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Introduction

A fool’s errand?

Over the past two decades, Cremona has developed a highly efficient
algorithm for enumerating rational Γ0(N)-newforms of weight 2 and their
associated elliptic curves (which we now know exhausts all elliptic curves
over Q), documented in his book Algorithms for Modular Elliptic Curves.

Cremona also has developed a highly efficient C/C++ implementation of
this algorithm, which to date has enumerated all elliptic curves over Q of
conductor ≤ 379998 (see Pari, Magma, Sage, or LMFDB).

Further extension of these tables would have, among other applications,
consequences for the effective solution of S-unit equations; see
arXiv:1605.06079 (von Känel-Matschke).

Is there room for improvement here? It is unlikely that any easy
optimization in the algorithm or implementation has been missed!
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Introduction

Perhaps not...

Most positive integers do not occur as conductors of rational elliptic
curves. For example, in the range 378000-378999, this LMFDB query
returns 5885 curves of 566 different conductors:

1sage: load("ec -378000 -378999. sage");

2sage: l = [EllipticCurve(i) for i in data];

3sage: l2 = [i.conductor () for i in l];

4sage: s = set(l2);

5sage: len(s)

6566

This is consistent with the expectation that the number of positive
integers up to X which occur as conductors is ∼ CX 5/6 (this being true
for heights).
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8sage: l = [EllipticCurve(i) for i in data];
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10sage: s = set(l2);

11sage: len(s)

12566

This is consistent with the expectation that the number of positive
integers up to X which occur as conductors is ∼ CX 5/6 (this being true
for heights).
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Introduction

TSA Precheck for conductors?)

For a given N, the rate-limiting step in Cremona’s computation of the
elliptic curves of conductor N occurs at the very beginning, before one
knows whether or not any such curves exist. (More on this shortly.)

Consequently, one can try to speed up the tabulation by prefixing a fast
computation that cuts down the list of eligible conductors. For example,
Cremona already excludes N divisible by 29, 36, or p3 for any prime p > 3;
but these form only 1.6% of all levels.

We discuss some precomputations based on:

linear algebra over F2;

results about mod 2 modular forms, including Serre reciprocity.

This will serve as an excuse to discuss some questions about mod 2 Hecke
algebra multiplicities to which we have not found complete answers.
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Review of Cremona’s algorithm

A high-level description

Positive integer N (whose divisors are already done)

��
Rational (old and new) Hecke eigensystems for S2(Γ0(N),Q)

��
Rational newforms for S2(Γ0(N),Q)

��
Elliptic curves over Q of conductor N

The first step is rate-limiting because very few possibilities survive to the
later steps. We thus focus on this step; see Cremona’s book for discussion
of the others.
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Review of Cremona’s algorithm

Computation of eigensystems

Cremona computes not with S2(Γ0(N),Q), but with the homology of
X0(N) as represented via Manin’s modular symbols. For p 6 |N, the action
of Tp is given by a sparse1 integer2 matrix. By strong multiplicity one, for
the purpose of distinguishing eigensystems we may ignore Tp for p|N
(which are not implemented by Cremona).

Let p be the smallest prime not dividing N. The rate-limiting step is to
compute the kernel of Tp − ap for each ap ∈ [−2

√
p, 2
√
p] ∩ Z. This

involves matrices of size ∼ N/12.

By contrast, the dimensions of these kernels are far smaller. Thus, further
decomposing these kernels into joint eigenspaces is of negligible difficulty.

1This crucial property would be lost if we restricted to newforms; we must thus
identify new eigensystems as such solely by comparing them to old eigensystems.

2In some cases, Cremona’s code returns 2Tp because the computed matrix of 2Tp is
not integral. However, we only work with the minus eigenspace for complex conjugation,
where we have yet to observe a failure of integrality.
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Review of Cremona’s algorithm

Linear algebra (not) over Q

The complexity of linear algebra over a field is typically costed in terms of
field operations. This gives reasonable results over a finite field.

However, this costing model does not work well over Q: the cost of
arithmetic operations depends on the heights of the operands. Moreover,
direct use of conventional algorithms (e.g., Gaussian elimination) tends to
incur intermediate coefficient blowup: heights of matrix entries increase
steadily throughout the computation.

However, one can typically bound the height of the result of a
computation (e.g., determinant) directly in terms of the heights of the
entries. One can then use a multimodular approach: reduce from Q to
various finite fields, do the linear algebra there, and reconstruct the answer
using the Chinese remainder theorem. For instance, this is implemented in
Magma and FLINT (the latter wrapped in Sage).
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Review of Cremona’s algorithm

Short-circuiting the multimodular approach

To compute the kernel of the matrix representing Tp − ap on modular
symbols, it is not necessary to use as many primes as theoretically required
by the height bound. One can instead guess the kernel based on fewer
primes, and then directly verify the result by multiplying with the original
matrix. This is particularly cheap because the matrix is sparse.

In practice, Cremona works modulo the single prime ` = 230 − 35;
experimentally, this always suffices to determine the kernel over Q. It
would be worth comparing with a multimodular approach starting from
` = 2 and guessing after each prime.
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Review of Cremona’s algorithm

Linear algebra over finite fields (Magma)

How does the complexity of linear algebra over F` vary with `? A sensible
behavior is exhibited by Magma 2.21-11:

> C := ModularSymbols(100001, 2, -1);

> M := HeckeOperator(C, 2);

> M2 := Matrix(GF(2), M); time Rank(M2);

9047

Time: 1.710

> M3 := Matrix(GF(3), M); time Rank(M3);

9085

Time: 4.220

> p := 2^30 - 35;

> Mp := Matrix(GF(p), M); time Rank(Mp);

9091

Time: 17.160
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Review of Cremona’s algorithm

Linear algebra over finite fields (Sage)

By contrast, in Sage, linear algebra over F` is far worse than Magma for
` > 2 (and essentially unusable for p > 216), but notably better for ` = 2
(see this demo).

This is because for ` = 2, Sage uses the m4ri library by Gregory Bard,
which implements the “Method of four Russians” algorithm. This
algorithm makes special3 use of the graph-theoretic interpretation of
binary matrices, in order to save some logarithmic factors ahead of the
Strassen crossover.

This raises the question: can we gain useful prescreening information by
working solely over F2? A precise analysis of this question involves some
interesting ingredients!

3There is a bitslicing approach that adapts the method to other small finite fields,
but serious implementation seems not to have been pursued. See arXiv:0901.1413.
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Prescreening, part 1: invertibility mod 2

A general framework for prescreening

To simplify matters, hereafter we only consider odd N, so that we can take
p = 2 in Cremona’s algorithm. In this case, it is natural to modify our
high-level description as follows:

Odd positive integer N, integer e ∈ {0, 1}

��
Rational Hecke eigensystems for S2(Γ0(N),Q) with a2 ≡ e (mod 2)

��
Rational newforms for S2(Γ0(N),Q) with a2 ≡ e (mod 2)

��
Elliptic curves over Q of conductor N with a2 ≡ e (mod 2)

Reminder: the options for a2 are −2, 0, 2 if e = 0, and −1, 1 if e = 1.
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Prescreening, part 1: invertibility mod 2

Hecke matrices mod 2: some stupid models

If the matrix of the Z-matrix T2 − e is invertible mod 2, then its
determinant is odd, so T2 has no Q-eigenvalues congruent to e mod 2.
How often does this occur?

Baseline: a random matrix over F2 fails to be invertible with probability

1−
∞∏
n=1

(1− 2−n) ≈ 71.1%.

Since T2 is self-adjoint in some basis, a better baseline is a random
symmetric matrix over F2, which fails to be invertible with probability

1−
∞∏
n=1

(1− 21−2n) ≈ 58.1%.
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Prescreening, part 1: invertibility mod 2

Why are these models stupid?

These models are stupid for (at least) two reasons.

For N composite, we get a contribution from oldforms, so the
probability that T2 − e has nontrivial kernel mod 2 is much higher
than for N prime. (This also makes this test nearly useless for N
compossite.)

The existence of a nontrivial kernel mod 2 is explained by Serre
reciprocity. Consequently, the correct probability modeling will be
given by certain heuristics concerning the distribution of number
fields.

K.S. Kedlaya (UC San Diego) Linear algebra and tabulation of eigenforms London, September 9, 2016 16 / 30



Prescreening, part 1: invertibility mod 2

Why are these models stupid?

These models are stupid for (at least) two reasons.

For N composite, we get a contribution from oldforms, so the
probability that T2 − e has nontrivial kernel mod 2 is much higher
than for N prime. (This also makes this test nearly useless for N
compossite.)

The existence of a nontrivial kernel mod 2 is explained by Serre
reciprocity. Consequently, the correct probability modeling will be
given by certain heuristics concerning the distribution of number
fields.

K.S. Kedlaya (UC San Diego) Linear algebra and tabulation of eigenforms London, September 9, 2016 16 / 30



Prescreening, part 1: invertibility mod 2

Why are these models stupid?

These models are stupid for (at least) two reasons.

For N composite, we get a contribution from oldforms, so the
probability that T2 − e has nontrivial kernel mod 2 is much higher
than for N prime. (This also makes this test nearly useless for N
compossite.)

The existence of a nontrivial kernel mod 2 is explained by Serre
reciprocity. Consequently, the correct probability modeling will be
given by certain heuristics concerning the distribution of number
fields.

K.S. Kedlaya (UC San Diego) Linear algebra and tabulation of eigenforms London, September 9, 2016 16 / 30



Prescreening, part 1: invertibility mod 2

Ranks mod 2: data for prime levels

For prime N < 500000 and e = 0, 1, we used Sage (calling Cremona’s
eclib and Bard’s m4ri) to determine whether T2 − e has nontrivial kernel
mod 2. Estimated runtime: about 3 weeks on 24 Intel Xeon X5690 cores
(3.47GHz).

Results (see this demo for some data analysis):

N (mod 8) e = 0 e = 1

1 16.8% Always
3 Always for N > 3 Always for N > 163
5 42.2% Always for N > 37
7 17.3% 47.9%

We will explain the “always” statements a bit later. In any case, for prime
N, 38.7% of the kernel calculations over Q can be short-circuited by
working over F2; that said, prime levels are already handled by
Stein-Watkins and Bennett well beyond the range of interest.
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Prescreening, part 2: multiplicities mod 2
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Prescreening, part 2: multiplicities mod 2

Eigenvalue multiplicities

This time, instead of simply testing whether T2 − e is invertible mod 2, let
us compute the multiplicity of 0 as a generalized eigenvalue of the reduced
matrix. This equals the number of eigenvalues of T2 in Q2 in the open
unit ball around e. (This computation is a bit more expensive than testing
invertibility, but still quite efficient.)

This time, we can rule out (N, e) if we can account for the entire
multiplicity using mod 2 representations which cannot lift to Q (e.g.,
because they take values in a larger field than F2). For N composite, we
also remove the multiplicity coming from divisors of N.

Warning: the dimension of the kernel mod 2 is not mathematically
significant! It is an artifact of the choice of basis used to express T2,
which is not the one coming from the integral Hecke algebra.
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Prescreening, part 2: multiplicities mod 2

Some data analysis
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Prescreening, part 2: multiplicities mod 2

Data collection using Google Compute Engine

Google Compute Engine is a cloud platform (like Amazon EC2) which
seems particularly well-adapted for mathematics research. SageMathCloud
is built on GCE, and LMFDB is hosted using GCE.

Using GCE, one can easily4 run a trivially parallel computation on large
numbers of virtual machines. Pricing is based on memory, disk usage, and
CPU-minutes, with hugely preferential pricing for preemptible VMs.

We used VMs totaling 128 cores5, to compute eigenvalue multiplicities of
T2 − e for e = 0, 1 for all odd N < 200000. This took 5.5 days6 at a cost7

of about $250. See this demo for some data analysis.

4At least using free software! Using Magma this way is not straightforward.
5These only ran at 2.2GHz, but had much bigger L3 cache than my “faster” 24-core

machine; in practice, this seemed to provide some advantage.
6Wall time. Due to preemptibility and other factors, CPU uptime was somewhat less.
7This “cost” was actually a promotional credit; we did not optimize it heavily.
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Some theoretical analysis
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Some theoretical analysis

Lower bounds for multiplicities

Suppose (for convenience) that N is squarefree. We will obtain the
following lower bounds on the eigenvalue multiplicities mod 2:

N (mod 8) Multiplicity for e = 0 Multiplicity for e = 1

1 0 2#K(N)
〈p2〉 + #K (−N) + 1

3 #K2(−N)−#K (−N) #K (N) + 2#K (−N)

5 #K2(N)−#K (N) 2#K (N) + #K (−N)

7 0 #K (N) + 2#K(−N)
〈p2〉

Notation in this table:

for any abelian group G , #G = 1
2(#Godd − 1);

K (±N),K2(±N) are the class group, 2-ray class group of Q(
√
±N);

p2 is a prime of Q(
√
±N) above 2.

We will also see from data that these bounds are very often not best
possible.
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Some theoretical analysis

Contributors to eigenvalue multiplicity

Excluding the +1 for N ≡ 1 (mod 8), each lower bound for e = 1 is a
sum of contributions arising (via Serre reciprocity) from dihedral
representations associated to characters of G = Gal(H/E ), where
E = Q(

√
±N) and H is the maximal odd-order abelian unramified

extension of K in which the primes above 2 split completely.

Each lower bound for e = 0 is a sum of contributions arising from
dihedral representations associated to characters of G2 = Gal(H2/E )
not factoring through G , where H2 is analogous to H except that
ramification at 2 is now allowed.

The extra contribution of 1 for N ≡ 1 (mod 8), e = 1 comes from
Eisenstein ideals above 2 in the Hecke algebra.
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Some theoretical analysis

Additional multiplicity, explained and unexplained

The previous discussion does not explain the factors of 2 appearing in the
e = 1 multiplicities. These arise from an observation of Edixhoven: there
is a “degeneracy map”

S1(Γ0(N),F2)⊕2Katz → S2(Γ0(N),F2)Katz

which ensures that each representation which is unramified at 2
contributes at least 2. This completes the explanation of the table.

However, experimentally it seems that additional multiplicities appear. For
example:

for e = 1, all of the class group terms should carry a factor of 2;

for N ≡ 5 (mod 8), the e = 0 terms should also carry a factor of 2;

there should be additional contributions from even parts of class
groups (possibly explained by exhibiting suitable Galois deformations);

there are failures of strong multiplicity 1 mod 2 (Kilford, Wiese).
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Some theoretical analysis

A basic example

For N = 89, all 7 of the eigenvalues of T2 on S2(Γ0(N),F2) equal 1. As
per LMFDB, this includes one rational Eisenstein-at-2 newform (89.2.1.b),
plus two others which are congruent to each other mod 2, one rational
(89.2.1.a) and one not (89.2.1.c).

We thus have a unique dihedral representation contributing 6 to the
multiplicity of e = 1. Is there a generic reason for this?
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Some theoretical analysis

Eisenstein ideals revisited

There is a further source of additional multiplicity for N composite: for
e = 1, there is always an Eisenstein contribution no matter how N reduces
mod 8 (Takagi, Yoo).

This means that as it stands, for N composite, this precomputation is of
some use for e = 0 but useless for e = 1. However, the work of Yoo gives
a detailed description of Eisenstein ideals (at least for N squarefree).
Perhaps this can be used to make 2-adic computations of forms which are
Eisenstein mod 2?
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Future prospects

An alternative to modular symbols

In his 2016 Dartmouth PhD thesis (under John Voight, with additional
contributions from Gonzalo Tornaŕıa), Jeffery Hein develops a construction
of Birch into an algorithm for computing Hecke operators on Sk(Γ0(N),Q)
for k ≥ 2 and N squarefree8 using an analogue of the “method of graphs”
replacing isogenies of supersingular elliptic curves with p-neighbors of
ternary quadratic forms.

In this approach, one gets direct access to spaces of newforms of specified
Atkin-Lehner involution type; this is highly advantageous for calculations
in large composite (but squarefree) level. Moreover, the matrices that are
obtained are automatically defined over Z, so one may work directly mod 2
without having to change basis (unlike in the current Sage or Magma
packages).

8This condition has since been relaxed to require only that N is not a perfect square.
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Future prospects

Higher weights

As David Roberts described in his talk, for weights above 2 one expects
rational newforms to occur rather infrequently. The methods we have
described could in principle be used to investigate this further.

One catch is that matrices of higher weight Hecke operators computed
using modular symbols, as in Magma and Sage, tend to have nontrivial
denominators. The method of Birch-Hein-Tornaŕıa–Voight does not suffer
from this defect.
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