Problemas de números de clase relativos para cuerpos de funciones

Kiran S. Kedlava

con Santiago Arango-Piñeros, María Chara, Asimina Hamakiotes, y Gustavo Rama

Department of Mathematics, University of California San Diego (EE.UU.) kedlava@ucsd.edu Estas diapositivas están disponibles de https://kskedlaya.org/slides/.

Teoría de Números en las Américas 2 (Number Theory in the Americas 2) Casa Matemática Oaxaca, Oaxaca, México 9 de septiembre, 2024

Numeros de clase relativos

En este proyecto, un **cuerpo de funciones** F es el cuerpo de las funciones racionales de una curva "chida" C sobre un cuerpo finito \mathbb{F}_q . Sea g_F el **genero** de F (o de C) y h_F el **numero de clase** de F; es el orden del grupo $J(C)(\mathbb{F}_q)$ donde F es la **variedad Jacobiana** de F.

Sea F'/F una extensión finita y separable de cuerpos de funciones, asociada al cubrimiento $C' \to C$. El **número de clase relativo** $h_{F'/F} := h_{F'}/h_F$ es un entero; es el orden de $A(\mathbb{F}_q)$ para una variedad abeliana A sobre \mathbb{F}_q (la **variedad Prym** del cubrimiento $C' \to C$).

Un poco de contexto: para una extensión de cuerpos de **numeros** no es verdad en general, excepto cuando F es totalmente real, F'/F es cuadrática, y F' es totalmente complejo. Este incluye el caso donde $F=\mathbb{Q}$ y F' es cuadrático imaginario, como en el problema de número de clase de Gauss $(h_{F'/F}=1 \text{ ssi } F'=\mathbb{Q}(\sqrt{-D}) \text{ con } D \in \{2,3,4,7,11,19,43,67,163\}).$

¹Abreviatura propuesta por Santi para "suave, proyectiva, y geométricamente irreducible"

Un teorema y dos problemas

Theorem (K, 2022)

En los casos donde dim(A) > 0, tenemos una clasificación finita de los casos con $h_{F'/F} = 1$. (Las excepciones son cuando $g_{F'} = g_F$ y tambien $g_F = 0$ o q' = q.)

Problem

Demonstrar que para cada m > 1, hay una cota **efectiva** (computable) para los casos con $h_{F'/F} = m$. (Tenemos que controlar q, g, g'.)

Problem

Hacer una clasificación completa para $h_{F'/F} = 2$.

Es natural dividir el trabajo según si $q \ge 5$; q = 3,4; o q = 2; y basta considerar los casos donde F'/F es **constante** ($F' = F \cdot \mathbb{F}_{q'}$) or **totalmente geométrica** (q' = q).

Esquema de la prueba

- Paso 1: Obtener una lista finita que **no depende** en q que siempre contiene el polinomio de Weil de A si $\#A(\mathbb{F}_q) = m$. (Esto incluye acotar dim(A) para cada q, y también q.)
- Paso 2a: Para cada q, obtener una lista finita de pares $(P_C, P_{C'})$ que siempre contiene los polinomio de Weil de C y C' si F'/F es constante. (Nota: $A = (\text{Res}_{\mathbb{F}_{q'}}/\mathbb{F}_q J(C'))/J(C)$.)
- Paso 2b: Para cada (q, d) con d > 1, obtener una lista finita de pares $(P_C, P_{C'})$ que contiene los polinomio de Weil de C y C' si F'/F es geométrica de grado d.
- Paso 3: Identificar todas las curvas C cuyos polynomios de Weil aparecen en estas listas.
- Paso 4: Para cada curva C que aparece en la lista de (q, d), computar todas las extensiónes **cíclicas** de F de grado d y buscar casos con $h_{F'/F} = m$.
- Paso 5: Para cada (q, d) con d > 2, para cada par $(P_C, P_{C'})$ en la lista de (q, d), computar todas las extensiónes **no cíclicas** de F de grado d y buscar casos con $h_{F'/F}$ **o** usar los polinomios para demonstrar que no es posible.

Paso 1: el polinomio de Weil de A (q > 2)

En lo que sigue, $T_{*,q}$ denota la traza de Frobenius de *.

- Por Riemann-Hurwitz, $\dim(A) \geq g 1$. (Si F'/F es constante, $\dim(A) \geq g$.)
- ullet Para $q\geq 5$, el teorema de Weil implica que $\# A(\mathbb{F}_q)\geq (\sqrt{q}-1)^{2g}$.
- Para q = 3, 4, combinamos algunos ingredientes:
 - A es isógena a $E^m \times B$ con E la única curva elíptica sobre \mathbb{F}_q con $\#E(\mathbb{F}_q)=1$, $m\geq 0$ un entero, y B una variedad abeliana que no tiene E como factor; tenemos $T_{A,q}=q(\dim(A)-\dim(B))+T_{B,q}$. Un teorema de Kadets implica que $\#B(\mathbb{F}_q)\geq 1,259^{\dim(B)}$ si q=3 y $\#B(\mathbb{F}_q)\geq 2,236^{\dim(B)}$ si q=4.
 - Si F'/F es constante, $T_{A,q}=-T_{J(C),q}=\#\mathcal{C}(\mathbb{F}_q)-q-1$. Si es geométrica,

$$0 \leq \#\mathcal{C}'(\mathbb{F}_q) = q+1 - \mathcal{T}_{J(\mathcal{C}'),q} = q+1 - (\mathcal{T}_{J(\mathcal{C}),q} + \mathcal{T}_{A,q}) = \#\mathcal{C}(\mathbb{F}_q) - \mathcal{T}_{A,q}.$$

• $\#C(\mathbb{F}_q) \le 1{,}153g + 11{,}67$ si q = 3 y $\#C(\mathbb{F}_q) \le 1{,}435g + 21{,}75$ si q = 4.

Paso 1: el polinomio de Weil de A (q = 2)

Para q=2, no podemos clasificar A tan facilmente: existe una infinitud de variedades abelianas **simples** B con $\#B(\mathbb{F}_2)=1$.

Sin embargo, cuando $\#A(\mathbb{F}_2)=m$, se puede establecer directamente una desigualdad de la forma

$$*T_{A,2} + *T_{A,4} + *T_{A,8} + *T_{A,16} \ge c_0 g + c_1.$$

Esto implica una cota de la forma

$$*\#C(\mathbb{F}_2) + *\#C(\mathbb{F}_4) + *\#C(\mathbb{F}_8) + *\#C(\mathbb{F}_{16}) \geq c_0g + c_1.$$

Por otro lado, si a_i denota el numero de places de C de grado i, el método de "programación lineal" de Ihara–Serre–Oesterlé produce algunas desigualdades de la forma

$$*a_1 + *a_2 + *a_3 + *a_4 \le c_0'g + c_1'.$$

Otros pasos

SageMath puede tabular polinomios de Weil sobre \mathbb{F}_q de grado especificado. Comparando a la lista de polinomios de Weil para A y usando condiciones geométricas (e.g., $\#C'(\mathbb{F}_{q'}) \geq 0$), pueden restringir los polinomios de Weil de C y C'.

Cuando g y q son pequenos, LMFDB tiene tablas completas de curvas de genero g sobre \mathbb{F}_q . Tal vez necesitaremos extender el alcance de las tablas...

Magma puede computar extensiones abelianas de un cuerpo de funciones F de grado especificado (usando la teoría de cuerpos de clases).

Cuando d > 2, generalmente se puede eliminar las extensiones no abelianas por un análisis de la clausura normal de F'/F. Cuando esto falla, se puede aplicar otras técnicas (e.g., las parametrizaciones de Bhargava por $d \le 5$).