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Hypergeometric equations (after Beukers–Heckmann)

Hypergeometric differential operators

For n a positive integer and

α = (α1, . . . , αn), β = (β1, . . . , βn) ∈ Qn,

the hypergeometric differential operator with parameters α, β is the
differential operator in one variable z given by

P(α;β)(D) := z
n∏

i=1

(D + αi )−
n∏

j=1

(D + βj − 1), D := z
d

dz
.

When βn = 1 and αi , βj /∈ Z≤0, it admits as a formal solution the
(Clausen–Thomae) hypergeometric series

Fn n−1

(
α1, . . . , αn

β1, . . . , βn−1

∣∣∣∣ z) :=
∞∑
k=0

(α1)k · · · (αn)k
(β1)k · · · (βn−1)k

zk

k!
∈ QJzK

where (α)k means the (rising) Pochhammer symbol

(α)k := α(α+ 1) · · · (α+ k − 1).
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Hypergeometric equations (after Beukers–Heckmann)

The effect of repeated indices

Recall that

P(α;β)(D) = z
n∏

i=1

(D + αi )−
n∏

j=1

(D + βj − 1), D := z
d

dz
.

One may check directly that for δ ∈ Q,

(D + δ − 1)P(α;β) = P(α, δ;β, δ)

P(α;β)(D + δ) = P(α, δ;β, δ + 1).

In particular, when αi = βj for some i , j we get a decomposable operator.
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Hypergeometric equations (after Beukers–Heckmann)

The effect of integer shifts

Recall that

(D + δ − 1)P(α;β) = P(α, δ;β, δ)

P(α;β)(D + δ) = P(α, δ;β, δ + 1).

Since P(α, β) is invariant under permutation within α or β, it follows that

P(α;β)(D + αi − 1) = (D + αi − 1)P(α1, . . . , αi − 1, . . . , αm;β)

(D + βj − 1)P(α;β) = P(α;β1, . . . , βj − 1, . . . , βn)(D + βj).

In classical terminology, we have identified intertwining operators∗

between P(α, β) and the operators obtained by performing an integer shift
on any parameter.

∗More precisely, these are intertwining operators for the associated monodromy
representations, provided that αi ̸= βj (mod Z) for any i , j .
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Hypergeometric equations (after Beukers–Heckmann)

Hypergeometric systems

In terms of the hypergeometric differential operator written as

P(α;β)(D) = (z − 1)(Dn + an−1D
n−1 + · · ·+ a0D),

we obtain a linear differential operator on length-n column vectors:

N + D, N :=


0 −1 · · · 0 0
0 0 0 0
...

. . .
...

0 0 0 −1
a0 a1 · · · an−2 an−1

 .

The solutions of the equation (N + D)(v) = 0 are of the form

v =


y

D(y)
...

Dn−1(y)

 where P(α;β)(D)(y) = 0.
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Hypergeometric equations (after Beukers–Heckmann)

Hypergeometric connections

A linear differential operator of the form N + D in turn defines a rank-n
vector bundle Eα,β equipped with an integrable logarithmic connection
∇α,β. This connection is irreducible as long as

αi ̸≡ βj (mod Z) (i , j = 1, . . . , n),

which we assume hereafter.

The intertwining operators induce meromorphic isomorphisms

(Eα,β,∇α,β) ∼= (Eα′,β′ ,∇α′,β′)

whenever
α′ ≡ α, β′ ≡ β (mod Z).

That is, the meromorphic isomorphism class of (Eα,β,∇α,β) is invariant
under the natural action of (Zn × Zn)⋊ (Sn × Sn) on Qn ×Qn.
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Hypergeometric equations (after Beukers–Heckmann)

Exponents of hypergeometric connections

The connection (Eα,β,∇α,β) is singular only at z = 0, 1,∞, where it has
the following residual eigenvalues (a/k/a exponents):

z = 0 : 1− β1, . . . , 1− βn

z = ∞ : α1, . . . , αn

z = 1 : 0, . . . , n − 2, γ, γ :=
n∑

i=1

βi −
n∑

i=1

αi .

The residue matrices at 0 and ∞ have minimal polynomials

(T − 1 + β1) · · · (T − 1 + βn), (T − α1) · · · (T − αn).

These properties uniquely characterize the connection (Eα,β,∇α,β).
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Algebraic Frobenius structures
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Algebraic Frobenius structures

Frobenius lifts

Let P be a smooth (p-adic) formal scheme over Zp. A Frobenius lift on P
is a morphism σ : P → P lifting the absolute (p-power) Frobenius on Pk .

Frobenius lifts do not exist in general. E.g., if P is the formal completion
of a smooth projective curve of genus ≥ 2 over Zp, then P does not admit
a Frobenius lift.

However, Frobenius lifts do exist if P is affine. For example, given any
formally étale map P → Âm

Zp
, the Frobenius map ti 7→ tpi on Âm

Zp
lifts

uniquely to P.
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Algebraic Frobenius structures

Frobenius pullback

Let E be a vector bundle on the Raynaud generic fiber PQp equipped with
an integrable connection. Under certain conditions, there are canonical
natural transformations σ∗1E ∼= σ∗2E for any two Frobenius lifts σ1, σ2,
defined using Taylor series. For example, this holds when E is a convergent
isocrystal.†

When this occurs, we may interpret the various functors σ∗ as a single
functor Φ∗

p, the algebraic Frobenius pullback. We may also extend Φ∗
p

to cases where P does not admit a Frobenius lift.

This remains true if we allow logarithmic connections with respect to a
relative strict normal crossings divisor on P.

If P is the completion of a smooth proper Zp-scheme X , then by rigid
GAGA we may interpret both E and Φ∗

pE as connections on XQp .

†For p > 2, it also holds when the connection arises by base extension from Zp to Qp.
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Algebraic Frobenius structures

Algebraic Frobenius structures

An algebraic Frobenius structure is an isomorphism Φ∗
pE ∼= E . The

existence of such forces E to be an isocrystal.

Such a structure always exists if E is “geometric” (i.e., appears in the
relative rigid cohomology of some smooth proper morphism over Pk).

If P is the completion of a smooth proper Zp-scheme X , then by rigid
GAGA an algebraic Frobenius structure induces an isomorphism of
connections on XQp . However, this hides the fact that the construction of
the functor Φ∗

p is not itself algebraic!
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Algebraic Frobenius structures

Hypergeometric algebraic Frobenius structures

For α, β ∈ Zn
(p), the series Fn n−1

(
α1,...,αn

β1,...,βn−1

∣∣∣ z) converges p-adically for

|z | < 1. This implies that the base extension of (Eα,β,∇α,β) from Q to Qp

is a convergent log-isocrystal.

Using the rigidity of hypergeometric connections, we can prove:

Theorem

The base extension of (Epα,pβ,∇pα,pβ) from Q to Qp is isomorphic to the
algebraic Frobenius pullback of (Eα,β,∇α,β).
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Algebraic Frobenius structures

Balanced parameters

We say that α ∈ Qn is balanced if for any positive integer s, the quantity

#{i ∈ {1, . . . , n} : αi ≡ r
s (mod Z)}

is the same for all r ∈ Z coprime to s. For example,

(14 ,
1
3 ,

2
3 ,

3
4) is balanced but (15 ,

2
5 ,

3
5 ,

3
4) is not.

If α, β are balanced, then (α, β) is (Zn × Zn)⋊ (Sn × Sn)-equivalent to
(pα, pβ) for any prime p for which α, β ∈ Zn

(p).

Corollary

Suppose that α, β are balanced. Then for every p for which α, β ∈ Zn
(p),

the isomorphism (Epα,pβ,∇pα,pβ) ∼= (Eα,β,∇α,β) induces an algebraic
Frobenius structure on (Eα,β,∇α,β) over Qp.
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Finite hypergeometric sums

Contents

1 Hypergeometric equations (after Beukers–Heckmann)

2 Algebraic Frobenius structures

3 Finite hypergeometric sums

4 Comparison of Frobenius structures across primes
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Finite hypergeometric sums

A reformulation of the hypergeometric series

Assume that αi , βj /∈ Z≥0. We previously defined

Fn n−1

(
α1, . . . , αn

β1, . . . , βn−1

∣∣∣∣ z) =
∞∑
k=0

(α1)k · · · (αn)k
(β1)k · · · (βn−1)k

zk

k!
.

If βn = 1, this can be rewritten as

Γ(β)

Γ(α)

∞∑
k=0

Γ(α+ k)

Γ(β + k)
zk ,

writing Γ(α) := Γ(α1) · · · Γ(αn) and α+ k := (α1 + k , . . . , αn + k).

Using the identity Γ(x)Γ(1− x) = x
sin(πx) , this may be further rewritten as

∞∑
k=0

(
n∏

i=1

Γ(αi + k)Γ(1− βi − k)

Γ(αi )Γ(1− βi )

)
((−1)nz)k .
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Finite hypergeometric sums

An analogy with finite fields

The function Γ can be interpreted as

Γ(z) =

∫ ∞

0
tz−1e−t dt.

That is, we are integrating a multiplicative character of C against an
additive character; for z ∈ Z, we can instead think of these as characters
of C/2πZ ∼= C×.

Fix a finite field Fq and a nontrivial additive character ψq : Fq → C. For
each multiplicative character χ : F×

q → C×, define the Gauss sum

g(χ) :=
∑
x∈F×

q

χ(x)ψq(x).

To further the analogy, let us fix a generator ω of the character group and
write g(m) := g(ωm), taking g(m) = 0 for m ∈ Q \ Z.
Kiran S. Kedlaya (UC San Diego) Frobenius structures on HG equations Lorentz Center, May 31, 2023 17 / 28
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Finite hypergeometric sums

Finite hypergeometric sums

Recall that for βn = 1,

Fn n−1

(
α1, . . . , αn

β1, . . . , βn−1

∣∣∣∣ z) =
∞∑
k=0

(
d∏

i=1

Γ(αi + k)Γ(1− βi − k)

Γ(αi )Γ(1− βi )

)
((−1)nz)k .

Put q := q − 1. For t ∈ Fq, define the finite hypergeometric sum

Hq(α, β|t) :=
1

1− q

q−2∑
m=0

(
n∏

i=1

g(m + αiq)g(−m − βiq)

g(αiq)g(−βiq)

)
ω((−1)nt)m,

This was previously studied by Greene, Katz, Ono, McCarthy, etc.
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Finite hypergeometric sums

A p-adic interpretation

The Gross–Koblitz(–Boyarsky) formula expresses g(χ) in terms of the
Morita p-adic Gamma function Γp. One can then compute Hq(α, β|t) via
a comparable formula (Cohen–Rodriguez Villegas–Watkins):

Hq(α, β|t) :=
1

1− q

q−2∑
m=0

(−p)ηm(α)−ηm(β)qD+ξm(β)

(
n∏

i=1

(αi )
∗
m

(βi )∗m

)
[t]m

where ηm(α), ηm(β),D, ξm(β) are defined combinatorially (independently
of p); (α)∗m is a sort of p-adic Pochhammer symbol:

(α)∗m :=
Γ∗q(x + m

1−q )

Γ∗q(x)
, Γ∗pf (x) =

f−1∏
v=0

Γp({pvx}), {x} := x − ⌊x⌋;

and [t] denotes the multiplicative‡ lift of t in Zq.

‡Also called the “Teichmüller lift”, but this terminology probably should be avoided.
Kiran S. Kedlaya (UC San Diego) Frobenius structures on HG equations Lorentz Center, May 31, 2023 19 / 28
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Finite hypergeometric sums

The Beukers–Cohen–Mellit formula

Assume hereafter that α, β are balanced.

Beukers–Cohen–Mellit describe an explicit morphism to P1
Q for which

(Eα,β,∇α,β) occurs as a Gauss–Manin connection, and count points on
fibers in terms of Hq(α, β|t). This can be reinterpreted as follows.

Theorem (Beukers–Cohen–Mellit reinterpreted)

For α, β balanced and p prime such that α, β ∈ Zn
(p), there is an algebraic

Frobenius structure on (Eα,β,∇α,β)⊗Q Qp such that for every power q of
p and every t ∈ Fq \ {1}, the trace of q-power Frobenius at t equals
Hq(α, β|t).

Clarification: the “trace of q-power Frobenius at t” is obtained by
specializing the Frobenius structure with respect to t 7→ tq at [t].

Kiran S. Kedlaya (UC San Diego) Frobenius structures on HG equations Lorentz Center, May 31, 2023 20 / 28
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Finite hypergeometric sums

Applications of the (p-adic) BCM formula

The p-adic reformulation of the BCM formula has been implemented in
Magma (Watkins) and then ported to Sage (Chapoton, K, Roe). It is
very efficient!

Better yet, one expects to implement an “average polynomial time”
strategy to, for fixed t ∈ Q, compute Hq(α, β|t) for all§ prime powers

q ≤ X in time¶ O(X 1+ϵ). So far this is implemented for computing
Hp(α, β|t) (mod p) and seems to be quite practical up to say X = 232

(Costa–K–Roe).

This could then be used to build extensive tables of motivic L-functions
appearing in hypergeometric families. This is desired for LMFDB.

§Excluding primes p for which α /∈ Zn
(p) or β /∈ Zn

(p) or for which t reduces into
{0, 1,∞} mod p. These are primes of bad reduction for the associated motive.

¶The implied constants depend (a bit badly) on α, β.
Kiran S. Kedlaya (UC San Diego) Frobenius structures on HG equations Lorentz Center, May 31, 2023 21 / 28
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Finite hypergeometric sums

Algebraic Frobenius structures and the BCM formula(?)

Question: is there an interpretation/new proof of the BCM formula in
terms of the algebraic Frobenius structure on (Eα,β,∇α,β)?

One mild reinterpretation is to view the original point-counting proof
through the lens of Dwork cohomology.

However, I am rather looking for an answer that also provides a
q-analogue of the BCM formula, in the sense of q-hypergeometric series of
Aomoto etc. Warmup question: is there a reasonable‖ q-deformation of
the theory of Gauss sums?

‖One possible interpretation of “reasonable” is that the resulting quantities arise as
periods in q-de Rham cohomology, see below.
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Comparison of Frobenius structures across primes
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Comparison of Frobenius structures across primes

Geometric setup

Let X be a smooth proper Q-scheme. Let Z be a normal crossings divisor
on X . Let E be a vector bundle on X equipped with a logarithmic (along
Z ) integrable connection.

For N a positive integer, let MN be the multiplicative monoid of integers
coprime to N.

Assume now that E is geometric∗∗ over Q. Then for some N, for each
p ∈ MN we have an algebraic Frobenius structure

Fp : Φ∗
p(E ×Q Qp) ∼= E ×Q Qp

arising from crystalline realizations.

∗∗That is, E is the de Rham realization of a motive over Q with coefficients in Q.
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Fp : Φ∗
p(E ×Q Qp) ∼= E ×Q Qp

arising from crystalline realizations.

∗∗That is, E is the de Rham realization of a motive over Q with coefficients in Q.
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Comparison of Frobenius structures across primes

The question

For some N, can we find a family of connections Em on X indexed by
m ∈ MN and a family of isomorphisms Em ∼= E such that for each m ∈ Mn

and each prime p ∈ MN , there is an isomorphism completing the diagram

Emp ×Q Qp
//

''

Φ∗
p(Em ×Q Qp)

Fpww
Em ×Q Qp

in which the left diagonal is induced by Emp
∼= E ∼= Em and the right

diagonal arises from Fp : Φ∗
p(E ×Q Qp) ∼= E ×Q Qp via the isomorphism

Em ∼= E?
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Comparison of Frobenius structures across primes

Content of the question

The question is nontrivial in two aspects.

It is not clear from the construction that Φ∗
p(E ×Q Qp) descends to a

connection Ep on X (not on X ×Q Qp). The definition depends
crucially on convergence of some p-adic limits.

For p1, p2 ∈ MN prime, we have a commuting diagram

Emp1p2
//

��

Emp1

��
Emp2

// Em

in which the vertical (resp. horizontal) arrows can be interpreted in
terms of Fp1 (resp. Fp2). But this interpretation requires base
extension to Qp1 or Qp2 , whereas commutativity of the diagram only
makes sense over Q.
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Comparison of Frobenius structures across primes

Examples from hypergeometric connections

Our previous theorem asserts that such a structure always exists for
balanced hypergeometric connections, taking N to be the least common
denominator of α ∪ β.

One can also formulate a similar result for unbalanced hypergeometric
connections, at the expense of replacing the base field Q with Q(µN) for
some suitable N.

Question: is this an instance of a more general phenomenon? And if so,
does this have anything to do with global arithmetic L-functions?
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Comparison of Frobenius structures across primes

Further directions

GKZ hypergeometric systems: these live over higher-dimensional
toric varieties and should be an easy adaptation.

Shimura varieties: here one has only a weaker form of rigidity, so
one probably has to use special (“CM”) points to pin things down.
On the other hand, one can handle some cases where the connection
is not yet known to be geometric (after Esnault–Groechenig,
Diu–Lan–Liu–Zhu, Klevdal–Patrikis...).

q-de Rham cohomology: building on ideas of Aomoto, Pridham,
Masullo, and Bhatt–Scholze, one eventually hopes to prove some
general results.

Periodic de Rham bundles: this is a construction of
Krishnamoorthy–Sheng that seems to be closely related.
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