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Motives and L-functions

Zeta functions of schemes

For X a scheme of finite type over Z, its zeta function is the Dirichlet
series (absolutely convergent for Re(s)� 0)

ζ(X , s) =
∏
x∈X◦

(1−#κ(x)−s)−1

where X ◦ denotes the set of closed points of X and κ(x) the residue field
of the closed point x .

When X = SpecZ, ζ(X , s) = ζ(s), the Riemann zeta function.
When X = Spec oK for K a number field, ζ(X , s) = ζK (s), the
Dedekind zeta function (without archimedean factors).
When X lies over the finite field Fq, ζ(X , s) is a rational function of
q−s (Dwork).
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Motives and L-functions

More on zeta functions over finite fields

For X smooth proper of dimension d over Fq, we have

ζ(X , s) =
P1(q−s) · · ·P2d−1(q−s)

P0(q−s) · · ·P2d(q−s)

where Pi (T ) ∈ 1 + TZ[T ] has all roots on the circle |T | = q−i/2. For
example, if X is an elliptic curve, then

ζ(X , s) =
1− aqq

−s + q1−2s

(1− q−s)(1− q1−s)
, aq = q + 1−#X (Fq)

and the condition on the roots of P1 is equivalent to the Hasse bound
|aq| ≤ 2

√
q.
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Motives and L-functions

L-functions

For X smooth proper of dimension d over Q, for i = 0, . . . , 2d we define
the L-functions

Li (X , s) =
∏
p

Pi ,p(p−s)−1

where for each prime p of good reduction, Pi ,p is the factor Pi of the zeta
function of the reduction of X modulo p. (There are also Euler factors for
bad primes and archimedean factors to clean up the functional equation.)

For example, if X is an elliptic curve, then L1(X , s) is the usual L-function
(with bad Euler factors suppressed):

L1(X , s) =
∏
p

(1− app
−s + p1−2s)−1.

For X over a number field K , one has a similar definition indexed by prime
ideals of oK . But we won’t see any examples with K 6= Q in this lecture.
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Motives and L-functions

Motives

In some cases, L-functions of schemes factor for “geometric reasons”. For
example, if dim(X ) = 1, then one gets factorizations of L1(X , s) from
isogeny decompositions of the Jacobian of X . (E.g., for modular curves
these arise from the action of Hecke correspondences.)

For i > 1, there is no analogue of Jacobians to explain geometric
factorizations. Instead, one defines into existence a category of motives of
weight i in which X “decomposes” into “direct summands” corresponding
to factors of the L-function. (One can be more precise about this, but it is
a long and messy story...)
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Hypergeometric motives and their L-functions

Hypergeometric data

A hypergeometric (HG) datum of degree n consists of two disjoint
n-tuples α, β ∈ (Q ∩ [0, 1))n. (Repeats within a tuple are allowed.) Such a
datum is Galois-stable if the tuples e2πiα, e2πiβ are GQ-stable; that is, any
two r

s ,
r ′

s ∈ Q ∩ [0, 1) in lowest terms have the same multiplicities. For
example, one Galois-stable HG datum of degree 5 is

α =

(
1
4
,
1
3
,
1
2
,
2
3
,
3
4

)
, β =

(
0
1
,
1
8
,
3
8
,
5
8
,
7
8

)
.

For any given n, there are finitely many Galois-stable HG data of length n.
sage: from sage.modular.hypergeometric_motive import possible_hypergeometric_data as poss
sage: l = poss(5); len(l)
147
sage: l[56] # For brevity, Sage reports only one of (alpha, beta) and (beta, alpha)
Hypergeometric data for [1/8, 3/8, 1/2, 5/8, 7/8] and [0, 1/4, 1/3, 2/3, 3/4]

This example uses the Sage HG motives package by Chapoton-K; this is a
partial port of the Magma package by Watkins (based on work of Cohen).
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Hypergeometric motives and their L-functions

Hypergeometric motives (HGMs)

For any Galois-stable HG datum (α, β), one gets a one-parameter family of
motives indexed by t ∈ P1 \ {0, 1,∞}. For each t ∈ Q \ {0, 1}, one gets a
motive with an associated L-function of degree n.

The discrete data of these L-functions (motivic weight, Hodge numbers)
are determined combinatorially by α, β (see below); these obey no obvious
constraints (i.e., they are “diverse”). Moreover, the L-functions can be
computed efficiently (see below). This makes HGMs a rich source of
L-functions, and a prime candidate for inclusion in the LMFDB.

Warning: this construction is “folklore” by analogy with work of Katz on
the `-adic realizations of these motives (see Exponential Sums and
Differential Equations), but AFAIK there is no available reference for the
motivic construction. As a stopgap, see the Magma documentation.
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Hypergeometric motives and their L-functions

Examples

In the case

n = 2, α =

(
1
2
,
1
2

)
, β = (0, 0) ,

the resulting family of HGMs is essentially the 1-motives of the Legendre
family of elliptic curves.

Other particular families of HGMs are known (work of Naskręcki) to
correspond to (particular families of) hyperelliptic curves, ruled/elliptic/K3
surfaces, Calabi–Yau threefolds, etc. For instance,

n = 3, α =

(
1
4
,
1
2
,
3
4

)
, β = (0, 0, 0)

gives a pure Chow motive occurring in the elliptic K3 surface

xyz(1− (x + y + z)) =
1

256t
.
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Hypergeometric motives and their L-functions

Hodge numbers and motivic weight

For x ∈ R, define the zigzag function

D(x) = #{i ∈ {1, . . . , n} : αi ≤ x} −#{i ∈ {1, . . . , n} : βi ≤ x}.

To get the Hodge vector, compute the vector (hi )i∈Z where

hi = #{j ∈ {1, . . . , n} : D(αj) = i},

shift it to be symmetric across 0, then drop leading and trailing zeroes.
The motivic weight is one less than the length of the vector. These are
invariant under interchanging α and β.

sage: from sage.modular.hypergeometric_motive import HypergeometricData as Hyp
sage: H = Hyp(alpha_beta=([1/4,1/3,1/2,2/3,3/4], [0,1/8,3/8,5/8,7/8]))
sage: alpha,beta = H.alpha_beta()
sage: [H.zigzag(a) for a in alpha]
[-1, 0, 0, 0, 1]
sage: H.hodge_numbers()
[1, 3, 1]
sage: H.weight()
2
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Hypergeometric motives and their L-functions

Bad primes

For t ∈ Q \ {0, 1}, the primes p of bad reduction of the associated HGM
are of two types.

wild: p divides the least common denominator of α ∪ β.
tame: p is not wild and t ≡ 0, 1,∞ mod p.

For some applications (e.g., computing special values), it is important to
know (or guess well) the Euler factors for bad primes. For other
applications (e.g., computing statistics over Euler factors as in the
Sato–Tate or Lang–Trotter conjectures), it is less important. We will ignore
bad primes hereafter.
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Hypergeometric motives and their L-functions

Good Euler factors

For p a good prime, Magma and (somewhat less efficiently) Sage can
compute the Euler factor at p of the associated HGM. (Warning: Magma’s t
is Sage’s 1/t; the Sage convention is more consistent with the literature.)

sage: H.euler_factor(5/7, 11)
-161051*T^5 - 9317*T^4 - 484*T^3 + 44*T^2 + 7*T + 1
sage: H.euler_factor(5/7, 7)
...
NotImplementedError: p is tame
sage: H.euler_factor(5/7, 3)
...
NotImplementedError: p is wild

In the remainder of the talk, we aim to answer two questions (with the
broader goal of getting interesting L-functions into the LMFDB).

How is this computation done currently?
What alternatives may be more efficient in certain circumstances?
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What alternatives may be more efficient in certain circumstances?
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Finite hypergeometric sums and trace formulas
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Finite hypergeometric sums and trace formulas

A hypergeometric trace formula

In this approach, we compute a good Euler factor of an HG motive by
computing the trace of the q-Frobenius for each prime power q (on `-adic
cohomology for some prime ` not dividing q; the exact choice is irrelevant).

Building on work of Greene, Katz, McCarthy, Ono, ..., an explicit formula
for this trace was given by Beukers–Cohen–Mellit. This involves Gauss
sums, and so must be computed in a context where roots of unity are
available. Working exactly in a large cyclotomic field is impractical. Using
floating-point interval arithmetic is possible but less efficient than...

... using the Gross-Koblitz formula to efficiently compute Gauss sums in a
p-adic field. This leads to the algorithm implemented in Magma/Sage.
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Finite hypergeometric sums and trace formulas

The Beukers–Cohen–Mellit formula (part 1)

Define positive integers p1, . . . , pr , q1, . . . , qs (and r and s) by

n∏
i=1

x − e2πiαi

x − e2πiβi
=

∏r
j=1(xpj − 1)∏s
k=1(xqk − 1)

,

then set M :=
∏r

j=1 p
pj
j

∏s
k=1 q

−qk
k . Fix a generator ω of the complex

character group of F×q and a nontrivial additive character ψq of Fq. For
m ∈ Z, define the Gauss sum

g(m) := g(ωm) =
∑
x∈F×q

ωm(x)ψq(x).
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Finite hypergeometric sums and trace formulas

The Beukers–Cohen–Mellit formula (part 2)

Set

g(pm,−qm) :=
r∏

j=1

g(pjm)
s∏

k=1

g(−qkm).

Put ε := (−1)
∑

k qk and let s(m) denote the multiplicity of e2πim/(j−1) as a
root of gcd(

∏r
j=1(xpj − 1),

∏s
k=1(xqk − 1)). The formula now states

Hq(α, β|t) =
(−1)r+s

1− q

q−2∑
m=0

q−s(0)+s(m)g(pm,−qm)ω(εM−1t)m.
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Finite hypergeometric sums and trace formulas

The Gross–Koblitz formula (part 1)

To compute the Beukers–Cohen–Mellit formula p-adically, one must
replace ω with a p-adic character of F×q ; it is natural to use the canonical
one given by Teichmüller lifting. There is also a convenient choice of ψq,
namely the composition of ω with the Dwork exponential series

Θq(x) = exp(π(x − xq))

where π ∈ Cp satisfies πp−1 = −p. This series has radius of convergence
> 1; remember this for later.

Exercises:
Check that Qp(π) = Qp(ζp).
Check that Θq(x1 + x2) = Θq(x1)Θq(x2) if xq1 = x1, x

q
2 = x2. (Hint:

compute in the ring Qp[π, x1, x2][[x ]]/(xq1 − x1, x
q
2 − x2).)
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Finite hypergeometric sums and trace formulas

The Gross–Koblitz formula (part 2)

The Morita p-adic Gamma function is the unique continuous function
Γp : Zp → Zp satisfying

Γp(0) = 1
Γp(x + 1) = −xΓp(x) (x 6≡ 0 (mod p))

Γp(x + 1) = −Γp(x) (x ≡ 0 (mod p)).

The Gross–Koblitz formula asserts that for q = pf , for m = 0, . . . , q − 2,

∑
x∈F×q

ω−m(x)Θq(ω(x)) = −πSp(m)
f−1∏
i=0

Γp

(
m(i)

q − 1

)

where Sp(m) denotes the sum of the p-adic digits of m and m(i) is the
remainder of mpi modulo q − 1 (i.e., a cyclic digital shift of m).
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Finite hypergeometric sums and trace formulas

Pros and cons

The resulting formula involves terms which are efficient to compute.

However, the q-trace is a sum over q − 1 terms. For computing full Euler
factors, this yields exponential dependence on the degree n: given the sign
of the functional equation, for any given p we need to take q = pf for
f = 1, . . . ,

⌊
n
2

⌋
. (For computing N coefficients of the Dirichlet series, the

degree is immaterial because one only needs to consider q ≤ N.)

Moreover, there is no obvious way to convert a sum over q − 1 terms into
an average polynomial time in the sense of Harvey–Sutherland, in which
one computes the first N coefficients of the Dirichlet series in time
O(N polylog N).

Both issues can (potentially) be circumvented using Frobenius structures.
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Frobenius structures
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Frobenius structures

Frobenius structures on differential equations

In the following discussion, let L be the completion of Qp(z) for the Gauss
norm. (This is called the field of analytic elements in z over Qp.)

Consider a first-order differential system Nv + d
dz (v) = 0 where N is an

n× n matrix over Qp(z). (Conversion of linear ODEs to first-order systems
left as an exercise.) A Frobenius structure with respect to the Frobenius
lift σ : z 7→ zp is a σ-linear endomorphism of Ln (identified with column
vectors) given by an n × n matrix A over L (whose columns are the images
of the standard basis vectors) satisfying

NA +
d

dz
(A) = pzp−1AN.

In other words, a Frobenius structure is an isomorphism of the associated
connection with its σ-pullback. (Here pzp−1 = dσ(z)

dz .)
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Frobenius structures

The HG equation and its Frobenius structure

The hypergeometric equation (with D = z d
dz ) is

(z(D + α1) · · · (D + αn)− (D + β1 − 1) · · · (D + βn − 1)) (y) = 0;

this is a Picard–Fuchs equation associated to the family of HGMs. It
admits a Frobenius structure F which is meromorphic on |z − 1| > 1− ε
for some ε > 0 with singularities only at z = 0,∞. (This follows from
general nonsense about crystalline cohomology, but we will use a more
concrete construction to be sketched later.)

For t ∈ Q for which p is good, the Euler factor at p of the associated HGM
is det(1− p−sF (ω(t))), where t ∈ Fp \ {0, 1} is the reduction of t mod p.
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Frobenius structures

Series solutions of the HG equation

In terms of the rising Pochhammer symbol

(α)n := α(α + 1) · · · (α + n − 1)

we define the Clausen–Thomae hypergeometric series

Fn n−1

(
α1, . . . , αn

β1, . . . , βn−1

∣∣∣∣ z) :=
∞∑
k=0

(α1)k · · · (αn)k
(β1)k · · · (βn−1)k

zk

k!

If β1, . . . , βn are pairwise distinct, then the HG equation has a C-basis of
solutions in the Puiseux field

⋃∞
m=1C((z1/m)) given by (for i = 1, . . . , n)

z1−βi Fn n−1

(
α1 − βi + 1, . . . , αn − βi + 1

β1 − βi + 1, . . . , ̂βi − βi + 1, . . . , βn − βi + 1

∣∣∣∣ z) .
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Frobenius structures

An algorithmic approach

The compatibility between the matrices A and N implies that one can
compute the Frobenius structure using formal solutions, as long as one
knows the “initial condition” at z = 0. That turns out to be given by some
explicit combination of p-adic Gamma functions (more on this below).

What one gets from the previous paragraph is a representation of F using
Puiseux series (truncated in both the p-adic and z-adic directions; some
care is needed here). One can then recognize the resulting series as
representations of elements of L (approximated p-adically by elements of
Qp(z)), which one can then evaluate at ω(t).

I have a toy Sage implementation of this. It is slower than Magma for n
small, but for n = 10 it is significantly faster! (This is expected because we
have eliminated the exponential dependence on n.)
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Frobenius structures

About that initial condition...

To study the Frobenius structure at z = 0, I first did some numerical
experiments (which I won’t describe here) to get a candidate formula. I
then tried to extract information from Dwork’s Generalized Hypergeometric
Functions. (Don’t try this at home!)

I am now pretty sure (but have not finished checking) that Dwork’s
methods do suffice to prove my guessed formula. In fact, this yields a
formula that makes sense for any pairwise distinct β1, . . . , βn ∈ Zp (and
even without pairwise distinctness, under a suitable interpretation).

However, one also obtains an alternative algorithm for computing the
Frobenius structure directly. This approach turns out to have surprising
links to previously studied algorithms...
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GKZ A-hypergeometric systems
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GKZ A-hypergeometric systems

A PDE associated to the HG equation

A function Φ(x := x1, . . . , xn; y := y1, . . . , yn) is killed by Euler operators

xj
∂

∂xj
+ yk

∂

∂yk
+ αj − βk + 1 (j , k = 1, . . . , n)

if and only if there exists a univariate function f (z) such that

Φ(x , y) = x−α11 · · · x−αn
n yβ1−11 · · · yβn−1n f ((−1)nx−11 · · · x

−1
n y1 · · · yn).

In this case, Φ is also killed by the toric operator
n∏

j=1

∂

∂xj
−

n∏
j=1

∂

∂yj
.

if and only if y = f (z) is a solution of the HG equation

(z(D + α1) · · · (D + αn)− (D + β1 − 1) · · · (D + βn − 1)) (y) = 0.
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GKZ A-hypergeometric systems

Define the Weyl algebra

Wm := C
〈
x1, . . . , xm, ∂1 :=

∂

∂x1
, . . . , ∂m :=

∂

∂xm

〉
.

Let A be a d ×m matrix over Z. The associated toric ideal in Wm is the
left ideal generated by

{∂u11 · · · ∂
um
m − ∂

vm
1 · · · ∂

vm
1 : u, v ∈ Zm

≥0,A(u − v) = 0}.

For δ ∈ Cd , add to this left ideal the Euler operators

Ai1x1∂1 + · · ·Aimxm∂m − δm (i = 1, . . . , d)

to obtain the GKZ ideal associated to A, δ. (GKZ is short for Gelfand–
Kapranov–Zelevinsky; independently discovered by Dwork.)
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GKZ A-hypergeometric systems

A dual construction

Let R be the C-subalgebra of C[X±1 , . . . ,X
±
n ] generated by

X (j) := X
A1j
1 · · ·XAdj

d (j = 1, . . . ,m).

Fix π ∈ C× (take it to be 1 for the moment). View R[x ] = R[x1, . . . , xm]
as a left Wm-module by adding πX (j) to the “natural” ∂j -action.

Theorem (Dwork)

As a left Wm-module, the quotient R[x ]/
∑d

i=1Dδ,iR[x ], where

g := π−1
m∑
j=1

xjX
(j) ∈ R[x ],

Dδ,i = Xi
∂

∂Xi
+ δi + Xi

∂g

∂Xi
,

is isomorphic to the quotient of Wm by the GKZ ideal.
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GKZ A-hypergeometric systems

The dual construction of Frobenius structures (part 1)

Using the previous construction, Dwork obtains Frobenius structures on
GKZ systems (and by restriction on HG equations) as follows. Let
ϕ : R[x ]→ R[x ] be the C-linear substitution

xi 7→ xpi , Xj 7→ X p
j .

Since
Dpδ,i ◦ ϕ = pϕ ◦ Dδ,i ,

ϕ induces a self-map on R[x ]/
∑d

i=1Dδ,iR[x ]. This becomes compatible
with Wm-actions if we define the action of ∂i on the target with respect to
pA rather than A.
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GKZ A-hypergeometric systems

The dual construction of Frobenius structures (part 2)

Let R̃ be the ring obtained by R[x ] by adjoining symbols

Ej := exp(π(X (j) − (X (j))p)) (j = 1, . . . ,m).

We may extend ∂i and ∂
∂Xj

to R̃ in the obvious fashion.

Taking the map induced by

f 7→ E1 · · ·Emϕ(f ),

then dividing the action of ∂i by p, yields a Wm-equivariant map
R̃/
∑d

i=1Dδ,i R̃ .

If we replace polynomials in the xi over C with analytic functions over Qp,
then the symbols Ej are already present thanks to the Dwork exponential
series. We thus obtain the desired Frobenius structure.

Kiran S. Kedlaya (UCSD/IAS) Hypergeometric L-functions MIT, August 24, 2018 32 / 36



GKZ A-hypergeometric systems

The dual construction of Frobenius structures (part 2)

Let R̃ be the ring obtained by R[x ] by adjoining symbols

Ej := exp(π(X (j) − (X (j))p)) (j = 1, . . . ,m).

We may extend ∂i and ∂
∂Xj

to R̃ in the obvious fashion.

Taking the map induced by

f 7→ E1 · · ·Emϕ(f ),

then dividing the action of ∂i by p, yields a Wm-equivariant map
R̃/
∑d

i=1Dδ,i R̃ .

If we replace polynomials in the xi over C with analytic functions over Qp,
then the symbols Ej are already present thanks to the Dwork exponential
series. We thus obtain the desired Frobenius structure.

Kiran S. Kedlaya (UCSD/IAS) Hypergeometric L-functions MIT, August 24, 2018 32 / 36



GKZ A-hypergeometric systems

The dual construction of Frobenius structures (part 2)

Let R̃ be the ring obtained by R[x ] by adjoining symbols

Ej := exp(π(X (j) − (X (j))p)) (j = 1, . . . ,m).

We may extend ∂i and ∂
∂Xj

to R̃ in the obvious fashion.

Taking the map induced by

f 7→ E1 · · ·Emϕ(f ),

then dividing the action of ∂i by p, yields a Wm-equivariant map
R̃/
∑d

i=1Dδ,i R̃ .

If we replace polynomials in the xi over C with analytic functions over Qp,
then the symbols Ej are already present thanks to the Dwork exponential
series. We thus obtain the desired Frobenius structure.

Kiran S. Kedlaya (UCSD/IAS) Hypergeometric L-functions MIT, August 24, 2018 32 / 36



GKZ A-hypergeometric systems

Reduction in the quotient

Computing the Frobenius structure in this fashion requires:
finding a basis for R[x ]/

∑d
i=1Dδ,iR[x ];

reducing elements of R[x ] to basis combinations in the quotient.
(These steps commute with specialization of x1, . . . , xm.)

Let ∆ ⊆ Rd be the convex hull of the origin plus the column vectors of A.
Define a filtration on R[x ] so that R[x ]e consists of the
C[x1, . . . , xm]-multiples of those monomials X c1

1 · · ·X
cd
d with

(c1, . . . , cd) ∈ e∆. (In general, e may be fractional.)

On the associated graded ring, Dδ,i acts by shifting degrees up by 1 and
multiplying by Xi

∂g
∂Xi

. In particular, finding a basis for the above quotient
amounts to computing the (toric) Jacobian ring of g .x
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GKZ A-hypergeometric systems

The punchline: controlled reduction

The resulting process strongly resembles the use of controlled reduction in
the computation of the zeta function or the nondegenerate toric
hypersurface g = 0 (for particular values of x1, . . . , xm); see my ANTS-XIII
paper with Costa and Harvey. That paper describes some worked examples
where the ambient space has dimension ≤ 5. We have not yet attempted
to adapt to this setting, but this should be straightforward.

The ANTS paper does not address average polynomial time, but this
should be feasible. This may in turn facilitate developing an average
polynomial time method for HGMs. (The approach via the initial condition
can also be adapted to give average polynomial time.)

Side note: there is a related algorithm of Sperber–Voight for zeta functions
of nondegenerate toric hypersurfaces which might also be adaptable to this
setting, but I did not attempt to perform the adaptation.
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GKZ A-hypergeometric systems

Next steps: beyond HGM?

For arbitrary A, δ (satisfying some genericity conditions which I omit here),
one can introduce the analogue of the Galois-stable condition: for any
integer e coprime to the least common denominator of δ, the pairs A, δ and
A, eδ define isomorphic GKZ systems (after inverting x1, . . . , xm).

Is there a family of motives in this situation? The de Rham realizations
have been studied by Beukers and others; the `-adic realizations were
recently constructed by Lei Fu by analogy with Katz’s construction,
together with the analogue of finite hypergeometric sums and the trace
formula. (This might be tricky to render in the motivic setting: one needs
the motivic analogue of middle convolution of perverse sheaves over a
higher-dimensional base.)

If so, this would give many new examples of L-functions. It might also
provide new parametrizations giving access to objects of prior interest.
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GKZ A-hypergeometric systems

Fin

Thank you for your attention!
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