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Introduction

The zeta function problem

Throughout,p is a prime andq = pn.

Definition

Thezeta functionof a varietyX overFq is the series

ζX(T) = ∏
x∈ X closed

(1−T[κ(x):Fq])−1 = exp

(

∞

∑
n=1

#X(Fqn)
Tn

n

)

,

which represents a rational function (Dwork, Grothendieck-Artin).

For X smooth proper of dimensiond, for any Weil cohomologyHi ,

ζX(T) =
P1(T) · · ·P2d−1(T)

P0(T) · · ·P2d(T)

for Pi(T) = det(1−TFrobq,Hi(X)). Also, Pi(T) ∈ 1+TZ[T], and the
C-roots ofPi(T) have normq−i/2 (Deligne).
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Introduction

The zeta function problem

Problem

Given a family of varieties (of fixed dimension!!), describean efficient
algorithm that, given an explicit variety X in the family, computesζX(T).

In this talk, I’ll only considerX to be ahyperelliptic curveof genusg overFq;
for p > 2, X always has an affine model

y2 = P(x), deg(P) ∈ {2g+1,2g+2}.

Besides being the simplest family that includes all genera,these have some
interest in cryptography. (Standard target:qg ∼ 2160.)

Problem (Open unless you allow quantum computing)

Describe an algorithm to, given a hyperelliptic curve X of genus g overFq,
computeζX(T) in time polynomial inall three of (logp),n,g.

Kiran S. Kedlaya (MIT, Dept. of Mathematics)Computing zeta functions of hyperelliptic curves Leiden, April 23, 2009 5 / 26



Introduction

Plan for the talk

For X a curve of genusg overFq,

ζX(T) =
P1(T)

(1−T)(1−qT)

whereP1(T) ∈ 1+TZ[T], deg(P1(T)) = 2g, P1(T) hasC-roots of norm
q−1/2, andP1(T) is symmetric:

P1(q/T) = T−2gq−gP1(T).

I’ll survey a number of techniques for computingP1(T). I’ll distinguish
polynomial/exponential time, but instead of finer asymptotics, I’ll usually
quote some sample/record CPU timings toonesignificant digit.

“sp” denotes a situation which is not entirely generic. E.g., the base field isFp

for p a Mersenne prime, or a field admitting an optimal normal basis.
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Generic methods

Enumeration of points

For X given byy2 = P(x) with P having no repeated roots, compute

#X(Fqi ) = ∑
x∈P1

F
qi

#{P∈ X(Fqi ) : x(P) = x}

for i = 1, . . . ,g. Then recoverP1(T) using symmetry.

Linear inqg, so only sensible whenqg is very small.
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Generic methods

Baby step-giant step

Shanks’s algorithm for computing class groups of number fields is ageneric
group algorithm, so it can be applied to the class group of a function field, i.e.,
the groupJ(Fq) for J the Jacobian abelian variety. This helps because

#J(Fq) = P1(1).

Improvements by Sutherland (generic), Matsuo-Chao-Tsujii (for curves).

Sample (K-Sutherland, 2009; 5s)

g = 2, p= q∼ 232.

This is likely the best way to compute 232 coefficients of theL-series of a
genus 2 curve overQ. Uselessby itselffor g≥ 3, but combines withℓ-adic
andp-adic algorithms.
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Generic methods

Sutherland’s swindle

Assumeg = 2 for concreteness.

Suppose you only wantP1(T) for somehyperelliptic curve of a given genus.
Easy: find one with #J(Fq) smooth.

Now say you want #J(Fq) nearly prime. Look for a curveX whose quadratic
twist X̃ has JacobiañJ with #J̃(Fq) smooth. This helps because

#J̃(Fq) = P1(−1).

Record (Sutherland, 2007; 34h to find one example)

g = 2, p= q∼ 284.
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ℓ-adic cohomology methods
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ℓ-adic cohomology methods

Schoof’s algorithm (genus 1)

For ℓ ≤ 2logq distinct fromp, compute #X(Fq) (mod ℓ) by computing the
action of Frobenius on the group

X(Fq)[ℓ] ∼= F2
ℓ

using division polynomials. This determines #X(Fq) (and henceP1(T)) in
polynomial time in logq = nlogp. Improvements by Elkies, Atkin; also
Couveignes, Gaudry, Lercier, Mihăilescu, Morain, Schost, et al.

Record (Enge-Morain, 2006; 400d)

g = 1, p= q∼ 28300.
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ℓ-adic cohomology methods

Schoof’s algorithm (higher genus)

Pila noticed that for anyfixed g, one can computeP1(T) (mod ℓ) by forming
a projective embedding of the Jacobian (ouch) and computingdivision
polynomials. Forg fixed, this computesP1(T) in time polynomial in logq, but
dependence ong is (at least) exponential.

This has only been attempted forg = 2. Improvements by Gaudry-Harley,
Bernstein-Pitcher.

Record (Gaudry-Schost, 2008; 30d)

g = 2, p= q∼ 2127. (Sutherland’s swindle is not competitive in this range.)
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p-adic lifting methods
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p-adic lifting methods

General warning

Most p-adic algorithms have at least linear dependence onp, so are not
practical unlessp is relatively small.

In some cases,square rootdependence onp is possible. This should allow
p≤ 264.
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p-adic lifting methods

Canonical lifts

Let X be anordinary elliptic curve overFq. ThenX has a unique lift toZq

(the unramified extension ofZp with residue fieldFq) preserving the
endomorphism ring (Deuring; Serre-Tate).

Satoh (forp≥ 5; extended top = 3 by Fouquet-Gaudry-Harley,p = 2 by
Skjernaa) computes this lift using a Newton iteration involving thep-modular
polynomial. Improvements by these authors, Taguchi, et al.

Record (Harley, 2002; 60h)

g = 1, q= 250021; g = 1, q= 2130020(sp).

One can also handle genus 2, at least forp = 2 (using Richelot isogenies). For
g≥ 3, the Jacobian lifts canonicallyas a principally polarized abelian
variety, but not necessarily to a Jacobian.
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p-adic lifting methods

AGM iteration

Mestre realized that forp = 2, the Newton iteration for canonical lifting
induces the AGM (arithmetic-geometric mean) iteration on theta
characteristics.

Record (Lercier-Lubicz, 2002; 80h)

g = 1, q= 2100002(sp).

This generalizes tog > 1 but is exponential ing. However...

Record (Lercier-Lubicz, 2002; 30h)

g = 2, q= 216420.
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p-adic cohomology methods
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p-adic cohomology methods

A general fact

Using Dwork’s proof of rationality ofζX(T), Lauder and Wan gave an
algorithm which is polynomial time inp, n, g, and which generalizes vastly.
Unfortunately, this is not practical.
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p-adic cohomology methods

Monsky-Washnitzer cohomology

Monsky and Washnitzer constructed an explicitp-adic Weil cohomology for
smooth affinevarieties, which can be described using algebraic de Rham
cohomology (of anoncanonicallift of the curve).

Using this, Kedlaya (forp≥ 3; extended top = 2 by Denef-Vercauteren)
computed the Frobenius action for hyperelliptic curves.

Sample (Magma (Harrison), 2009; 60m)

g = 2, q= 3200.

Sample (Magma (Harrison), 2009; 60m)

g = 50, p= q = 3.
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p-adic cohomology methods

MW cohomology in medium characteristic

The previous method is at best linear inp. Boston-Gaudry-Schost found an
algorithm for computingP1(T) (mod p) with square rootdependence onp.
Key idea: a “baby step-giant step” algorithm of Chudnovsky-Chudnovsky for
solving linear recurrences with polynomial coefficients.

Harvey adapted this to compute MW cohomology with square root
dependence onp. Forg = 2, this beats K-Sutherland forp≥ 232.

Record (Harvey, 2008; 20h)

g = 3, p= q∼ 253.

Record (Harvey, 2008; 40h)

g = 4, p= q∼ 244.
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p-adic cohomology methods

Frobenius actions on connections

Lauder suggested using deformations inp-adic cohomology, i.e.,
Picard-Fuchs equations (Gauss-Manin connections). Idea:make a pencil in
which one member is “easy” and another is the desired curve. Using the easy
member as an initial condition in a differential equation, compute a Frobenius
action on the connection, then specialize.

Improvements by Gerkmann, Hubrechts, et al.

Sample (Magma (Hubrechts), 2009; 30m)

g = 2, q= 3200.

This method should also improve on MW cohomology forg large, but this
requires a different implementation. (Hubrechts takes theeasy curve overFp

and uses MW cohomology; instead, should take a very symmetric curve for
which the initial condition can be computedexactly.)
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Beyond hyperelliptic curves?
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Beyond hyperelliptic curves?

Other curves

Computing Frobenius on MW cohomology can be extended to superelliptic
curves (Gaudry-Gürel),Ca,b-curves (Denef-Vercauteren), nondegenerate
curves (Castryck-Denef-Vercauteren, but unimplemented).

Record (Denef-Vercauteren, 2004; 8h)

g = 3 (a C3,4-curve), q= 296.

Record (Denef-Vercauteren, 2004; 12h)

g = 4 (a C3,5-curve), q= 272.

Using connections should be applicable even more generally. Lauder: given
any fixed curveX overZ[1/N], the zeta function ofXFp can be computed in
timeO(p2+ε). (Is O(p1/2+ε) possible?)
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Beyond hyperelliptic curves?

Higher dimension

Except for some 2-dimensional motives (Edixhoven et al.), no known way to
extendℓ-adic methods.

p-adic methods may help. MW cohomology extends with some difficulty.

Record (Abbott-K-Roe, 2005; 30h)

Quartic K3 surface, p= q = 19.

Connections should be better. Some experiments by Kloosterman (surfaces),
K (threefolds).

Also possible: fibering in curves (Lauder). Applied to experiments on average
rank of elliptic curves over function fields.

Kiran S. Kedlaya (MIT, Dept. of Mathematics)Computing zeta functions of hyperelliptic curves Leiden, April 23, 2009 25 / 26



Beyond hyperelliptic curves?

The end
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