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Motivation: review of Bogomolov-Zhang

Setup (after Zhang’s lecture)

Let C be a compact Riemann surface of genus g . Let S be a finite subset
of C . Let f : E → C be a nonisotrivial elliptic fibration over C − S with
stable reduction at all s ∈ S . Let ∆E =

∑
s ∆s · (s) be the discriminant

divisor; we will prove1

deg ∆E ≤ 6(#S + 2g − 1).

To begin, fix a point p ∈ C − S ; we then have a monodromy action

ρ : π1(C − S , p)→ SL(H1(Ep,Z)) ∼= SL2(Z).

The group π1(C − S , p) is generated by ai , bi for i = 1, . . . , g plus a loop
cs around each s ∈ S , subject to the single relation

[a1, b1] · · · [ag , bg ]
∏
s∈S

cs = 1.

1The correct upper bound is 6(#S + 2g − 2), but this requires some extra effort.
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Motivation: review of Bogomolov-Zhang

Lifting in fundamental groups

Since SL2(R) acts on R/2πZ via rotation, we obtain central extensions

1→ Z→ S̃L2(Z)→ SL2(Z)→ 1,

1→ Z→ S̃L2(R)→ SL2(R)→ 1.

The former defines an element of H2(SL2(Z),Z), which we restrict along

ρ: lift ρ(ai ), ρ(bi ), ρ(cs) to αi , βi , γs ∈ S̃L2(Z), so that

[α1, β1] · · · [αg , βg ]
∏
s∈S

γs = m for some m ∈ Z.
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Motivation: review of Bogomolov-Zhang

Measurement in fundamental groups: part 1

For α ∈ S̃L2(R), define its length as

`(α) = sup
x∈R
|α(x)− x |.

By taking αi , βi , γs to be “minimal” lifts of ρ(ai ), ρ(bi ), ρ(cs), we may
ensure that

`([αi , βi ]) ≤ 2π, `(γs) < π.

Taking lengths of both sides of the equality

[α1, β1] · · · [αg , βg ]
∏
s∈S

γs = m

yields
2πg + π#S > 2π|m| =⇒ 2|m| ≤ 2g + #S − 1.
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Motivation: review of Bogomolov-Zhang

Measurement in fundamental groups: part 2

The group SL2(Z) is generated by these two elements:

u =

(
1 1
0 1

)
, v =

(
1 0
−1 1

)
.

These may be lifted to elements ũ, ṽ ∈ S̃L2(Z) which generate freely
modulo the braid relation ũṽ ũ = ṽ ũṽ . We thus have a homomorphism
deg : S̃L2(Z)→ Z taking ũ, ṽ to 1.

Write the discriminant divisor as ∆E =
∑

s∈S ∆s · (s). then ρ(cs) ∼ u∆s .

Because of the minimal lifting, we have γs ∼ ũ∆s . Since Z ⊂ S̃L2(Z) is
generated by (ũṽ)6, we have

deg ∆E = deg(m) = 12|m|.

Comparing with the previous slide yields the claimed inequality.
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Motivation: review of Bogomolov-Zhang

The role of theta

This argument can be viewed as a prototype for IUT, but it is better to
modify it first.

We are implicitly using the interpretation Ep
∼= C/(Z + τpZ). By

exponentiating, we get Ep
∼= C×/qZp for qp = e2πiτp .

This isomorphism can be described in terms of the a Jacobi theta function

ϑp(z) :=
∑
n∈Z

(−1)nq
(n+1/2)2

p z2n+1

via the formula
℘p(z) = (− log ϑp(z))′′ + c .

In particular, this provides access to the symplectic structure in the guise
of the Weil pairing.
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Motivation: review of Bogomolov-Zhang

The role of nonarchimedean theta

The previous discussion admits a nonarchimedean analogue for curves with
split multiplicative reduction via Tate uniformization (e.g., see Mumford’s
appendix to Faltings-Chai).

The nonarchimedean theta function can be used to construct “something”
(the tempered Frobenioid) playing the role of γs , i.e., which records the
contribution of a bad-reduction prime to conductor and discriminant.

We cannot hope to do this using only the profinite (local arithmetic) étale
fundamental group: this only produces the discriminant exponent as an
element of Ẑ, whereas we need it in Z in order to make archimedean
estimates. (Compare the analogous issue in global class field theory.)

Fortunately, for nonarchimedean analytic spaces, there is a natural way to
“partially decomplete” the profinite étale fundamental group to obtain the
tempered fundamental group (see Lepage’s lecture).
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Construction of the étale theta classes [EtTh, §1]

Context: Uniformization of elliptic curves

Let K be a finite extension of Qp with integral subring oK . Let E be the
analytification of an elliptic curve over K with split multiplicative
reduction; it admits a Tate uniformization

E ∼= Gm/q
Z for some q ∈ K with vK (q) = vK (∆E/K ) > 0.

We will describe a sequence of objects over E which admit analogues on
the side of formal schemes (by comparison of fundamental groups); we
denote this imitation by passing from ITALIC (or sometimes
MAT HCAL) to FRAKTUR lettering. The reverse passage is the
Raynaud generic fiber construction.

For example, for X as on the next slide, let X be the stable model of X
over oK with log structure along the special fiber.
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Construction of the étale theta classes [EtTh, §1]

Fundamental groups: setup

Let π̂, πtop
1 , πtm

1 denote2 the profinite, topological, and tempered
fundamental groups of an analytic space (for some basepoint).

Recall the exact sequence (on which GK acts):

1 // π̂1(Gm,K ) // πtm
1 (EK ) // πtop

1 (EK ) // 1

1 // Ẑ(1) // πtm
1 (EK ) // Z // 1.

Let X be the hyperbolic log-curve obtained from E by adding logarithmic
structure at the origin (the “cusp”). We have another exact sequence

1 // πtm
1 (XK ) // πtm

1 (X ) // GK
// 1.

Put πtm
1 (XK )ell := πtm

1 (XK )ab := πtm
1 (EK ) and similarly for π̂1.

2In [EtTh], the letters Π and ∆ are generally used to distinguish arithmetic vs.
geometric fundamental groups; hence the notation ∆Θ on the next slide.
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Construction of the étale theta classes [EtTh, §1]

Fundamental groups: geometric Θ

The group π̂1(XK ) is profinite free on 2 generators. Consequently, if we
write π̂1(XK )Θ for the 2-step nilpotent quotient

π̂1(XK )Θ := π̂1(X )/[•, [•, •]],

we have natural exact sequences (the second pulled back from the first):

1 // ∆Θ
∼= Ẑ(1) // πtm

1 (XK )Θ //

��

πtm
1 (XK )ell

��

// 1

1 // ∧2π̂1(XK )ab // π̂1(XK )Θ // π̂1(XK )ell // 1

In fact, we can write

π̂1(XK )Θ ∼=

1 Ẑ(1) Ẑ(1)

1 Ẑ
1

 , πtm
1 (XK )Θ ∼=

1 Ẑ(1) Ẑ(1)
1 Z

1

 .
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Construction of the étale theta classes [EtTh, §1]

Fundamental groups: covers and arithmetic Θ

For any (possibly infinite) connected tempered cover W of X , πtm
1 (W ) is

an open subgroup of πtm
1 (X ). We obtain exact sequences

1 // ∆Θ ∩ πtm
1 (WK ) // πtm

1 (WK )Θ //

��

πtm
1 (WK )ell

��

// 1

1 // ∆Θ ∩ πtm
1 (WK ) // π̂1(WK )Θ // π̂1(WK )ell // 1

by taking subobjects of the corresponding objects over XK .

Let L ⊆ K be the integral closure of K in the function field of W . Define
πtm

1 (W )Θ as the quotient of πtm
1 (W ) for which

1→ πtm
1 (WK )Θ → πtm

1 (W )Θ → GL → 1

is exact. Similarly, with πtm
1 replaced by π̂1 and/or •Θ replaced by •ell.
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Construction of the étale theta classes [EtTh, §1]

The universal topological cover

Let Y be a copy of Gm with log structure at qZ, viewed as an infinite étale
cover of X . The exact sequence

1→ ∆Θ → πtm
1 (YK )Θ → πtm

1 (YK )ell → 1

consists of abelian3 profinite groups; that is,

π̂1(YK )Θ = πtm
1 (YK )Θ ∼=

1 Ẑ(1) Ẑ(1)
1 0

1

 .

3This is why we replaced •ab with •ell earlier.
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Construction of the étale theta classes [EtTh, §1]

Some Galois coverings

For N ≥ 1, define KN := K (ζN , q
1/N) ⊆ K . Pick a cusp of Y ; its

decomposition group determines (up to πtm
1 (YK )-conjugation) a section

GK → πtm
1 (Y )ell.

The image of the composition

GKN
↪→ GK → πtm

1 (Y )ell � πtm
1 (Y )ell/N

is stable under πtm
1 (X )-conjugation; we thus obtain a Galois covering

YN → Y and an exact sequence

1→ πtm
1 (YK )ell/N → Gal(YN/Y )→ Gal(KN/K )→ 1.
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Construction of the étale theta classes [EtTh, §1]

Some more Galois coverings

Define the finite4 Galois extension JN := KN(a1/N : a ∈ KN) ⊆ K .

Since any two splittings of

1→ ∆Θ/N ∼= Z/NZ(1)→ πtm
1 (YN)Θ/N → GKN

→ 1

differ by a class in H1(GKN
,Z/NZ(1)), they restrict equally to GJN . Again,

we thus get a Galois covering ZN → YN and an exact sequence

1→ ∆Θ/N → Gal(ZN/YN)→ Gal(JN/KN)→ 1.

4Because KN is a local field.
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Construction of the étale theta classes [EtTh, §1]

Integral models and line bundles

Recall that X ,Y ,YN ,ZN come with integral models X,Y,YN ,ZN .

The special fiber of YN is an open chain of P1’s, so Pic(YN) ∼= ZZ. Let
LN be the line bundle corresponding to the constant function 1 in ZZ.

Choose a section s1 ∈ Γ(Y = Y1,L1) whose divisor is the cusps. Fix an
identification of L1|YN

with L⊗NN ; we then get a unique action of
Gal(YN/X ) on L1|YN

preserving s1.

Proposition (EtTh, Proposition 1.1)

(i) The section s1|YN
∈ Γ(YN ,L1|YN

) admits an N-th root
sN ∈ Γ(ZN ,LN |ZN

).

(ii) There is a unique action of πtm
1 (X ) on LN ⊗oKN

oJN (over
YN ×oKN

oJN ) compatible with the map ZN → V (LN ⊗oKN
oJN )

determined by sN (where V means the geometric line bundle).
Moreover, this action factors through a faithful action of Gal(ZN/X ).
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Construction of the étale theta classes [EtTh, §1]

Orientation

Define (with N optionally omitted when N = 1)

K̈N := K2N , J̈N = K̈2N(a1/N : a ∈ K̈2N),

ŸN := Y2N ×K̈N
J̈N , L̈N := LN |ŸN

∼= L⊗2
2N ⊗K̈N

J̈N , etc.

We now fix an isomorphism Gal(Y /X ) ∼= Z and a compatible Z-labeling of
the components of the special fiber of Y (and hence of YN).

Let DN be the effective Cartier divisor on ŸN supported on the special
fiber which on component j is the divisor of qj

2/(2N). By counting degrees,
we see that there exists a section τN ∈ Γ(ŸN , L̈N) with zero locus DN .

Lemma (EtTh, Lemma 1.2)

We may choose τN so τ
⊗N1/N2

N1
= τN2 whenever N2|N1. We thus get

compatible (over N) actions of πtm
1 (Y ) on ŸN ,V (L̈N) preserving τN .

Kiran S. Kedlaya (UC San Diego) The étale theta function 18 / 37



Construction of the étale theta classes [EtTh, §1]

The étale theta class, part 1: basic properties

The action of πtm
1 (Y ) on V (L̈N) from [EtTh, Lemma 1.2] is not the one

induced from [EtTh, Proposition 1.1]; they differ by a 2N-th root of unity.
(If we restrict to πtm

1 (Ÿ ), we only get N-th roots of unity.)

Proposition (EtTh, Proposition 1.3)

Comparing the two actions, we obtain

ηΘ
N ∈ H1(πtm

1 (Y ),∆Θ ⊗
1

2
Z/NZ ∼=

1

2
Z/NZ(1)).

This arises from πtm
1 (Y )/πtm

1 (Z̈N); the further restriction to

(H1 = Hom)(πtm
1 (Ÿ )/πtm

1 (Z̈N),∆Θ ⊗
1

2
Z/NZ)

is the composite of the natural isom πtm
1 (Ÿ )/πtm

1 (Z̈N) ∼= ∆Θ ⊗ Z/NZ
with the embedding Z/NZ→ 1

2Z/NZ.
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Construction of the étale theta classes [EtTh, §1]

The étale theta class, part 2: ambiguities

Put o×
K/K̈

:= {a ∈ o×
K̈

: a2 ∈ K}; this has a Kummer map to

H1(GK ,
1
2Z/NZ(1)) extending the usual K× → H1(GK ,Z/NZ(1)).

Proposition (EtTh, Proposition 1.3 continued)

The set of cohomology classes

o×
K/K̈
· ηΘ

N ∈ H1(πtm
1 (Y ),∆Θ ⊗

1

2
Z/NZ)

does not depend on the choices of s1, sN , τN . In particular, these sets are
compatible with changing N, so we get sets

o×
K/K̈
· ηΘ ∈ H1(πtm

1 (Y ),
1

2
∆Θ
∼=

1

2
Ẑ(1))

each arising from πtm
1 (Y )Θ and restricting in (H1 = Hom)(π̂1(Y )Θ, 1

2 ∆Θ)
to the composition π̂1(Y )Θ ∼= ∆Θ ↪→ 1

2 ∆Θ.
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Construction of the étale theta classes [EtTh, §1]

The étale theta class, part 3: ±-descent

Proposition (EtTh, Proposition 1.3 continued)

The restricted classes

o×
K/K̈
· ηΘ|Ÿ ∈ H1(πtm

1 (Ÿ ),
1

2
∆Θ)

are “integral”, i.e., they arise from classes

o×
K̈
· η̈Θ ∈ H1(πtm

1 (Ÿ ),∆Θ = Ẑ(1)).

Any element of any of the sets o×
K/K̈
· ηΘ

N , o
×
K/K̈
· ηΘ, o×

K̈
· η̈Θ is called “the”

étale theta class.

Note: the 1
2 is forced because the divisor D1 does not descend from Ÿ to

Y. It is also the 1
2 in the formula for the theta function...
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Construction of the étale theta classes [EtTh, §1]

The nonarchimedean theta function (after Mumford)

Let U be the open formal subscheme of Y missing the nodes on
component 0 of the special fiber. Tate uniformization (and the choice of
orientation) defines a multiplicative coordinate U ∈ Γ(U,O×U ) admitting a

square root Ü on Ü = U×Y Ÿ.

On Ÿ, we have a meromorphic function given on Ü by the formula

Θ̈(Ü) = q−
1
8

∑
n∈Z

(−1)nq
1
2

(n+ 1
2

)2
Ü2n+1.

Its zero divisor is 1×(cusps); its pole divisor in D1. We have

Θ̈(Ü) = −Θ̈(Ü−1), Θ̈(−Ü) = −Θ̈(Ü),

Θ̈(qa/2Ü) = (−1)aq−a
2/2Ü−2aΘ̈(Ü).
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Construction of the étale theta classes [EtTh, §1]

Étale theta classes and the theta function

Proposition (EtTh, Proposition 1.4)

The étale theta classes o×
K̈
· η̈Θ ∈ H1(πtm

1 (Ÿ ),∆Θ) agree with the

Kummer classes associated to o×
K̈

-multiples of Θ̈ as a regular function on

Ÿ (as in Stix’s lecture).

In particular, for L/K̈ finite and y ∈ Ÿ (L) not cuspidal, the restricted
classes

o×
K̈
· η̈Θ|y ∈ H1(GL,∆Θ

∼= Ẑ(1)) ∼= (L×)∧

lie in L× and equal the o×
K̈

-multiples of the value Θ̈(y). (There is a similar

statement also for cusps.)

For this reason, the étale theta classes are also referred to as the étale
theta function.
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Rigidity properties of the etale theta classes [EtTh, §2]

Rigidity and indeterminacies: what?

Say we have two collections of data as above, distinguished by the
subscripts α, β.

For IUT, one needs various statements saying that certain constructions
are rigid. That is, given an isomorphism of certain topological groups (or
analogous data, such as Frobenioids), we reconstruct an isomorphism of
certain underlying arithmetic-geometric structures...

... but only up to some specified indeterminacy. That is, we generally only
recover a collection of closely related isomorphisms.
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Rigidity properties of the etale theta classes [EtTh, §2]

Rigidity and indeterminacies: why?

In Bogomolov-Zhang, we made a certain calculation in the ambient group
S̃L2(Z). In that calculation, each γs in isolation is only defined up to
conjugation, but the global geometry allows us to view the collection of
elements αi , βi , γs as itself being synchronized, i.e., well-defined up to a
single overall conjugation.

In IUT, one does not start with an ambient group. Instead, one feeds in
the tempered Frobenioids, whose structure reflects the original geometry
only via rigidity. Indeterminacies correspond to the effect of outer
conjugations from the (nonexistent) ambient group.

Eventually, one must realize5 the interactions among various data.
Indeterminacies are to be reflected in volumes; containments then give
meaningful Diophantine inequalities.

This is (?) like computing with real numbers using interval arithmetic.

5= convert into subsets of some Rn
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Rigidity properties of the etale theta classes [EtTh, §2]

Example: tempered anabelian rigidity

Theorem (EtTh, Theorem 1.6)

Let γ : πtm
1 (Xα) ∼= πtm

1 (Xβ) be an isomorphism of topological groups.

(i) We have γ(πtm
1 (Ÿα)) = πtm

1 (Ÿβ).

(ii) The map γ induces an isomorphism ∆Θ,α
∼= ∆Θ,β compatible with

the Kummer+valuation maps

H1(GK̈∗
,∆Θ,∗ ∼= Ẑ(1)) ∼= (K̈×∗ )∧ → Ẑ (∗ = α, β).

(iii) The map γ induces an isomorphism of cohomology carrying

o×
K̈α
· η̈Θ
α ∈ H1(πtm

1 (Ÿα),∆Θ,α)

to a Gal(Yβ/Xβ) ∼= Z-conjugate of the corresponding classes for β.
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Rigidity properties of the etale theta classes [EtTh, §2]

Example: tempered anabelian rigidity (discussion)

Much of the content of this statement is from “Semi-graphs of
Anabelioids” (see the lectures of Szamuely, Lepage).

In part (iii) of the previous theorem, it is only immediately obvious that
the classes agree after extending scalars from o×

K̈
to K̈×. The reduction of

indeterminacy uses the compatibility with the theta function at the cusps,
where one can use the canonical integral structure.

Are the evaluations at nonzero torsion points relevant for the global
theory?6 Better yet, can they be used to “concretize” some of IUT?

6Response from Mochizuki: the global nature of torsion points is incorporated into
the construction of Hodge theaters, in a manner analogous to the role played in
Bogomolov-Zhang by the cusps P1(Q) for the action of SL2(R) on the upper half-plane.
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Rigidity properties of the etale theta classes [EtTh, §2]

Even more Galois coverings

Hereafter, fix an odd prime `, and assume7 p > 2, K = K̈ , and ` 6 |vK (q).

Proposition (EtTh, Proposition 2.2)

(i) The group E [`](K ) is of order `. Let X → X be the corresponding
Z/`Z-cover (with K-rational cusps).

(ii) There is a unique Z/`Z-cover X of X whose Galois group covers the

−1 eigenspace of multiplication by −1 on π̂1(X )ell.

Put C = X/± 1, C = X/± 1; then X → X is the pullback of a double
cover C → C .

For any cover W of X , let W be the composite of W with C over C .

7It is probably safer to also assume p 6= `.
Kiran S. Kedlaya (UC San Diego) The étale theta function 29 / 37



Rigidity properties of the etale theta classes [EtTh, §2]

Cyclotomic envelopes

For Π � GK a surjection of topological groups, define

Π[µN ] := Π×GK
(Z/NZ(1) o GK ).

There is a tautological surjection staut : Π→ Π[µN ] (also called the
algebraic section).

For ∆ = ker(Π→ GK ), also write

∆[µN ] := ker(Π[µN ] � GK ).
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Rigidity properties of the etale theta classes [EtTh, §2]

Theta environments

The étale theta classes O×K · η̈
Θ give rise (with some effort) to a

(O×K )`-multiple of classes in H1(πtm
1 (Ÿ ),∆Θ/`), and then to classes

η̈Θ ∈ H1(πtm
1 (Ÿ ), `∆Θ).

The (mod N) model mono-theta environment associated to X consists of
these data:

(a) the topological group πtm
1 (Y )[µN ];

(b) the subgroup of Out(πtm
1 (Y )[µN ]) generated by Gal(Y /X ) and

K× → (K×)/(K×)N ∼= H1(GK , µN)

↪→ H1(πtm
1 (Y ), µN)→ Out(πtm

1 (Y )[µN ]);

(c) the µN -conjugacy class of subgroups of πtm
1 (Y )[µN ] containing the

image of the theta section sΘ
Ÿ

= staut
Ÿ

- (any class in the

(`Gal(Y /X )× µ2)-orbit of η̈Θ).
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Rigidity properties of the etale theta classes [EtTh, §2]

Theta environments (continued)

The (mod N) model bi-theta environment X is the same plus:

(d) the µN -conjugacy class of subgroups of πtm
1 (Y )[µN ] containing the

image of the tautological section.

A mono/bi-theta environment is a set of data abstractly isomorphic to a
model mono/bi-theta environment.
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Rigidity properties of the etale theta classes [EtTh, §2]

Rigidity properties

Theorem (EtTh, Corollary 2.19)

Take a model mono-theta environment associated to X .

(a) Cyclotomic rigidity: One reconstructsa the subquotients
(`∆Θ)[µN ] ⊆ πtm

1 (Y
K

)Θ[µN ] ⊆ πtm
1 (Y )Θ[µN ] of πtm

1 (Y )[µN ], and
the two splittings of (`∆Θ)[µN ] � `∆Θ determined by the
tautological and theta sections.

(b) Discrete rigidity: Any “abstract” projective system formed by the
mod N mono-theta environments is isomorphic to the “standard” one.

(c) Constant multiple rigidity: Assume
√
−1 ∈ K and (...)b. From

πtm
1 (X ), one reconstructs the (`Gal(Y /X )× µ2)-orbit of µ` · η̈Θ. In

particular, using (a), any projective system of mono-theta
environments promotes to a system of bi-theta environments.

avia a “functorial group-theoretic algorithm”. Definable sets, anyone?
bA normalization condition on ηΘ on XN (but not `) that I couldn’t parse.
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Tempered Frobenioids [EtTh, §3, §5; IUT1, Example 3.2]

Frobenioids: the standard geometric example

Recall the geometric example from Ben-Bassat’s, Czerniawska’s lectures.

Let V be a proper normal geometrically integral variety over a field k , with
function field K . Fix a collection DK of Q-Cartier prime divisors on L.

Let B(GK ) be the (connected) Galois category. For L ∈ B(GK ), let V [L]
be the normalization of V in L. Let DL be the set of prime divisors of V [L]
which map into DK ; assume these are all Q-Cartier.

Consider the category of pairs (L,L) with L ∈ B(GK ) and L a line bundle
on V [L] represented by a Cartier divisor supported in DL. A morphism
(L,L)→ (M,M) consists of:

a morphism Spec(L)→ Spec(M);

an integer d ≥ 1;

a morphism L⊗d →M|V [L] whose zero locus is a Cartier divisor
supported in DL.
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Tempered Frobenioids [EtTh, §3, §5; IUT1, Example 3.2]

The tempered Frobenioid [EtTh, Example 3.9]

For W a covering of X (or C ), let DW be the Galois category (temperoid)
of connected tempered covers of W . Let Dell

W be the subcategory of covers
unramified over cusps; then Dell

W ↪→ DW admits a left adjoint.

Define a functor ΦW ,0 from DW to monoids:

ΦW ,0(W ′) := lim←−
W ′′/W ′ Galois

Div+(W ′′)Gal(W ′′/W ′).

Let ΦW be the perfection (divisible closure) of Φ0.

For W ′ ∈ Dell
W , let Φell

W ⊆ ΦW be the perf-saturation of the submonoid of
ΦW ,0 where W ′′ only runs over covers for which W ′′ →W ′ →W is the
universal topological cover of some finite étale cover of W (e.g., Y → X ).

For α : W ′′ →W ′ a morphism of coverings, view α as an object of
(DW )W ′ (objects over W ′) and put Dα := (DW )W ′ [α] (objects over α).
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Tempered Frobenioids [EtTh, §3, §5; IUT1, Example 3.2]

Rigidity [EtTh, §5; IUT, Example 3.2]

The following statements (in precise forms) play key roles in IUT (see
Mok’s lecture and subsequent).

Proposition (EtTh, Corollary 3.8)

The p-adic Frobenioid is reconstructed from the tempered Frobenioid.

Theorem (EtTh, Theorem 5.7)

The `-th root étale theta classes are reconstructed (up to
`Z× µ2`-indeterminacy) from the tempered Frobenioid.

Theorem (EtTh, Theorem 5.10)

The rigidities of mono-theta environments (cyclotomic, discrete, constant
multiple) can be asserted in the language of Frobenioids.
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