-1} \frac{z_{f} f_{i, c}(k)}{z_{g} g_{i, c}(k)} \equiv \sum_{m=m_{i}+1}^{m_{i+1}-1}\left(\prod_{j=1}^{n} \frac{\left(\alpha_{j}\right)_{m}^{*}}{\left(\beta_{j}\right)_{m}^{*}}\right)[z]^{m} \quad(\bmod p)
$$

The situation $\bmod p$ (continued)

Using a remainder tree, we can compute products of matrices of the form

$$
A_{i, c}(k):=\left(\begin{array}{cc}
z_{g} g_{i, c}(k) & 0 \\
z_{g} g_{i, c}(k) & z_{f} f_{i, c}(k)
\end{array}\right) .
$$

For

$$
S_{i}(p):=A_{i, c}(1) \cdots A_{i, c}\left(m_{i+1}-m_{i}-1\right)
$$

we have

$$
\frac{S_{i}(p)_{21}}{S_{i}(p)_{11}} \equiv \sum_{k=1}^{m_{i+1}-m_{i}-1} \prod_{j=0}^{k-1} \frac{z_{f} f_{i, c}(k)}{z_{g} g_{i, c}(k)} \equiv \sum_{m=m_{i}+1}^{m_{i+1}-1}\left(\prod_{j=1}^{n} \frac{\left(\alpha_{j}\right)_{m}^{*}}{\left(\beta_{j}\right)_{m}^{*}}\right)[z]^{m} \quad(\bmod p)
$$

This is extremely fast in practice (see our paper from ANTS XIV, 2020).

Contents

(1) Hypergeometric L-functions
(2) The hypergeometric trace formula
(3) Average polynomial time algorithms
(4) Hypergeometric traces: the $\bmod p$ case
(5) Hypergeometric traces: the general case

Some complications

In the general case, it is sufficient to compute modulo p^{e} for $e=\lfloor(w+1) / 2\rfloor$ where w is the motivic weight (at least for $p>4 n^{2}$). There are several additional complications to be overcome.

Some complications

In the general case, it is sufficient to compute modulo p^{e} for $e=\lfloor(w+1) / 2\rfloor$ where w is the motivic weight (at least for $p>4 n^{2}$). There are several additional complications to be overcome.

- We cannot ignore the difference between [z] and z. It is easy to compute [z] for any given p, but it does not behave uniformly.
\qquad

Some complications

In the general case, it is sufficient to compute modulo p^{e} for $e=\lfloor(w+1) / 2\rfloor$ where w is the motivic weight (at least for $p>4 n^{2}$). There are several additional complications to be overcome.

- We cannot ignore the difference between [z] and z. It is easy to compute [z] for any given p, but it does not behave uniformly.
- We need to incorporate the expansion of Γ_{p} around some rational arguments (which we already know how to compute in average polynomial time).

Some complications

In the general case, it is sufficient to compute modulo p^{e} for $e=\lfloor(w+1) / 2\rfloor$ where w is the motivic weight (at least for $p>4 n^{2}$). There are several additional complications to be overcome.

- We cannot ignore the difference between [z] and z. It is easy to compute [z] for any given p, but it does not behave uniformly.
- We need to incorporate the expansion of Γ_{p} around some rational arguments (which we already know how to compute in average polynomial time).
- The functional equation relates $\Gamma_{p}(x)$ to $\Gamma_{p}(x+1)$, not $\Gamma_{p}\left(x+\frac{1}{1-p}\right)$.

Some complications

In the general case, it is sufficient to compute modulo p^{e} for $e=\lfloor(w+1) / 2\rfloor$ where w is the motivic weight (at least for $p>4 n^{2}$). There are several additional complications to be overcome.

- We cannot ignore the difference between [z] and z. It is easy to compute [z] for any given p, but it does not behave uniformly.
- We need to incorporate the expansion of Γ_{p} around some rational arguments (which we already know how to compute in average polynomial time).
- The functional equation relates $\Gamma_{p}(x)$ to $\Gamma_{p}(x+1)$, not $\Gamma_{p}\left(x+\frac{1}{1-p}\right)$.

The solution we describe here will be presented at ANTS XVI in July 2024.

Harvey's generic prime construction

A key idea comes from the work of Harvey: consider products of matrices over $\mathbb{Z}[x] /\left(x^{e}\right)$ instead of \mathbb{Z}. Then for each prime p, we can take the result and replace x with something divisible by p which does not need to be computed by a matrix product.

Harvey's generic prime construction

A key idea comes from the work of Harvey: consider products of matrices over $\mathbb{Z}[x] /\left(x^{e}\right)$ instead of \mathbb{Z}. Then for each prime p, we can take the result and replace x with something divisible by p which does not need to be computed by a matrix product.

For example, if the only issue were the discrepancy between z and [z], we could replace $[z]$ with $z(1+x)$ and then afterwards substitute $x \mapsto[z] / z-1$, which we can compute efficiently for individual p. (In Harvey's setting he needs to substitute $x \mapsto p$.)

Harvey's generic prime construction

A key idea comes from the work of Harvey: consider products of matrices over $\mathbb{Z}[x] /\left(x^{e}\right)$ instead of \mathbb{Z}. Then for each prime p, we can take the result and replace x with something divisible by p which does not need to be computed by a matrix product.

For example, if the only issue were the discrepancy between z and [z], we could replace $[z]$ with $z(1+x)$ and then afterwards substitute $x \mapsto[z] / z-1$, which we can compute efficiently for individual p. (In Harvey's setting he needs to substitute $x \mapsto p$.)

In practice, we instead replace \mathbb{Z} with the noncommutative ring of lower triangular $e \times e$ matrices over \mathbb{Z}. This contains $\mathbb{Z}[x] /\left(x^{e}\right)$ (as banded matrices) but allows for additional operations, crucially including $x \mapsto c x$.

Factorization of the quotient

The ratio of the k-th term in our sum to the 1st term can be interpreted as

$$
[z]^{k-1} \prod_{\gamma \in \beta}^{\gamma \in \alpha} \frac{\Gamma_{p}\left(h_{c}\left(\gamma, \gamma_{i}\right)+k+\frac{\left(k-\gamma_{i, c}\right) p}{1-p}\right)}{\Gamma_{p}\left(h_{c}\left(\gamma, \gamma_{i}\right)+1+\frac{\left(1-\gamma_{i, c}\right) p}{1-p}\right)}
$$

where $\prod_{\gamma \in \beta}^{\gamma \in \alpha}$ means take the product over $\gamma=\alpha_{1}, \ldots, \alpha_{n}$ divided by the product over $\gamma=\beta_{1}, \ldots, \beta_{n}$.

Define the power series

Factorization of the quotient

The ratio of the k-th term in our sum to the 1st term can be interpreted as

$$
[z]^{k-1} \prod_{\gamma \in \beta}^{\gamma \in \alpha} \frac{\Gamma_{p}\left(h_{c}\left(\gamma, \gamma_{i}\right)+k+\frac{\left(k-\gamma_{i, c}\right) p}{1-p}\right)}{\Gamma_{p}\left(h_{c}\left(\gamma, \gamma_{i}\right)+1+\frac{\left(1-\gamma_{i, c}\right) p}{1-p}\right)}
$$

where $\prod_{\gamma \in \beta}^{\gamma \in \alpha}$ means take the product over $\gamma=\alpha_{1}, \ldots, \alpha_{n}$ divided by the product over $\gamma=\beta_{1}, \ldots, \beta_{n}$.
Define the power series

$$
R_{i}(x):=\prod_{\gamma \in \beta}^{\gamma \in \alpha} \frac{\Gamma_{p}\left(x+h_{c}\left(\gamma, \gamma_{i}\right)+1\right)}{\Gamma_{p}\left(h_{c}\left(\gamma, \gamma_{i}\right)+1\right)} .
$$

Factorization of the quotient

The ratio of the k-th term in our sum to the 1st term can be interpreted as

$$
[z]^{k-1} \prod_{\gamma \in \beta}^{\gamma \in \alpha} \frac{\Gamma_{p}\left(h_{c}\left(\gamma, \gamma_{i}\right)+k+\frac{\left(k-\gamma_{i, c}\right) p}{1-p}\right)}{\Gamma_{p}\left(h_{c}\left(\gamma, \gamma_{i}\right)+1+\frac{\left(1-\gamma_{i, c}\right) p}{1-p}\right)}
$$

where $\prod_{\gamma \in \beta}^{\gamma \in \alpha}$ means take the product over $\gamma=\alpha_{1}, \ldots, \alpha_{n}$ divided by the product over $\gamma=\beta_{1}, \ldots, \beta_{n}$.
Define the power series

$$
R_{i}(x):=\prod_{\gamma \in \beta}^{\gamma \in \alpha} \frac{\Gamma_{p}\left(x+h_{c}\left(\gamma, \gamma_{i}\right)+1\right)}{\Gamma_{p}\left(h_{c}\left(\gamma, \gamma_{i}\right)+1\right)} .
$$

We can then write the above ratio as

$$
\left.\left(\frac{[z]}{z}\right)^{k-1} \frac{R_{i}\left(\left(k-\gamma_{i, c}\right) \frac{p}{1-p}\right)}{R_{i}\left(\left(1-\gamma_{i, c}\right) \frac{p}{1-p}\right)} \cdot \prod_{j=1}^{k-1} \frac{f_{i, c}(x+j)}{g_{i, c}(x+j)}\right|_{x=\left(k-\gamma_{i, c}\right) \frac{p}{1-p}} .
$$

Factorization of the quotient (continued)

In the previous expression, the factor not involving j, namely

$$
\left(\frac{[z]}{z}\right)^{k-1} \frac{R_{i}\left(\left(k-\gamma_{i, c}\right) \frac{p}{1-p}\right)}{R_{i}\left(\left(1-\gamma_{i, c}\right) \frac{p}{1-p}\right)},
$$

depends on k in a usefully simple way: it can be written as

$$
\sum_{h=0}^{e-1} c_{i, h}(p)\left(\left(k-\gamma_{i, c}\right) \frac{p}{1-p}\right)^{h} \quad\left(\bmod p^{e}\right)
$$

for some $c_{i, h}(p)$ independent of k. Conveniently, we do not have to worry about how these are computed when forming the matrix product!

Form of the matrix product

We apply remainder trees to multiply block matrices with $e \times e$ blocks:

$$
A_{i, c}(k):=(\text { scalar })\left(\begin{array}{cc}
\delta_{h_{1}, h_{2}} & 0 \\
\left(k-\gamma_{i, c}\right)^{e-h_{2}} \delta_{h_{1}, h_{2}} & \left(\frac{f_{i, c}(x+k)}{g_{i, c}(x+k)}\right)^{\left[h_{1}-h_{2}\right]}
\end{array}\right)
$$

where $f(x)^{[h]}$ means the coefficient of x^{h} in $f(x)$. The effect of adding $A_{i, c}(k)$ to the product is to increment (lower left)/(upper left) by

$$
Q_{h_{1}, h_{2}}(k)=\left(k-\gamma_{i, c}\right)^{h_{2}}\left(\prod_{j=1}^{k-1} \frac{f_{i, c}(x+j)}{g_{i, c}(x+j)}\right)^{\left[h_{2}-h_{1}\right]}
$$

which we combine with the $c_{i, h}(p)$ to get what we want:

$$
\sum_{k} \sum_{h_{1}, h_{2}} c_{i, e-h_{1}} Q_{h_{1}, h_{2}}(k)\left(\frac{p}{1-p}\right)^{e-h_{2}}
$$

[^0]: ${ }^{\ddagger}$ This is only an upper bound; there can be a "wild" or "tame" prime at which the reduction is actually good.

[^1]: ${ }^{\ddagger}$ This is only an upper bound; there can be a "wild" or "tame" prime at which the

