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Introduction

The zeta function problem
Throughoutp is a prime andy = p".
Definition

Thezeta functiorof a varietyX overF is the series

00 n
ZX(T) — J‘l (1_T[K(x):Fq])—1 _ eXp(Z #X(Fqn)T ) ’
X € X closed n=1 n

which represents a rational function (Dwork, Grothendiéckn).

For X smooth proper of dimensiah for any Weil cohomology',
P1(T)---Pag-1(T)
T) =
(1) Po(T)- - Paa(T)

for Pi(T) = det(1— TFrokh,, Hi‘(X)). Also, Pi(T) € 1+ TZ[T], and the
C-roots of P;(T) have norng /2 (Deligne).
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The zeta function problem

Problem
Given a family of varieties (of fixed dimension!!), descritpeefficient
algorithm that, given an explicit variety X in the familynaputes(x(T).

In this talk, I'll only considerX to be ahyperelliptic curveof genusg overFg;
for p > 2, X always has an affine model

Y =P(x), degP)e {2g9+1,29+2}.

Besides being the simplest family that includes all gentbese have some
interest in cryptography. (Standard targgt:~ 2160,
Problem (Open unless you allow quantum computing)

Describe an algorithm to, given a hyperelliptic curve X ohge g ovelly,
computedx(T) in time polynomial irall three of (logp),n,g.
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Plan for the talk

For X a curve of genug overFy,

P1(T)

D=

wherePy(T) € 1+ TZ[T], dedP1(T)) = 29, P1(T) hasC-roots of norm
q Y2, andPy(T) is symmetric:

P1(q/T) = T2 9Py(T).

I'll survey a number of techniques for computifg(T). I'll distinguish
polynomial/exponential time, but instead of finer asymipgtl’ll usually
quote some sample/record CPU timing®tesignificant digit.

“sp” denotes a situation which is not entirely generic. Blie base field i&,
for p a Mersenne prime, or a field admitting an optimal normal basis
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Generic methods

Enumeration of points

For X given byy? = P(x) with P having no repeated roots, compute

#X(Fq) = Z #HP e X(Fy) 1 x(P) =x}
xePg

fori=1,...,9. Then recoveP1(T) using symmetry.

Linear ing9, so only sensible whegf is very small.
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Baby step-giant step

Shanks’s algorithm for computing class groups of numbeddied ageneric
group algorithm so it can be applied to the class group of a function field, i.
the groupl(IFq) for J the Jacobian abelian variety. This helps because

#)(IFg) = P1(1).

Improvements by Sutherland (generic), Matsuo-Chao-iTgoji curves).

Sample (K-Sutherland, 2009; 5s)
g=2p=q~ 2% }

This is likely the best way to computéZ2coefficients of the_-series of a
genus 2 curve ovep. Uselesdy itselffor g > 3, but combines witlf-adic
andp-adic algorithms.
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Generic methods

Sutherland’s swindle

Assumeg = 2 for concreteness.

Suppose you only warR; (T) for somehyperelliptic curve of a given genus.
Easy: find one with ) smooth

Now say you want #(}Fq) nearly prime. Look for a curvX whose quadratic
twist X has Jacobiad with #J(IE‘q) smooth. This helps because

#J(Fq) = P1(—1).

Record (Sutherland, 2007; 34h to find one example)
g=2,p=q~ 284 J
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Schoof’s algorithm (genus 1)

For ¢ < 2logq distinct fromp, compute ¥(Fq) (mod ¢) by computing the
action of Frobenius on the group

X(Fq)ll] = F

using division polynomials. This determineX#) (and hencd®1(T)) in
polynomial time in logy = nlogp. Improvements by Elkies, Atkin; also
Couveignes, Gaudry, Lercier, Mihailescu, Morain, Schesal.

Record (Enge-Morain, 2006; 400d)
gzl,p:qNZBSOO. J
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Schoof’s algorithm (higher genus)

Pila noticed that for anfixed g one can computB;(T) (mod ¢) by forming
a projective embedding of the Jacobian (ouch) and compdiirigion
polynomials. Fog fixed, this compute®;(T) in time polynomial in logy, but
dependence ogis (at least) exponential.

This has only been attempted f@e= 2. Improvements by Gaudry-Harley,
Bernstein-Pitcher.

Record (Gaudry-Schost, 2008; 30d)
g=2, p=q~ 27 (Sutherland’s swindle is not competitive in this range.})
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General warning

Most p-adic algorithms have at least linear dependencp, so are not
practical unlesg is relatively small.

In some casesquare rootdependence opis possible. This should allow
p < 264.
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- padilitingmethods|
Canonical lifts

Let X be anordinary elliptic curve overfy. ThenX has a unique lift t&q
(the unramified extension &, with residue fieldFy) preserving the
endomorphism ring (Deuring; Serre-Tate).

Satoh (forp > 5; extended t@ = 3 by Fouquet-Gaudry-Harlep, = 2 by
Skjernaa) computes this lift using a Newton iteration imimg thep-modular
polynomial. Improvements by these authors, Taguchi, et al.

Record (Harley, 2002; 60h)
g=1 q=2"% g =1, q=2"%(sp).

One can also handle genus 2, at leaspfer2 (using Richelot isogenies). Fol
g > 3, the Jacobian lifts canonicalls a principally polarized abelian
variety, but not necessarily to a Jacobian.
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AGM iteration

Mestre realized that fqo = 2, the Newton iteration for canonical lifting
induces the AGM (arithmetic-geometric mean) iteration logtad
characteristics.

Record (Lercier-Lubicz, 2002; 80h)
g=1, q= 2100002(gp), J

This generalizes tg > 1 but is exponential ig. However...

Record (Lercier-Lubicz, 2002; 30h)
g =2 q — 21642Q J
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A general fact

Using Dwork’s proof of rationality ofx(T), Lauder and Wan gave an
algorithm which is polynomial time ip, n, g, and which generalizes vastly.
Unfortunately, this is not practical.
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Monsky-Washnitzer cohomology

Monsky and Washnitzer constructed an expleadic Weil conomology for
smooth affinezarieties, which can be described using algebraic de Rham
cohomology (of anoncanonicalift of the curve).

Using this, Kedlaya (fop > 3; extended t@ = 2 by Denef-Vercauteren)
computed the Frobenius action for hyperelliptic curves.

Sample (Magma (Harrison), 2009; 60m)
g=2,q=3%9 J
Sample (Magma (Harrison), 2009; 60m)
g=50p=qg=3. J
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MW cohomology in medium characteristic

The previous method is at best lineampinBoston-Gaudry-Schost found an
algorithm for computind?1(T) (mod p) with square rootdependence op.
Key idea: a “baby step-giant step” algorithm of Chudnov€&kyddnovsky for
solving linear recurrences with polynomial coefficients.

Harvey adapted this to compute MW cohomology with squaré roo
dependence op. Forg = 2, this beats K-Sutherland fpr> 232,

Record (Harvey, 2008; 20h)
g=3,p=q~ 2%

Record (Harvey, 2008; 40h)
g=4,p=q~ 2%
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Frobenius actions on connections

Lauder suggested using deformationg+adic cohomology, i.e.,
Picard-Fuchs equations (Gauss-Manin connections). lda&e a pencil in
which one member is “easy” and another is the desired cursagihe easy
member as an initial condition in a differential equatioompute a Frobenius
action on the connection, then specialize.

Improvements by Gerkmann, Hubrechts, et al.

Sample (Magma (Hubrechts), 2009; 30m)
g=2q=3

This method should also improve on MW cohomology ddarge, but this

requires a different implementation. (Hubrechts takesst®y curve oveF,
and uses MW cohomology; instead, should take a very symomzirive for
which the initial condition can be computegactly)
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Other curves

Computing Frobenius on MW cohomology can be extended torsliipic
curves (Gaudry-GurelC, p-curves (Denef-Vercauteren), nondegenerate
curves (Castryck-Denef-Vercauteren, but unimplemented)

Record (Denef-Vercauteren, 2004; 8h)
g =3 (a Czs-curve), g= 2%.

Record (Denef-Vercauteren, 2004; 12h)
g=4(a Cgs-curve), g= 272,

Using connections should be applicable even more genetallyder: given
any fixed curvexX overZ[1/N], the zeta function oXg, can be computed in

time O(p?+€). (Is O(pY/?*¢) possible?)
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Higher dimension

Except for some 2-dimensional motives (Edixhoven et ab)kmown way to
extend/-adic methods.

p-adic methods may help. MW cohomology extends with somecdifij.

Record (Abbott-K-Roe, 2005; 30h)
Quiartic K3 surface, p= q=19. J

Connections should be better. Some experiments by Klooatefsurfaces),
K (threefolds).

Also possible: fibering in curves (Lauder). Applied to expemts on average
rank of elliptic curves over function fields.
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The end
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