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Introduction

Goal of this talk

The goal of this talk is to demonstrate some of the most common
examples of computations of interest to number theorists. These are
feasible enough that they either are or should be implemented.

However, I will mostly avoid discussion of how to do specific things, aside
from mentioning which software can handle them at present. Besides
Sage, the most commonly used packages for number theory are Pari
(which is included in Sage but will be discussed separately) and Magma
(which is not open-source).
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Cryptography

Primality testing and integer factorization

Euclid showed that every positive integer admits a unique (up to
permutation) factorization as a product of primes. Determining whether a
given integer is prime, and finding its prime factors if not, has been a
major computational issue in number theory ever since. For example,
Fermat conjectured that the integers

22
n

+ 1 (n = 0, 1, . . . )

are all prime, but Euler disproved this with some effort. Nowadays...

sage: factor(2^(2^5)+1)

641 * 6700417
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Cryptography

Primality testing

To generate an RSA modulus, one needs to be able to produce large prime
numbers. Fortunately, it is easy to test for primality, using Fermat’s little
theorem

gcd(a, p) = 1 =⇒ ap−1 ≡ 1 (mod p)

as a first screen. This is implemented in many places; Pari provides this
functionality to Sage:

sage: time p = next_prime(2^2048)

CPU times: user 35.2 s, sys: 0 ns, total: 35.2 s

Wall time: 35.3 s

sage: p - 2^2048

981
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Cryptography

Factorization

RSA security depends on the fact that finding the prime factorization of a
composite integer is much harder than testing for primality! Once the
numbers get big enough, this is usually done using sort of sieve algorithm.
For example, the quadratic sieve (for factoring N) involves finding a hash
collision on the functor x2 (mod N).

Again, decent factorization exists in many systems, and again Sage relies
on Pari:

sage: time factor(2^400 + 7)

CPU times: user 1min 4s, sys: 4 ms, total: 1min 4s

Wall time: 1min 4s

23 * 11800973 * 63817221995963 * 3738164195577521311289 *

39880109696090444372755626550474667636180965440650557135\

441116729023430433511
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Cryptography

Discrete logarithms

Various protocols based on modular exponentiation (e.g., Diffie-Hellman)
depend on the difficulty of inverting this map, i.e., of computing discrete
logarithms. This is similar to factorization, and yet again comes to Sage
via Pari:

sage: p = next_prime(2^100); F = GF(p); a = F(3); b = F(2)

sage: time n = a.log(b)

CPU times: user 8.66 s, sys: 0 ns, total: 8.66 s

Wall time: 8.67 s

sage: print n, b^n

1219919803936672396839414039291 3

But the role of the group F×p here can be played by other interesting
computable finite groups, such as the rational points of an elliptic curve
over Fp. This brings us to...
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Zeta functions of algebraic varieties

Zeta functions

For X an algebraic variety over a finite field Fq, its zeta function is

ζ(X ,T ) = exp

( ∞∑
n=1

#X (Fqn)
T n

n

)
∈ ZJT K;

it represents a rational function (Dwork). Typically, one can bound the
degree of this rational function in terms of geometric invariants; then in
principle one can compute ζ(X ,T ) by enumerating X (Fqn) for enough
values of n, but this is often infeasible.

For example, for X a curve of genus g over Fq,

ζ(X ,T ) =
1 + a1T + · · ·+ a2g−1T

2g−1 + qgT 2g

(1− T )(1− qT )

where a2g−i = qg−iai .
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Zeta functions of algebraic varieties

Zeta functions of elliptic curves

Suppose g = 1. Then a = q + 1−#X (Fq) satisfies |a| ≤ 2
√
q (Hasse) and

ζ(X ,T ) =
1− aT + qT 2

(1− T )(1− qT )

If one needs X (Fq) for crypto, one can find a using “baby step-giant step”
(Shanks), or by computing a (mod `) for various ` (Schoof). Via Pari...

sage: p = next_prime(2^300)

sage: E = EllipticCurve(GF(p), [1,8]); E

Elliptic Curve defined by y^2 = x^3 + x + 8 over ...

sage: time z = E.zeta_function()

CPU times: user 12.2 s, sys: 20 ms, total: 12.3 s

Wall time: 12.3 s

sage: -z.numerator().coefficients()[1] # this is "a"

1910426102709561065930788840630164762477616422
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Zeta functions of algebraic varieties

Zeta functions of hyperelliptic curves

For g > 1, X (Fq) is not a group, but the class group of X equals J(Fq)
for J the Jacobian of X . The order of this group equals P(1) where P is
the numerator of ζ(X ,T ).

For X a hyperelliptic curve, this can be computed using p-adic
cohomology (K, Harvey). Sage (partly using Pari) provides this:

sage: p = next_prime(2^20)

sage: P.<x> = PolynomialRing(GF(p))

sage: H = HyperellipticCurve(x^11 + x + 1)

sage: time z = H.zeta_function()

CPU times: user 3.1 s, sys: 4 ms, total: 3.11 s

Wall time: 3.11 s

sage: z.numerator().coefficients()[0:4]

[1, -1034, 1524507, -1229851334]
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Zeta functions of algebraic varieties

Variants

Not yet available in Sage. Coding sprint, anyone?

Magma provides a generalization of the previous method that applies
to arbitrary curves (Tuitman).

It is possible to do something similar for some higher-dimensional
varieties, such as smooth projective hypersurfaces (Abbott–K–Roe)
and nondegenerate hypersurfaces in toric varieties (Costa–Harvey–K).
Costa has a C implementation.

If one starts with a hyperelliptic curve over Q and considers its
reductions modulo various primes, one can amortize the computation
of the zeta functions (Harvey, Harvey–Sutherland). Sutherland has a
C implementation (for g ≤ 3).

This last case is needed to compute the curve’s L-function...
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Modular forms and L-functions

L-functions

An L-function is a complex-analytic function represented by a Dirichlet
series L(s) =

∑∞
n=1 ann

−s satisfying certain extra conditions. Typically,
this series factors as an Euler product

∏
p Lp(s); e.g., the Riemann zeta

function

ζ(s) =
∞∑
n=1

n−s =
∏
p

(1− p−s)−1.

Many different types of L-functions arise in number theory. The
L-Functions and Modular Forms Database (http://www.lmfdb.org) is a
systematic catalog of L-functions in number theory and associated objects;
its construction leads to many interesting computational problems!

One general problem is to evaluate the function outside the domain of
absolute convergence of the power series. This is handled by code of
Dokchitser in Sage and Magma.
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Modular forms and L-functions

L-functions of elliptic (and other) curves

Recall from Jen’s talk that an elliptic curve E over Q has an associated
L-function L(E , s) =

∏
p Lp(E , s) where for the (all but finitely many) p

for which E reduces mod p to an elliptic curve, Lp(E , s) is the numerator
of the zeta function of that reduction evaluated at T = p−s .

This function extends analytically to C (Wiles, Taylor, etc.) and its order
of vanishing at s = 1 is conjectured to equal the rank of E (Q)
(Birch–Swinnerton-Dyer).

A similar story holds (conjecturally) for an arbitrary curve over Q.
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Modular forms and L-functions

The Sato-Tate conjecture and generalizations

For E an elliptic curve over Q, the factors Lp(E , s) = 1− app
−s + p1−2s

have the property that the limiting distribution of the values ap/
√
p in

[−2, 2] can only take one of two values, depending on whether or not E
has “complex multiplication” (Taylor, Clozel, etc.).

Something similar is conjectured for other curves, but with more
exceptions possible. For instance, for genus 2 curves, one expects 34
distinct distributions to occur (Fité–K–Rotger–Sutherland).

See Sutherland’s home page http://math.mit.edu/~drew for pictures.
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√
p in

[−2, 2] can only take one of two values, depending on whether or not E
has “complex multiplication” (Taylor, Clozel, etc.).
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Modular forms and L-functions

Modular forms

Another source of L-functions are modular forms; these are certain analytic
functions on the upper half-plane which transform nicely under the action
of certain congruence subgroups of SL2(Z). There are (at least) three
approaches to computing modular forms:

modular symbols (Manin): compute the action of Hecke operators on
singular cohomology of modular curves via triangulations.
Implemented in Magma (Stein) and Sage (Stein).

trace formulas (Cohen): implemented in Pari (Cohen).

quadratic forms (Birch): use the Jacquet–Langlands correspondence
to pass to a quaternion algebra, where reduction theory of ternary
quadratic forms kicked in. Implemented in C++ (Hein); I’m currently
trying to get this into Sage (ticket #23342).
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Modular forms and L-functions

Automorphic forms

Modular forms and elliptic curves over Q are related by an instance of the
Langlands correspondence. This can be used to tabulate elliptic curves
(Cremona).

Similar relationship are predicted between other automorphic forms (for
algebraic groups other than SL2) and other algebro-geometric objects. For
example, genus 2 curves should be related to Siegel modular forms; a
precise statement is the paramodular conjecture (Brumer–Kramer).

However, despite having general predictions from Langlands, it is not
always straightforward to match things up this way, especially in the
automorphic-to-geometric direction. One good source of geometric objects
are hypergeometric motives, which are supported in Magma and maybe
soon in Sage (ticket #23671).
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Additional topics

Additional topics

Rational points on curves: see Jen’s talk.

Pari provides basic tools for number fields, like computing class
numbers. Also available in Magma.

Pari provides LLL for lattices, and applications like converting a
floating-point real number into a rational or algebraic number. Also
available in Magma.

Add your favorite example here...
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