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Algorithms for zeta functions: overview

Zeta functions

Let X be an algebraic variety over a finite field Fq. Let X ◦ be the set of
closed points of X . The zeta function of X is the power series

ζX (T ) =
∏
x∈X◦

(1− T deg(x/Fq))−1.

Many of its properties (e.g., the Weil conjectures) can be established using
étale cohomology with coefficients in Q`, for ` any prime other than the
characteristic of Fq.

However, the properties of ζX (T ) can also be obtained using p-adic
analytic techniques, where p is the characteristic of Fq. For instance,
Dwork (1960) proved that ζX (T ) represents a rational function in T ; this
predates the definition of étale cohomology!
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Algorithms for zeta functions: overview

Machine computation of zeta functions: motivation

Since the late 1990s, there has been a lot of work on algorithms to
compute ζX (T ) (and related objects) for various classes of algebraic
varieties.

One original motivation came from cryptography, where it became
necessary to compute orders of groups of points on elliptic curves over
extremely large finite fields (e.g., F2256). Subsequently, Jacobians of genus
2 curves were also needed.

However, there are plenty of mathematical reasons to be interested in such
algorithms. One example from my work: investigating analogues of the
Sato-Tate conjecture for genus 2 curves.

Nowadays, there is even some motivation from mathematical physics:
arithmetic analogues of mirror symmetry.
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Algorithms for zeta functions: overview

Computation of zeta functions via étale cohomology

It is natural to try to use étale cohomology as the basis of algorithms for
computing zeta functions.

One example is Schoof’s algorithm for elliptic curves (circa 1985):
compute the trace of Frobenius on `-torsion for various small primes `.
With tweaks by Elkies and Atkin (early 1990s), this is quite practical.

Pila generalized Schoof’s algorithm to abelian varieties. This is barely
practical for genus 2 curves (Gaudry-Schost, 2010) and much more useful
for genus 2 curves with real multiplication (Gaudry-Kohel-Smith, 2011).

Edixhoven’s work on computing coefficients of modular forms (ongoing) is
in a similar spirit.

It is unclear how to do anything more general. The essential difficulty
seems to be handling étale cohomology in degree greater than 1.
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Algorithms for zeta functions: overview

Zeta functions via p-adic analysis

For elliptic curves over finite fields of small characteristic, several practical
p-analytic methods were discovered for computing zeta functions,
including Satoh’s canonical lift method and Mestre’s arithmetic-geometric
mean iteration (both circa 1998). These do not generalize very far beyond
elliptic curves, though.

Lauder and Wan (2000) described an algorithm based on Dwork’s proof of
rationality, applicable to any algebraic variety whatsoever! However, this is
currently believed to be impractical.

Most practical algorithms for zeta functions via p-adic analysis go through
the relationship between p-adic Weil cohomologies (crystalline, rigid) with
algebraic de Rham cohomology. After my work on hyperelliptic curves with
p odd (2001), much progress has been made by Denef and his Belgian
school (Vercauteren, Castryck, Hubrechts, Tuitman).
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Algorithms for zeta functions: overview

Going beyond curves

While algorithms for p-adic cohomology are not intrinsically limited to
curves, it seems difficult to get practical algorithms in higher dimension.

One approach is Lauder’s deformation method, using Picard-Fuchs
equations (i.e., Gauss-Manin connections), but little progress has been
made in making this practical except for curves (Hubrechts).

Abbott, K, Roe (2007) considered the example of smooth projective
hypersurfaces, based on Griffiths’s description of the algebraic de Rham
cohomology of same, but this was not very practical either.

What we describe today is a variant of AKR based on the principle of
controlled reduction in algebraic de Rham cohomology. This turns out to
be much more practical. In the process, we generalize to hypersurfaces in
projective toric varieties.
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Nondegenerate toric hypersurfaces

Polarized toric varieties

Let ∆ be a convex lattice polytope in Zn not contained in any hyperplane.

Let Pd be the free R-module on d∆ ∩ Zn, and put P = ⊕∞d=0Pd . Then
Proj(P) is a projective normal toric variety over R carrying an ample
torus-equivariant line bundle (and all such data arise this way).

Running example: for ∆ equal to the simplex with vertices 0, e1, . . . , en,
we get projective space. For v = c1e1 + · · ·+ cnen ∈ d∆∩Zn, identify the
class [v] ∈ Pd with the homogeneous polynomial xd−c1−···−cn

0 xc1
1 · · · xcn

n .

One may need to consider other examples (e.g., weighted projective spaces
and products thereof) to pick up cases of interest (e.g., K3 surfaces with
given Picard number, certain families of Calabi-Yau threefolds).

Kiran S. Kedlaya (MIT/UCSD) Controlled reduction in p-adic cohomology Luminy, September 12, 2011 10 / 24



Nondegenerate toric hypersurfaces

Polarized toric varieties

Let ∆ be a convex lattice polytope in Zn not contained in any hyperplane.

Let Pd be the free R-module on d∆ ∩ Zn, and put P = ⊕∞d=0Pd . Then
Proj(P) is a projective normal toric variety over R carrying an ample
torus-equivariant line bundle (and all such data arise this way).

Running example: for ∆ equal to the simplex with vertices 0, e1, . . . , en,
we get projective space. For v = c1e1 + · · ·+ cnen ∈ d∆∩Zn, identify the
class [v] ∈ Pd with the homogeneous polynomial xd−c1−···−cn

0 xc1
1 · · · xcn

n .

One may need to consider other examples (e.g., weighted projective spaces
and products thereof) to pick up cases of interest (e.g., K3 surfaces with
given Picard number, certain families of Calabi-Yau threefolds).

Kiran S. Kedlaya (MIT/UCSD) Controlled reduction in p-adic cohomology Luminy, September 12, 2011 10 / 24



Nondegenerate toric hypersurfaces

Polarized toric varieties

Let ∆ be a convex lattice polytope in Zn not contained in any hyperplane.

Let Pd be the free R-module on d∆ ∩ Zn, and put P = ⊕∞d=0Pd . Then
Proj(P) is a projective normal toric variety over R carrying an ample
torus-equivariant line bundle (and all such data arise this way).

Running example: for ∆ equal to the simplex with vertices 0, e1, . . . , en,
we get projective space. For v = c1e1 + · · ·+ cnen ∈ d∆∩Zn, identify the
class [v] ∈ Pd with the homogeneous polynomial xd−c1−···−cn

0 xc1
1 · · · xcn

n .

One may need to consider other examples (e.g., weighted projective spaces
and products thereof) to pick up cases of interest (e.g., K3 surfaces with
given Picard number, certain families of Calabi-Yau threefolds).

Kiran S. Kedlaya (MIT/UCSD) Controlled reduction in p-adic cohomology Luminy, September 12, 2011 10 / 24



Nondegenerate toric hypersurfaces

Polarized toric varieties

Let ∆ be a convex lattice polytope in Zn not contained in any hyperplane.

Let Pd be the free R-module on d∆ ∩ Zn, and put P = ⊕∞d=0Pd . Then
Proj(P) is a projective normal toric variety over R carrying an ample
torus-equivariant line bundle (and all such data arise this way).

Running example: for ∆ equal to the simplex with vertices 0, e1, . . . , en,
we get projective space. For v = c1e1 + · · ·+ cnen ∈ d∆∩Zn, identify the
class [v] ∈ Pd with the homogeneous polynomial xd−c1−···−cn

0 xc1
1 · · · xcn

n .

One may need to consider other examples (e.g., weighted projective spaces
and products thereof) to pick up cases of interest (e.g., K3 surfaces with
given Picard number, certain families of Calabi-Yau threefolds).

Kiran S. Kedlaya (MIT/UCSD) Controlled reduction in p-adic cohomology Luminy, September 12, 2011 10 / 24



Nondegenerate toric hypersurfaces

Nondegeneracy of toric hypersurfaces

Choose f ∈ Pd for some d > 0. We say f is nondegenerate if the
hypersurface cut out by f has transversal intersection with each torus in
the natural stratification of Proj(P).

For each λ ∈ (Zn)∨, define the derivation ∂λ on P taking [v] to λ(v)[v] for
v ∈ d∆ ∩ Zn. For projective space, the standard basis of (Zn)∨ gives rise
to the derivations x1

∂
∂x1
, . . . , xn

∂
∂xn

.

The toric Jacobian ideal If in P is generated by f and all of the ∂λ(f ).
Then f is nondegenerate if and only if If is irrelevant, i.e., if there exists α
such that Pβ ⊆ If for all β ≥ α. Using that Spec(P)→ Spec(R) is
Cohen-Macaulay, one can determine α in terms of ∆, d ; for example, for
projective space, we may take α = (n + 1)(d − 1) + 1.
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Nondegenerate toric hypersurfaces

de Rham cohomology of nondegenerate hypersurfaces

Suppose the base ring R is a field of characteristic 0 and that f ∈ Pd is
nondegenerate. Put S = ∪∞i=0f −iPid ; this is the coordinate ring of the
nonzero locus Uf of f in Proj(P).

Let Z be the toric boundary of Proj(P) (i.e., the complement of the
embedded torus Spec R[Zn]). By Deligne, the algebraic de Rham
cohomology of Uf − Z is equal to the logarithmic de Rham cohomology of
Uf for the log-structure defined by Z , i.e., the cohomology of the complex
Ω· in which Ωi is the free S-module on the generators

dlog[ej1 ] ∧ · · · ∧ dlog[eji ] (1 ≤ j1 < · · · < ji ≤ n)

with the usual exterior derivative.
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Nondegenerate toric hypersurfaces

de Rham cohomology: explicit generators and relations

The only cohomology which is interesting (i.e., not explained by the
cohomology of Proj(P)− Z ) is in degree n, i.e., the cokernel Hn of
d : Ωn−1 → Ωn. Put ω = dlog[e1] ∧ · · · ∧ dlog[en]; then Ωn is free on the
generator ω, and Hn is the quotient by the R-submodule generated by

∂λ(g)

f m
ω −m

g∂λ(f )

f m+1
ω

for each λ ∈ (Zn)∨, each nonnegative integer m, and each g ∈ Pmd .
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Nondegenerate toric hypersurfaces

The link to p-adic cohomology

Now take R = W (Fq) for Fq a finite field of characteristic p. (That is, R
is the finite étale extension of Zp with residue field Fq.) If we compute Hn

over R[p−1], the result “is” the Monsky-Washnitzer cohomology (p-adic
rigid cohomology) of the affine scheme Uf − Z defined over R/(p).

What this means explicitly is that there is a particular linear
transformation of Hn (Frobenius) whose characteristic polynomial
determines (the interesting factor of) the zeta function of Uf − Z . This in
turn determines the zeta function of the zero locus of f on the big torus
Proj(P)− Z ; one can repeat the construction to get the zeta functions of
the zero loci on the boundary tori.
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Nondegenerate toric hypersurfaces

Frobenius in explicit form

In fact, the Frobenius map on Hn is quite explicit!

Although the endomorphism Φ : P → P taking [v] to [qv] = [v]q does not
extend to S , it does extend to a certain p-adic completion of S . We may
formally extend Φ to differentials; given an element of Hn represented by
gω/f m, its image under Φ is the infinite sum

qnΦ(g)ω

Φ(f )m
=

qnΦ(g)ω

f qm

(
Φ(f )

f q

)−m
=

qnΦ(g)ω

f qm

∞∑
i=0

(
−m

i

)(
Φ(f )− f q

f q

)i

.

(Note that Φ(ω) = qnω and that Φ(f )− f q is divisible by p.)
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Controlled reduction

Computing in de Rham cohomology: the plan

Let’s suppose again that R is a field and that f ∈ Pd is nondegenerate.
Using the relations defining Hn, it is not difficult to write down elements of
Ωn which project to a basis of Hn. What we now need is a way to express
an arbitrary element of Ωn as a linear combination of basis vectors plus a
relation. We will typically start with a form looking like gω/f m with m
large, so we think of this last step as reduction of the pole order along f .

If we can do that, then we get an algorithm for computing zeta functions
of nondegenerate toric hypersurfaces using p-adic cohomology: starting
with our complex over W (Fq), write down the action of Frobenius on
basis representatives, then reduce each term in the resulting infinite sums
(after inverting p).

For prescribed p-adic accuracy, we need only finitely many terms. How
many? That’s a delicate question which I neglect here.
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Controlled reduction

The difficulty: too many terms

To reduce the pole order of gω/f m from m to m − 1, we must write g as
a P-linear combination of f and its partial derivatives. One might use
Gröbner basis methods as implemented in a standard computer algebra
package (e.g., Singular or Magma). This gives uncontrollable asymptotics,
so it is better to find these representations using direct linear algebra.

There remains a serious problem: we typically start with g being rather
sparse, but an ill-conceived reduction algorithm will produce dense
polynomials. This typically leads to a factor of pd in time and space
complexity of the resulting algorithms, which limits practicality. One must
really limit this to p1 instead!
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Controlled reduction

The fix: controlled reduction

The solution is to exhibit a reduction procedure that preserves sparsity, in
terms of the integer α we chose for which Pβ ⊆ If for all β ≥ α.

Theorem (Controlled reduction)

Suppose Q ⊆ R. Choose an integer β with β + d ≥ α, an integer m with
md ≥ β, and monomials µ ∈ Pd , ν ∈ Pmd−β. We can then find R-linear
maps R0,R1 : Pβ → Pβ such that for any x ∈ Pβ, j ≥ 0,

xµj+1ν

f m+j+1
ω ≡ (m + j)−1(R0(x) + jR1(x))

µjν

f m+j
ω in Hn.

The point is that (m + j)−1(R0(x) + jR1(x)) is again in Pβ. Hence
starting with gω/f m with m large and g sparse, we can write g as a linear
combination of a few terms, each equal to a high power of some monomial
µ times a small cofactor. We then do controlled reduction to get some
small terms, which we resolve by direct linear algebra.
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Controlled reduction

Proof of controlled reduction

By the choice of β, there exist R-linear maps π0, . . . , πn : Pβ → Pβ with
µx = π0(x)f +

∑n
i=1 πi∂e∗i (f ). Then take

R0(x) = mπ0(x) +
n∑

i=1

(∂e∗i + e∗i (ν))(πi (x))

R1(x) = π0(x) +
n∑

i=1

e∗i (µ)πi (x).

We then have as desired:

xµj+1ν

f m+j+1
ω ≡ (m + j)−1(R0(x) + jR1(x))

µjν

f m+j
ω.
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Complements

Experimental results

So far, we have only implemented this for projective space, and only in
Sage (i.e., not in any optimized fashion).

Nonetheless, we computed the zeta function of a random quartic surface
in P3 over F103+9 in two CPU-days, and over F106+3 in about 20
CPU-days. It is easy to parallelize, and anyway an optimized version
should be many times faster!

By contrast, the original AKR algorithm, implemented in Magma, was
unable to handle quartic surfaces over Fp except for p ≤ 19.
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Complements

Room for improvement: p1 to p1/2

Previously, Harvey improved the dependence on p in my original algorithm
for hyperelliptic curves from p1 to p1/2. This uses a technique of the
Chudnovskys to accelerate the computation of a linear recurrence with
polynomial coefficients by “giant-stepping”: instead of taking p individual
recursion steps, one takes

√
p batches of steps of length

√
p.

Controlled reduction makes it possible to do this for toric hypersurfaces
too, but we haven’t tried yet, so it is unclear how much this will help. For
very small p, it might make things worse.
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Complements

Partially nondegenerate hypersurfaces

One can also weaken the nondegenerate condition somewhat, by forcing
controlled reduction in particular directions. For instance, in projective
space, one can handle arbitrary smooth hypersurfaces (having arbitrarily
bad intersections with the toric boundary) as soon as d ≥ n + 1.

We wrote down a generalization to toric varieties can be written down, but
it is somewhat complicated to use. For instance, it is unclear how to find
the analogue of α, particularly because this may depend on p. For
instance, in the case of projective space, there is trouble when p|d because
the Euler relation degenerates (creating a syzygy among the partial
derivatives, as observed first by Beauville).
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