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p-adic numbers and floating-point arithmetic

The p-adic numbers

Throughout this talk, Zp will be the ring of p-adic integers. We may
construct Zp in one of three equivalent ways.

Take strings composed of 0, . . . , p − 1 which run infinitely far to the
left, performing arithmetic using the usual rules of base p arithmetic.
For instance, for p = 2, the string · · · 11111 represents an additive
inverse of 1.

Take sequences (x1, x2, . . . ) in which xn ∈ Z/pnZ and xn+1 ≡ xn
(mod pn). (That is, take the inverse limit of the rings Z/pnZ.)

Take the completion of Z for the p-adic absolute value |n|p = p−vp(n),
where vp denotes the p-adic valuation (the exponent of p in the prime
factorization of n).

The ring Qp = Zp[p−1] is a field, called the field of p-adic numbers. It is
the completion of Q for the p-adic absolute value.
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p-adic numbers and floating-point arithmetic

p-adic numbers in number theory

The p-adic numbers were introduced by Hensel in the early 1900s as a way
to translate ideas from analysis into number theory. For example, for
p 6= 2, if n ∈ Z is congruent to a perfect square modulo p, it is a square in
Zp, and its square roots can be constructed using an analogue of the
Newton-Raphson-Simpson iteration (i.e., finding a root of f (x) = 0 using
the iteration x 7→ x − f (x)/f ′(x)).

More recently, p-adic numbers have also been used profitably in
computational number theory (and cryptographic applications). For
example, algorithms based on p-adic numbers for computing zeta
functions of elliptic and hyperelliptic curves have been considered by
Satoh, Mestre, Lauder-Wan, Kedlaya, Denef-Vercauteren, and others, and
are implemented in such systems as Pari, Magma, and Sage.

Kiran S. Kedlaya (UCSD) The Robbins phenomenon 5 / 26



p-adic numbers and floating-point arithmetic

p-adic numbers in number theory

The p-adic numbers were introduced by Hensel in the early 1900s as a way
to translate ideas from analysis into number theory. For example, for
p 6= 2, if n ∈ Z is congruent to a perfect square modulo p, it is a square in
Zp, and its square roots can be constructed using an analogue of the
Newton-Raphson-Simpson iteration (i.e., finding a root of f (x) = 0 using
the iteration x 7→ x − f (x)/f ′(x)).

More recently, p-adic numbers have also been used profitably in
computational number theory (and cryptographic applications). For
example, algorithms based on p-adic numbers for computing zeta
functions of elliptic and hyperelliptic curves have been considered by
Satoh, Mestre, Lauder-Wan, Kedlaya, Denef-Vercauteren, and others, and
are implemented in such systems as Pari, Magma, and Sage.

Kiran S. Kedlaya (UCSD) The Robbins phenomenon 5 / 26



p-adic numbers and floating-point arithmetic

p-adic floating-point arithmetic

There is an obvious difficulty in computing with p-adic numbers. Just like
real numbers, p-adic numbers are represented by infinite strings and so
cannot be stored exactly on a computer.

There are several possible schemes for systematically approximating p-adic
numbers with exact rational numbers. The one we consider in this talk is
the p-adic analogue of floating-point arithmetic (or of scientific notation).

Fix a positive integer r (the maximum relative precision). We approximate
an arbitrary p-adic number by a rational number of the form pem where e
is an integer (the exponent) and m is an integer in the range
{0, . . . , pr − 1} not divisible by p (the mantissa).
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p-adic numbers and floating-point arithmetic

Accuracy of approximations

By the accuracy of a p-adic floating-point approximation pem to a p-adic
number x , we will mean the integer

max{0, vp(m − p−ex)}.

This counts the number of correct p-adic digits of the mantissa starting
from the right. For instance, here are the accuracies of some
approximations of −1 when p = 2:

20 · 10101112 accuracy 3
20 · 10101012 accuracy 1
20 · 10111002 invalid (last digit should be nonzero)
21 · 10111012 accuracy 0 (wrong exponent)
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p-adic numbers and floating-point arithmetic

Addition and multiplication in floating-point arithmetic

Given p-adic floating-point approximations pe1m1, p
e2m2 of x , y ∈ Qp, we

may take pe1+e2m1m2 as a floating-point approximation of xy . The
accuracy of this approximation is no less than the minimum accuracy
among the original approximations. (One might say that multiplication in
floating-point arithmetic is exact.)

One can similarly obtain a floating-point approximation to x + y by
dividing out the maximum power of p from pe1m1 + pe2m2 and then
rounding the mantissa if needed. In case e1 < e2, the final approximation
is pe1 [m1 + pe2−e1m2], where the brackets denote rounding, and we see
that the accuracy is no less than the minimum accuracy among the
original approximations. A similar statement holds if e1 > e2.

Kiran S. Kedlaya (UCSD) The Robbins phenomenon 8 / 26



p-adic numbers and floating-point arithmetic

Addition and multiplication in floating-point arithmetic

Given p-adic floating-point approximations pe1m1, p
e2m2 of x , y ∈ Qp, we

may take pe1+e2m1m2 as a floating-point approximation of xy . The
accuracy of this approximation is no less than the minimum accuracy
among the original approximations. (One might say that multiplication in
floating-point arithmetic is exact.)

One can similarly obtain a floating-point approximation to x + y by
dividing out the maximum power of p from pe1m1 + pe2m2 and then
rounding the mantissa if needed. In case e1 < e2, the final approximation
is pe1 [m1 + pe2−e1m2], where the brackets denote rounding, and we see
that the accuracy is no less than the minimum accuracy among the
original approximations. A similar statement holds if e1 > e2.

Kiran S. Kedlaya (UCSD) The Robbins phenomenon 8 / 26



p-adic numbers and floating-point arithmetic

Loss of accuracy in p-adic arithmetic

If e1 = e2, we may experience a precision loss when computing a
floating-point approximation of x + y . This is because pe1(m1 + m2) is
only a valid floating-point approximation if m1 + m2 is not divisible by p.
If vp(m1 + m2) = f > 0, we must shift a power of pf from m1 + m2 into
pe1 before rounding; this has the effect of adding f garbage digits at the
left of the mantissa.

If one performs a sequence of arithmetic operations using p-adic
floating-point arithmetic, one may experience progressive loss of accuracy
over the course of the computation. The study of such loss of accuracy
amounts to a p-adic version of the field of numerical stability.

In the rest of this talk, we consider some examples of unexpected
numerical stability in p-adic floating-point arithmetic. These appear to
have a deep algebraic origin which is not yet fully understood.
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Condensation of determinants and the Robbins phenomenon

An identity of Jacobi

Let M be an n × n matrix. Let A,B,C ,D be the determinants of the top
left, top right, bottom left, bottom right (n − 1)× (n − 1)-submatrices of
M. Let E be the determinant of the central (n− 2)× (n− 2)-submatrix of
M. Let F be the determinant of M. Then

AD − BC = EF .
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Condensation of determinants and the Robbins phenomenon

An identity of Jacobi: an example

For example, for

M =

1 2 1
0 3 −1
1 1 3


we have

A = det

(
1 2
0 3

)
= 3, B = det

(
2 1
3 −1

)
= −5,

C = det

(
0 3
1 1

)
= −3, D = det

(
3 −1
1 3

)
= 10,

E = 3, F = det M = 9− 2 + 0− 3− (−1)− 0 = 5,

AD − BC = 30− 15 = 15 = 3 · 5 = EF .
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Condensation of determinants and the Robbins phenomenon

The Dodgson condensation recurrence, with an example

Charles Dodgson (Lewis Carroll) proposed to use Jacobi’s identity as a
method to compute determinants as follows. Given a square matrix M, we
successively compute the connected minors of size k from those of size
k − 1 and k − 2. (The minors of size 0 are all equal to 1; the minors of
size 1 are the entries of M.) This produces a sequence of matrices of
decreasing size (hence the name condensation), ending with (det(M)).
E.g., 

1 1 1 1 1
1 1 1 1 1
1 1 1 1 1
1 1 1 1 1
1 1 1 1 1

 ,


2 1 −2 2
1 −3 2 1
−2 5 −3 −2
1 1 2 −1

 ,

−7 −4 −6
−1 −1 −1
−7 13 7

 ,

(
−1 −1
−4 −2

)
,
(
2
)
.
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Condensation of determinants and the Robbins phenomenon

Pros and cons of condensation

Some advantages of condensation:

It is an O(n3) algorithm, just like Gaussian elimination.

All intermediate terms belong to the same ring as the entries of the
original matrix.

For instance, if M has integer entries, one does not encounter any
denominators. This helps reduce the size of the numbers involved in
the computation (and provides an error check when working by hand).

Condensation can be carried out in parallel using very little
communication.

There is one serious disadvantage, though: condensation does not always
work! If one encounters an instance of AD − BC = EF with E = 0, one
cannot solve for F .
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Condensation of determinants and the Robbins phenomenon

Condensation and p-adic numbers

David Robbins noticed that over Fp, one can work around the occurrence
of zero denominators by lifting the problem to Z, so that minors which
start out equal to 0 have a chance to lift to nonzero values. However,
doing this computation exactly requires dealing with unpleasantly large
integers.

Since he only wanted an answer over Fp, Robbins proposed to replace
exact arithmetic in Z with floating-point arithmetic in Qp using a fairly
small relative precision (e.g., one which fits in a machine word). To get an
answer from this, one must guarantee that the resulting approximation of
the determinant has accuracy at least 1.

Robbins was thus led to test the numerical stability of condensation
directly, leading to a surprising observation: accuracy losses in
condensation do not appear to accumulate as one might expect!

Kiran S. Kedlaya (UCSD) The Robbins phenomenon 15 / 26



Condensation of determinants and the Robbins phenomenon

Condensation and p-adic numbers

David Robbins noticed that over Fp, one can work around the occurrence
of zero denominators by lifting the problem to Z, so that minors which
start out equal to 0 have a chance to lift to nonzero values. However,
doing this computation exactly requires dealing with unpleasantly large
integers.

Since he only wanted an answer over Fp, Robbins proposed to replace
exact arithmetic in Z with floating-point arithmetic in Qp using a fairly
small relative precision (e.g., one which fits in a machine word). To get an
answer from this, one must guarantee that the resulting approximation of
the determinant has accuracy at least 1.

Robbins was thus led to test the numerical stability of condensation
directly, leading to a surprising observation: accuracy losses in
condensation do not appear to accumulate as one might expect!

Kiran S. Kedlaya (UCSD) The Robbins phenomenon 15 / 26



Condensation of determinants and the Robbins phenomenon

Condensation and p-adic numbers

David Robbins noticed that over Fp, one can work around the occurrence
of zero denominators by lifting the problem to Z, so that minors which
start out equal to 0 have a chance to lift to nonzero values. However,
doing this computation exactly requires dealing with unpleasantly large
integers.

Since he only wanted an answer over Fp, Robbins proposed to replace
exact arithmetic in Z with floating-point arithmetic in Qp using a fairly
small relative precision (e.g., one which fits in a machine word). To get an
answer from this, one must guarantee that the resulting approximation of
the determinant has accuracy at least 1.

Robbins was thus led to test the numerical stability of condensation
directly, leading to a surprising observation: accuracy losses in
condensation do not appear to accumulate as one might expect!

Kiran S. Kedlaya (UCSD) The Robbins phenomenon 15 / 26



Condensation of determinants and the Robbins phenomenon

Unexpected numerical stability: an observation of Robbins

Let M be a square matrix with entries in Zp. Represent each entry with a
p-adic floating-point approximation of accuracy at least r , then compute
the condensation recurrence using floating-point arithmetic. Let d be the
maximum p-adic valuation of any denominator occurring in the recurrence.
Let a denote the absolute accuracy of the computed determinant, i.e., the
p-adic valuation of its difference from det(M).

Conjecture (Robbins, 2005)

We have a ≥ r − d. (Experiments show that this inequality is sharp.)

What is surprising is that d is typically much less than the sum of the
accumulated losses of accuracy over individual arithmetic steps!

Theorem (Buhler-K, 2012)

We have a ≥ r − 3d. (This is proved as a special case of a more general
result, more on which later.)
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The Robbins phenomenon, and some more examples
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The Robbins phenomenon, and some more examples

Another example: the Somos-4 recurrence

It was observed by Michael Somos that for any x0, x1, x2, x3 which are
units in an integral domain R, if we define the sequence

xn+4 =
xn+1xn+3 + x2

n+2

xn
(n = 0, 1, . . . ),

then xn ∈ R for all n. (This can be proved using elliptic curves.)

Now take R = Zp. Represent each initial term of the recurrence with a
p-adic floating-point approximation of accuracy at least r , then compute
the recurrence out to xn using floating-point arithmetic. Let d be the
maximum p-adic valuation of any denominator occurring in the recurrence.
Let a denote the absolute accuracy of the computed value of xn.

Theorem (Buhler-K, 2012)

We have a ≥ r − d. (Experiments show that this inequality is sharp.)
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Theorem (Buhler-K, 2012)

We have a ≥ r − d. (Experiments show that this inequality is sharp.)
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The Robbins phenomenon, and some more examples

Weak and strong versions of the Robbins phenomenon

One can similarly define a, r , d for any recurrence defined by rational
functions over Zp. If we always have a ≥ r − d , we say that the recurrence
exhibits the strong Robbins phenomenon. If we only have a ≥ r − cd for
some fixed constant c (depending on the recurrence but not the initial
terms), we say that the recurrence the weak Robbins phenomenon with
correction factor c .

For example, the Somos-6 recurrence

xn+6 =
xn+1xn+5 + xn+2xn+4 + x2

n+3

xn
(n = 0, 1, . . . )

again has unexpected integrality: if x0, . . . , x5 are units in an integral
domain R, then xn ∈ R for all n. One observes experimentally that the
weak Robbins phenomenon holds with correction factor 2; our results only
imply the weak Robbins phenomenon with correction factor 5.
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The Robbins phenomenon, and some more examples

The Laurent phenomenon

There are a large number of recurrences computed by rational functions
with the property that their terms can be expressed as Laurent
polynomials in the initial data. These recurrences are said to exhibit the
Laurent phenomenon.

Theorem (Buhler-K, 2012)

Any recurrence which can be shown to exhibit the Laurent phenomenon
using the caterpillar lemma of Fomin-Zelevinsky also exhibits the weak
Robbins phenomenon for some correction factor. (This factor is explicit
but typically not optimal.)

By contrast, recurrences not exhibiting the Laurent phenomenon typically
do not exhibit the weak Robbins phenomenon either; the accuracies of
p-adic floating-point approximations exhibit the progressive degradation
one would normally expect.
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The Robbins phenomenon, and some more examples

Binomial recurrences

Among recurrences satisfying the Laurent phenomenon, many have the
property that the recurrence is computed as the sum of two monomials in
prior terms divided by a single prior term. Such recurrences are said to be
binomial.

Conjecture (Buhler-K, 2012)

Any binomial recurrence which can be shown to exhibit the Laurent
phenomenon using a cluster algebra of Fomin-Zelevinsky also exhibits the
strong Robbins phenomenon.

For example, condensation and Somos-4 are governed by cluster algebras.
Somos-6 is not (it is not binomial), but the no-middle-term variant

xn+6 =
xn+1xn+5 + xn+2xn+4

xn
(n = 0, 1, . . . )

is governed by a cluster algebra, and experimentally exhibits the strong
Robbins phenomenon.
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Some notes on the proofs

The Laurent phenomenon for Somos-4

The Fomin-Zelevinsky caterpillar lemma implies the Laurent phenomenon
for Somos-4. Explicitly, one shows that all of

xn, xn+1, xn+2, xn+3,

xn+1xn+3 + x2
n+2

xn
,

xnx2
n+3 + x3

n+2

xn+1
,

x2
nxn+3 + x3

n+1

xn+2
,

xnxn+2 + x2
n+1

xn+3

are Laurent polynomials in x0, x1, x2, x3, by induction on n. For example,

xn+2xn+4 + x2
n+3

xn+1
=

xn+2(xn+1xn+3 + x2
n+2) + xnx2

n+3

xnxn+1

=
1

xn

(
xn+2xn+3 +

x2
n+2 + xnx2

n+3

xn+1

)

but any two of xn, xn+1, xn+2, xn+3 generate the unit ideal.
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Some notes on the proofs

An algebraic model for the Robbins phenomenon

To prove the strong Robbins phenomenon for Somos-4, we introduce an
algebraic model of p-adic floating-point arithmetic: compute in parallel a
sequence {yn} with yn = xn for n = 0, 1, 2, 3 but with

yn+4 =
yn+1yn+3(1 + pr εn,1) + y 2

n+2(1 + pr εn,2)

yn

for some unknown εn,1, εn,2 ∈ Zp. We then claim that

vp(yn − xn) ≥ r −max{vp(y0), . . . , vp(yn−4)}.
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Some notes on the proofs

The Robbins phenomenon for Somos-4

By modifying the proof of the Robbins phenomenon, we see that if we
modify the error terms as follows:

yn+4 =
yn+1yn+3(1 + yn+2ynεn,1) + y 2

n+2(1 + ynyn+1yn+3εn,2)

yn

then we have

yn ∈ Z[x±0 , x
±
1 , x

±
2 , x

±
3 , εi ,j (i = 0, . . . , n − 4; j = 0, 1)].

This immediately implies that

vp(yn − xn) ≥ r − 3 max{vp(y0), . . . , vp(yn−4)},

but we can eliminate the factor of 3 using the fact that no more than one
of yn, yn+1, yn+2, yn+3 can have positive valuation.
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Some notes on the proofs

The weak Robbins phenomenon for condensation

For condensation, if we write the original recurrence as

F =
AD − BC

E
,

then the modified recurrence can be taken to be

F̃ =
ÃD̃(1 + B̃C̃ Ẽε∗)− B̃C̃ (1 + ÃD̃Ẽε∗)

Ẽ

and again each term in the recurrence is a polynomial in the matrix entries
and the ε∗.

This implies the weak Robbins phenomenon with correction factor 3, but in
this case it may happen that more than one of Ã, B̃, C̃ , D̃, Ẽ has positive
valuation. Since this example is related to cluster algebras, our hope is
that the cluster algebra theory can be used to get a better algebraic
containment result in order to deduce the strong Robbins phenomenon.
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