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Introduction: Does precision matter?

Computing with real numbers

It is wildly impractical (if not outright impossible) to compute with exact
real numbers. Instead, one typically uses floating-point approximations, in
which only a limited number of digits are carried.

These are sufficient for many practical computations where answers need
only be correct with some reasonable probability. For extra reliability, one
can increase the number of digits carried.

However, floating-point calculations do give reproducible results, so one
can use them in establishing proofs. One approach is to attach error
bounds to floating-point numbers, yielding interval arithmetic.
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Introduction: Does precision matter?

Does precision matter in p-adic cohomology?

When working in the ring Zp/pnZp, all computations are exact. But when
working in Zp or Qp, one again makes only approximate calculations.

For numerical experiments, approximate answers are often sufficient. For
provable calculations, one must add error estimates, but the difference
between weak and strong error bounds often appears in asymptotics only
as a constant factor.

So does precision matter?
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Introduction: Does precision matter?

Precision matters!

For provable computations in practice, bad precision estimates often lead
to excessive time and memory consumption. In many cases, these can
push a computation over the feasibility boundary. (This is particularly true
in dimension greater than 1.)

Even for experimental computations, a proper understanding of precision
allows one to optimize parameters while still retaining a high probability of
reasonable results.

But my favorite reason to study precision estimates in p-adic cohomology
is...

... it involves some very interesting mathematics!
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Introduction: Does precision matter?

Plan of the talk

A typical application of p-adic cohomology to compute zeta functions
would involve computation of the Frobenius action on a basis of a
cohomology group, extraction of a p-adic approximation of the
characteristic polynomial of the Frobenius matrix, and reconstruction of a
Weil polynomial.

We will work through these steps in reverse order.
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From characteristic polynomials to zeta functions
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From characteristic polynomials to zeta functions

Weil polynomials and zeta functions

Let X be a variety over Fq. The zeta function is the Dirichlet series

ζX (s) =
∏

x∈Xclosed

(1−#κ(x)−s)−1,

for κ(x) the residue field of x . It can be represented as

P1(T )P3(T ) · · ·
P0(T )P2(T ) · · ·

(T = q−s ,Pi (T ) ∈ 1 + TZ[T ]).

If X is smooth proper, the roots of Pi (T ) in C have absolute value q−i/2

(i.e., the reverse of Pi is a Weil polynomial), and

Pi (T ) = det(1− FT ,H i (X ))

for F the Frobenius action on the i-th rigid cohomology H i (X ). By
computing in H i (X ), we can obtain a p-adic approximation of Pi .
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From characteristic polynomials to zeta functions

Recovering a Weil polynomial from an approximation

How good an approximation is needed to determine Pi (T ) uniquely?

For instance, say X is a curve of genus g , so

P1(T ) = 1 + a1T + · · ·+ agT g + · · ·+ a2gT 2g

and the higher coefficients satisfy ag+i = qiag−i . For i = 1, . . . , g , we have

|ai | ≤
(

2g

i

)
qi/2

so P1(T ) is uniquely determined by its residue modulo qn as long as

qn > 2

(
2g

g

)
qg/2.

But this is not optimal!
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From characteristic polynomials to zeta functions

Recovering a Weil polynomial from an approximation

Write P1(T ) = (1− α1T ) · · · (1− α2gT ), and define the power sums

si = αi
1 + · · ·+ αi

2g .

The si are integers of norm at most 2gqi/2, and satisfy the Newton-Viète
identities

si + a1si−1 + · · ·+ ai−1s1 + iai = 0.

Once a1, . . . , ai−1 are known, so are s1, . . . , si−1, so we can determine ai
by determining si . Consequently, P1(T ) is uniquely determined by its
residue modulo qn as long as

qn > max

{
4g

i
qi/2 : i = 1, . . . , g

}
.
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From characteristic polynomials to zeta functions

Refinements

I have Sage code to find all Weil polynomials obeying a congruence. Using
such code, one can determine experimentally how much precision in the
congruence is needed to uniquely determine the Weil polynomial; it is
typically slightly less than the best known bounds (by one or two digits).

This gap grows when one adds extra constraints on the Weil polynomial
(e.g., if X is a curve whose Jacobian has extra endomorphisms).

However, fixing some initial coefficients of Pi (T ) (by explicit point
counting) apparently does not reduce precision requirements in most cases.
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From Frobenius matrices to characteristic polynomials
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From Frobenius matrices to characteristic polynomials

Setup

Let A be a square matrix over Zp (or more generally, any complete
discrete valuation ring). How sensitive is det(1− TA) to perturbations of
A? In other words, if B is another square matrix of the same size, how do
bounds on B translate into bounds on det(1− T (A + B))?

Example: If B is divisible by pn, then so is each coefficient of
det(1− TA)− det(1− T (A + B)).

In practice, this is often not optimal!
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From Frobenius matrices to characteristic polynomials

Enter the Hodge polygon

Suppose X is smooth proper over Zp (for example), and suppose p > i
(for simplicity). Then

H i
crys(XFp ,Zp) ∼= H i

dR(X )

carries a Hodge filtration

0 = Fil−1 ⊆ · · · ⊆ Fili = H i
dR(X )

with Filj /Filj−1 ∼= H j(X ,Ωi−j
X/Zp

). Frobenius does not preserve this

filtration, but the image of Filj is divisible by pi−j .

By computing with a basis of H i
dR(X ) compatible with the Hodge

filtration, we pick up some p-adic divisibilities that help reduce the
perturbation in the characteristic polynomial.
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From Frobenius matrices to characteristic polynomials

Exploiting the Hodge polygon

Let’s go back to our square matrices A and B and impose some p-adic
divisibility conditions on some columns of A. For instance, suppose

A =



p2∗ p∗ p∗ p∗ p∗ ∗
p2∗ p∗ p∗ p∗ p∗ ∗
p2∗ p∗ p∗ p∗ p∗ ∗
p2∗ p∗ p∗ p∗ p∗ ∗
p2∗ p∗ p∗ p∗ p∗ ∗
p2∗ p∗ p∗ p∗ p∗ ∗


and B is divisible by pm. Then

det(1−TA)−det(1−T (A+B)) = pm∗T +pm∗T 2+pm+1∗T 3+pm+2∗T 4+. . . ,

e.g., by writing the coefficient of T k in det(1− TA) as a signed sum of
principal k × k minors of A.
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From Frobenius matrices to characteristic polynomials

Example: K3 surfaces

Let X be a K3 surface over Fq, e.g., a smooth quartic surface in P3. Then

P2(T ) = (1− qT )Pprim
2 (T ) where Pprim

2 (T ) has degree 21. By symmetry,

Pprim
2 (T ) is determined by its coefficients up to T 10, so one expects to

need about q10 precision in the Frobenius matrix.

However, the Hodge numbers in primitive middle cohomology are 1, 19, 1.
So precision qm in the Frobenius matrix gives precision qm+k−2 in the
coefficient of T k for k = 2, . . . , 10. Hence one needs only about q3

precision in the Frobenius matrix!
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From differential forms to Frobenius matrices
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From differential forms to Frobenius matrices

The Monsky-Washnitzer method

Let X be a smooth proper variety over Zp (say), and let Z be a divisor of
simple normal crossings. We can use Monsky-Washnitzer cohomology to
find the zeta function of U = X \ Z , by lifting to a smooth pair (X ,Z )
over Qp and computing in the weak completion of the coordinate ring of
U = X \ Z . In cases of interest, the de Rham cohomology of U will be
described by a reduction rule for differential forms.

The action of a Frobenius lift is given by some p-adically convergent power
series, which we truncate for the computation. However, the power of p
dividing the unseen remainder is typically reduced by the process of
reducing it into basis form.
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From differential forms to Frobenius matrices

Example: hyperelliptic curves

Consider the hyperelliptic curve y 2 = P(x), where P is is a polynomial of
degree 2g + 1 over Zp with no repeated roots modulo p. Use the
Frobenius lift F : x 7→ xp. For i = 0, . . . , 2g − 1, write

F

(
x i dx

y

)
= Q(x)y +

∞∑
s=1

piRi (x) dx

y 2s−1
,

with deg(Ri ) ≤ 2g . One reduces the pole orders using the relation

0 ≡ d

(
A(x)

y 2s−1

)
=

A′(x) dx

y 2s−1
− (2s − 1)A(x)P ′(x) dx

2y 2s+1
.

In doing so, Ri (x) dx/y 2s−1 acquires a denominator no worse than pm for
m = blogp(2s + 1)c. (Proof: expand formally at each Weierstrass point.)

One may treat Q similarly by expanding at ∞. It helps to pass to a
crystalline basis, e.g., x i dx/y 3.
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From differential forms to Frobenius matrices

Smooth projective hypersurfaces

Assume for simplicity that p ≥ n− 2. Consider the complement in X = Pn

of a smooth hypersurface Z of degree d defined by a polynomial
P(x0, . . . , xn). Put

Ω =
n∑

i=0

(−1)ixidx0 ∧ · · · ∧ d̂xi ∧ · · · ∧ dxn.

The top cohomology is a quotient of the space of homogeneous degree 0
forms AΩ/Pd by all relations of the form

∂A

∂xi

Ω

Pd
− ∂P

∂xi

mAΩ

Pd+1
(i = 0, . . . , n).

These can be used to reduce the pole order d .

We use the Frobenius lift F : xi 7→ xp
i .
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From differential forms to Frobenius matrices

Precision loss

We can find a basis of cohomology in which each element is AΩ/Pd for
some monomial A and some d ∈ {1, . . . , n}. As in the hyperelliptic case,
when we apply Frobenius to a basis vector, we get an p-adically convergent
infinite series, which we truncate and then reduce in cohomology.

We need to estimate the contribution to the Frobenius matrix from the
omitted terms. This amounts to asking: when one reduces AΩ/Pd to a
linear combination of basis vectors, how much of a denominator is
introduced?

First answer: the denominator is at most pm with

n∑
i=1

blogp max{1, d − 1}c.
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From differential forms to Frobenius matrices

Local expansions revisited

To get the previous bound, we would like to “expand formally”, but this
requires thinking in terms of sheaves.

For d ≥ 0, consider the map

Ω·(X ,Z) → Ω·(X ,Z)(dZ )

of complexes of sheaves, in which the left side is the logarithmic de Rham
complex and the right side allows poles of order d . Then pass to the
homology sheaves

Hi → Hi
d .

We calculate formally in local coordinates that the cokernel of each map is
killed by lcm(1, . . . , d). We then get the previous bound by computing the
de Rham cohomology of U as the hypercohomology of Ω·(X ,Z).
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From differential forms to Frobenius matrices

Refining the bound

The preceding analysis gave a denominator bound of pm with
m ∼ n logp d . We can refine this to m ∼ (n − 1) logp d .

Sketch of proof: at each step with d divisible by p, approximate each
monomial of A with all exponents congruent to −1 mod p by an element
of the image of Frobenius. Using the fact that the Frobenius matrix is
divisible by p (from the comparison between the de Rham cohomology of
U and Z ), we get savings in reducing these monomials. Each other
monomial can be raised once (picking up a factor of p) and then reduced.
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From differential forms to Frobenius matrices

Can we do better?

It appears that the bounds we obtained are still not optimal. For instance,
consider the smooth quartic (K3) surface in P3 over F3 defined by

x4 − xy 3 + xy 2w + xyzw + xyw 2 − xzw 2 + y 4 + y 3w − y 2zw + z4 + w 4.

To get final precision 33, 34, 35, 36 in the Frobenius matrix, our refined
bounds suggest that we need to truncate the Frobenius action modulo
37, 310, 311, 312. However, experimentally we only need to truncate modulo
36, 37, 39, 310.

This matters in runtimes. For instance, going from 36 to 37 added a factor
of 3.
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