p-adic Lafforgue: a road map

Kiran S. Kedlaya (MIT)

kedlaya@mit.edu

http://www-math.mit.edu/~kedlaya

Arithmetical Algebraic Geometry AMS-MAA Joint Meetings, Phoenix, AZ January 9, 2003

Warning: this talk is highly speculative! In particular, statements asserted without a citation are not written down.

Notation and conventions

 \mathbb{F}_q finite field, of characteristic p X curve over \mathbb{F}_q (smooth, proj, geom irred) U nonempty open subscheme of X \mathbb{A}_X adele ring of X finite extension of \mathbb{Q}_p with res field \mathbb{F}_q \mathcal{O} ring of integers of K

Lafforgue's work in a nutshell

The Langlands correspondence for function fields: for $\ell \neq p$ prime, there is a bijection between

- (a) rank n lisse ℓ -adic sheaves over U ("Galois representations"), and
- (b) cuspidal representations of $GL_n(\mathbb{A}_X)$ unramified at places of U ("automorphic representations"),

which matches eigenvalues of Frobenius at a place $x \in U$ with eigenvalues of the Hecke operator for x (i.e., which matches L-functions).

Goal: do likewise for "p-adic sheaves", by establishing the requisite cohomological machinery (*without* redoing the automorphic side).

Compatible systems (or, Why bother?)

Lafforgue's work implies that every lisse ℓ -adic sheaf on U belongs to a compatible system. Having p-adic Lafforgue would show that:

- (a) every "lisse *p*-adic sheaf" also belongs to a compatible system;
- (b) every compatible system includes a "petit camarade cristalline".

It incidentally also serves as a benchmark for measuring current progress on building a p-adic Weil cohomology, which would combine theoretical robustness with practical (numerical) computability. (Another example: one can now recover the Weil conjectures purely within the p-adic framework.)

What are p-adic sheaves?

 $\mathcal{O}\langle x_1,\ldots,x_n\rangle^{\dagger}$ = the ring of n-variate power series which converge on some (unspecified) polydisc of radius greater than 1 (i.e., are "overconvergent").

Suppose $A = \mathcal{O}\langle x_1, \dots, x_n \rangle^{\dagger}/I$ is flat over \mathcal{O} and $U = \operatorname{Spec}(A \otimes_{\mathcal{O}} \mathbb{F}_q)$. There exists a ring homomorphism $\sigma : A \to A$ fixing \mathcal{O} and lifting the q-power Frobenius on U.

Then an overconvergent F-isocrystal on U is a finite locally free $A[\frac{1}{p}]$ -module M equipped with a connection $\nabla: M \to M \otimes \Omega^{1,\mathrm{cts}}$ and compatible isomorphism $F: \sigma^*M \to M$.

The corresponding cohomology theory, in which this is a coefficient object, is Berthelot's *rigid cohomology* (modeled on de Rham cohomology).

Lisse vs. constructible (or, Caveat auditor)

We do not yet have a good p-adic analogue of constructible sheaves! These should arise from an analogue of algebraic \mathcal{D} -modules, but the analogue of holonomicity remains mysterious. (It is not even known to be stable under inverse image along a closed immersion!)

In practice, it seems we can get around this. E.g., one expects that for any $f:X\to Y$ and any overconvergent F-isocrystal $\mathcal E$ on X, there exist higher direct images

$$R^i f_* \mathcal{E}, \qquad R^i f_! \mathcal{E}$$

on an open dense subscheme U of Y. Moreover, if f is smooth proper, one should be able to take U = Y (conjecture of Berthelot).

These are not known in full, but may now be tractable (as in finiteness of rigid cohomology).

First steps

- Chebotarev density: If \mathcal{E}, \mathcal{F} are overconvergent F-isocrystals on U with the same charpoly of Frobenius at (almost) every point, then they are isomorphic. Apparently easy: follows from Chebotarev in the convergent category, plus full faithfulness of the functor "overconvergent-to-convergent".
- Define local epsilon factors. This is currently being done by Marmora; may resemble Beilinson-Bloch-Esnault's analogue for complex local systems using irregularities.
- Verify the product formula for epsilon factors. Probably not hard: follow Laumon, using Huyghe's padic Fourier transform.

Fixed point formulas

One needs a Lefschetz-Verdier trace formula: given $f:Z\to Z$ with Z/\mathbb{F}_q proper, the sum

$$\sum_{i=0}^{2\dim(Z)} (-1)^i \operatorname{Trace}(f, H^i(Z))$$

is equal to a sum of (usually mysterious) local contributions concentrated on the fixed subscheme of f. (Similarly also with coefficients.)

This is easily established for Frobenius, which induces a trace class operator on the chain level. Moreover, composing any given f with a high power of Frobenius gives a trace class operator. (Analogue: Fujiwara's proof of Deligne's conjecture that composing with a high power of Frobenius "trivializes" local contributions.)

For general maps (or correspondences), the construction by Petrequin of cycle classes may help; not sure if this is relevant here.

Lafforgue's class of "serene" stacks

An algebraic (Artin) stack $\mathcal X$ over a scheme S is serene if:

- (S1) The morphism $\mathcal{X} \to S$ is separated.
- (S2) The morphism $\mathcal{X} \to S$ is of finite type.
- (S3) Each point of \mathcal{X} admits a Zariski open neighborhood \mathcal{V} admitting a finite flat cover $V \to \mathcal{V}$ by an algebraic space such that $\operatorname{Aut}(V/\mathcal{V})$ acts transitively on reduced geometric fibres.

In particular, the diagonal morphism

$$\Delta_{\mathcal{X}/S}: \mathcal{X} o \mathcal{X} imes_S \mathcal{X}$$

is (representable and) finite. Lafforgue suggests that maybe one can get by with this instead of S3.

The big desiderata (ouch)

Construct rigid cohomology for serene stacks (over \mathbb{F}_q , or ultimately $U \times U$) and verify:

- 1. finiteness of cohomology of local systems;
- 2. Künneth decomposition and Poincaré duality;
- 3. Lefschetz-Verdier and analogue of Fujiwara.

Good warmup: do these for Deligne-Mumford stacks. (Even easier warmup: do these for quotients of a scheme by action of a finite group.)

Final random musing

The serene stacks in Lafforgue are moduli spaces of "shtukas". A shtuka (of rank r) on an \mathbb{F}_q -scheme S is a vector bundle \mathcal{E} (of rank r) over $X \times S$ equipped with:

a diagram

$$\mathcal{E} \stackrel{j}{\hookrightarrow} \mathcal{E}' \stackrel{t}{\hookleftarrow} \mathcal{E}''$$

where $\mathcal{E}', \mathcal{E}''$ are vector bundles of rank r over $X \times S$ and j, t are injections whose cokernels are invertible over \mathcal{O}_S and are supported on sections $\infty, 0: S \to X$;

a "complete homomorphism"

$$(\operatorname{Id}_X \times \operatorname{Frob}_S)^* \mathcal{E} \Rightarrow \mathcal{E}$$

(further details omitted).

Is there a useful crystalline analogue?