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L -series of curves

Let C be a (smooth, projective, geometrically irreducible) curve
of genus g over a number field K. The L-series associated to C
is the Dirichlet series given by the Euler product

L(C,s) = ] ] Lp(C,Norm(p)=®)~"
p

in which L,(C, T) is a polynomial to be described shortly.

The product converges absolutely for Real(s) > % conjecturally
with analytic continuation to C and functional equation

s — 2 — s with a specified gamma factor. This is only known in
generalforg=1,K = Q.

Motivating problem: compute enough terms of L(C, s) to
compute (conditionally) L()(C, 1) to high precision. (See
Dokchitser, Computing special values of motivic L-functions.)
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L-polynomials

For p a prime of good reduction for C, with residue field g, the
L-polynomial L,(C, T) is equal to (1 — T)(1 — gT) times the
zeta function

C(CIFq, T) = H (1 _ T[n(x):IFq]),17

XEC]Fq

where x runs over closed points of the scheme Cr,. We also
have

((Cr,, T) = exp (Z T#C(Fqn)> .
n=1

For p of bad reduction, L,(C, T) can be read off from a minimal
regular model of C at p. There are only a finite number of such
p; 'l mostly ignore them. Instead, we ask how to efficiently

compute L,(C, T) for all p of good reduction with Norm(p) < N.
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Distribution of Frobenius eigenvalues

The polynomial L,(C, T) € Z[T] has degree 2g and constant
coefficient 1, and satisfies

1
L,(C, T)=q9T?L, (c, qT> :
Moreover, the roots of L,(C, T) in C have norm g~'/2.
Multiplying by g'/2 gives the normalized roots, which lie on the
unit circle.

Motivating problem: compute enough L,(C, T) to detect the
limiting joint distribution of the normalized roots. Only finitely
many possibilities; more on them later.
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Computing L,(C, T) for g = 1

For C of the form y? = x® + Ax + B, one way to compute
L,(C, T) is to enumerate C(Fg). This requires O(q) steps.

For all but the smallest q, it is faster to examine the group
C(Fq) using Shanks’s baby-step-giant-step method. Since we

know |q + 1 — C(Fg)| < 2q'/?, this requires O(q'/*) steps.

For g very large, one should (after Schoof, Elkies, Atkin) first
compute C(F4) modulo some small primes ¢, by computing the
£-division polynomial (over K) and factoring modulo p. To get
up to g ~ 232 this is only relevant for £ < 5. (In cryptography,
one considers only a single value of g, but it could be as big as
2160 or more.)
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Computing L,(C, T) for g > 1

To compute L,(C, T) by counting points, one must count over
Fgnforn=1,...,g. Better is to balance this against
baby-step-giant-step on the Jacobian group J(C)(Fg).

The analogue of Schoof’s algorithm for g > 1 is much less
tractable (though Gaudry and Schost recently carried it out for
g=2'"_1andg=2).

A better approach uses an explicit p-adic Weil cohomology. For
g =2, K = Q, this is better for g > 232; for hyperelliptic curves
with g = 3, K = Q, the crossover is closer to g > 218.
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Weil cohomology

For p of good reduction, there are several ways to construct a
vector space H'(C) equipped with an endomorphism F, such
that

#C(Fgn) = 1+ q" — Trace(F", H'(C)).

One of these is étale cohomology; this amounts to the dualized
Tate module V,(C)". This is hard to write down concretely.

Another is p-adic (rigid/crystalline) cohomology, which is much
easier to write down concretely (though more difficult to prove
theorems about). In fact, as a vector space, it can be identified
with the algebraic de Rham cohomology Hl; (C); the hard part
is to compute the operator F. This is usually computed using a
method due to Monsky and Washnitzer.
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Example of p-adic cohomology: a hyperelliptic curve

Let C be the hyperelliptic curve y? = P(x) over Q, with P of odd
degree without repeated roots. Then Hl,(C) is equal to the
algebraic de Rham cohomology of the affine curve, which is
freely generated by

x'dx
y

(Remember that 2y dy = P’(x) dx.) By writing down relations in
cohomology like

0=d (A}(/);)) _ A’(;g ax sA(xz);’g) dx

(i=0,...,29—1).

we can explicitly write any 1-form in terms of the basis. Note
that none of this refers explictly to a prime p.
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Example of p-adic cohomology: a Frobenius action

Now pick a prime p; we expect to get a matrix describing the
Frobenius action, with entries in Qp (which we will only compute
to some p-adic accuracy, enough to determine the zeta
function).

One way to compute the Frobenius action is to construct a
continuous endomorphism F of a certain weak p-adic
completion of Q[x, y, z]/(y? — P(x), yz — 1) satisfying

F(x) = xP. This amounts to using Newton iteration to solve for

B 2 _opP(x)P = P(xP)\'/?
F(y) = F(P(x)) —yp<1 pae P PO ) .

This requires é(p) steps. For p large, David Harvey has found
a method requiring O(p'/2) steps; this is what we used.
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Shameless advertisement for p-adic cohomology

p-adic cohomology can be used effectively for computing zeta
functions of high-genus curves and higher-dimensional
varieties, which most other methods cannot.

Sample: Magma can compute the zeta function of a genus 50
hyperelliptic curve over Fj.

Sample: Abbott, K, Roe computed some zeta functions of
quartic K3 surfaces over Fp, for p < 23. (Direct point counts
require @(pzo) steps.) A method of Lauder can probably do
even better.

Sample: Alan Lauder computed L-functions of elliptic surfaces
over F7 to see whether 100% of them have analytic rank 0 or 1.
They do! (In the number field case, a bias towards rank 2
persists as far as has been computed.)
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Eigenvalue distributions for elliptic curves over Q

From now on, we mostly take K = Q and write L,(T) for
L,(C,T).

Curves with complex multiplication

All elliptic curves with CM have the same limiting distribution.
This follows from classical results. (Over a number field K, one

must distinguish between whether or not the CM is defined over
K.)

Conjecture (Sato-Tate)
For any elliptic curve without CM, the limiting distribution of the
normalized trace of Frobenius is the semicircular distribution.

Proven by Clozel, Harris, Shepherd-Baron, and Taylor (2006),
provided E does not have purely additive reduction.

Kiran S. Kedlaya Computing L-series of hyperelliptic curves and distributions of Fro



Unitarized L-polynomials

The polynomial

Lp(T) = Lp(T/V/P) = Z aT

is a real symmetric polynomial whose roots lie on the unit circle.

Every such polynomial arises as the characteristic polynomial
x(T) of some matrix in USp(2g) (2g x 2g complex matrices
that are both unitary and symplectic).

Note that the coefficients satisfy |a;| < (2,9).
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The Katz-Sarnak model

Conjecture (Katz-Sarnak)

For a typical curve of genus g, the distribution of Zp( T)
converges to the distribution of x(T) in USp(29).

“Typical” means curves with large Galois image.
For g = 2 this is equivalent to End(C) = Z (i.e. no CM).

This conjecture is known to be true “on average” for universal
families of hyperelliptic curves (including all genus 2 curves).
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The Haar measure on USp(29)

Let e/, ... e*% denote the eigenvalues of a random matrix
(conjugacy class) in USp(2g). The Weyl integration formula
yields the Haar measure

= ;!(H(Z cos §; — 2cos Gk))2 H <727 sin? 0,-d«9,-> :

j<k J

In genus 1 we have USp(2) = SU(2) and p = %sin2 6d6, which
is the Sato-Tate distribution.

Note that —a; = 3~ 2cos 6 is the trace.
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Moment sequences

The moment sequence of a random variable X is
M[X] = (E[X°],E[X"].E[X?],...).

Provided X is suitably bounded, M[X] exists and uniquely
determines the distribution of X.
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Moment sequences

The moment sequence of a random variable X is
M[X] = (E[X®],E[X"],E[X?],...).

Provided X is suitably bounded, M[X] exists and uniquely
determines the distribution of X.

Given sample values xq, ..., xy for X, the nth moment statistic
is the mean of x/". It converges to E[X"] as N — oc.
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Moment sequences

The moment sequence of a random variable X is
M[X] = (E[X®],E[X"],E[X?],...).

Provided X is suitably bounded, M[X] exists and uniquely
determines the distribution of X.

Given sample values xq, ..., xy for X, the nth moment statistic
is the mean of x/". It converges to E[X"] as N — oc.

If X is a symmetric integer polynomial of the eigenvalues of a
random matrix in USp(29) (e.g. the trace), then M[X] is an
integer sequence (follows from representation theory). Similarly
for any subgroup of USp(2g).
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The typical trace moment sequence in genus 1

Using the measure . in genus 1, for t = —a; we have

E[t"] = 2/ (2cos )" sin 0do.
™ Jo
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The typical trace moment sequence in genus 1

Using the measure . in genus 1, for t = —a; we have
n 2 " neain?
E[t"] = / (2cos #)"sin= 6do.
™ Jo
This is zero when nis odd, and for n = 2m we obtain

1 2m
E[eT) = 2m + 1 (m)

and therefore

Mt = (1,0,1,0,2,0,5,0,14,0,42,0,132,...).

This is sequence A126120 in the OEIS.
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The typical trace moment sequence in genus g > 1

A similar computation in genus 2 yields
M[f] = (1,0,1,0,3,0,14,0,84,0,594,...),
which is sequence A138349, and in genus 3 we have
Mlt] = (1,0,1,0,3,0,15,0,104,0,909,...),
which is sequence A138540.
The nth moment of the trace in genus g is equal to the number

of returning lattice paths in Z9 satisfying xy > xo > --- > x4 >0
at every step (a Weyl chamber) [Grabiner-Magyar].
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The trace moment sequence of a CM curve in genus 1

For an elliptic curve with CM we find that
1/2m
2my _
E[t ]_2<m>’ form >0

yielding the moment sequence
Mit] = (1,0,1,0,3,0,10,0,35,0,126,0, .. .),

whose even entries are A008828.

Where does this fit in a random matrix model?
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Exceptional distributions in genus 2

We surveyed the distributions of the genus 2 curves:
y? = x° + cax* + c3x3 + ox? + X + o,

y? = b®Xx58 + bsx® + bax* + b3x® + box? + by x + by,

with integer coefficients |c¢;| < 64 and |b;| < 16.
More than 100 curves were tested.

We found over 30,000 non-isomorphic curves with exceptional
distributions, about 20 distinct shapes.

All apparently converge to integer moment sequences.
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Genus 2 exceptional distributions (one example)

For a hyperelliptic curve whose Jacobian is the direct product
of two elliptic curves, we compute M[t] = M[t; + t;] via

el + )= 3 (] ElelEg 1
For example, using

M[t]=(1,0,1,0,2,0,5,0,14,0,42,0,132,...),
M[t] =(1,0,1,0,3,0,10,0,35,0,126,0,462, .. .),

we obtain A138551,

M[t] = (1,0,2,0,11,0,90,0,889,0,9723,.. ).
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Analyzing the data in genus 2

Some survey highlights:

» At least 19 distinct distributions were found. This is
exceeds the possibilities for End(C), Aut(C), or MT(C).

» Some obviously correspond to split Jacobians, but many
do not. The same distribution can arise for curves with
split and simple Jacobians.

» Some have positive zero-trace densities, some do not.

» The ay distribution appears to determine the a, distribution.
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Random matrix subgroup model

Conjecture

For a genus g curve C, the distribution of Ly(T) converges to
the distribution of x(T) in some infinite compact subgroup

H C USp(29).

Equality holds if and only if C has large Galois image. Serre
describes a candidate for H using the motivic Galois group of
C.

Serre also shows that this follows from analytic information
(analytic continuation and nonvanishing at the end of the critical
strip) of the L-function and its symmetric powers.
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Representations of genus 1 distributions

The Sato-Tate distribution has H = USp(2g), the typical case.

For CM curves, consider the subgroup of USp(2) = SU(2):

cosf sind icosf isinf
HZ{(—sinH cos@)’(isin& —icose)'ee[o’zﬂ]}'
This is a compact group (the normalizer of SO(2) in SU(2)).

Its Haar measure yields the desired moment sequence. (Over a
field containing the CM, one instead gets just SO(2).)
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Candidate subgroups in genus 2

In genus 2 we have subgroups analogous to the two in genus 1.

Additionally, we consider embeddings of the two genus 1
groups as block diagonal matrices, where we allow “twisting”
by kth roots of unity that lie in a quadratic extension of Q

(so kis 1,2,3,4, or 6).

This restriction corresponds to the requirement that L,(T) have
integer coefficients (and yields integer moment sequences).

See http://arxiv.org/abs/0803.4462 for details.
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A conjecturally complete classification in genus 2

This model yields a total of 24 candidates in addition to USp(4)
itself. Every distribution found in our survey has a distribution
matching one of these candidates.

Initially we found only 19 exceptional distributions, but careful
examination of the survey data yielded 3 missing cases.

Kiran S. Kedlaya Computing L-series of hyperelliptic curves and distributions of Fro



A conjecturally complete classification in genus 2

This model yields a total of 24 candidates in addition to USp(4)
itself. Every distribution found in our survey has a distribution
matching one of these candidates.

Initially we found only 19 exceptional distributions, but careful
examination of the survey data yielded 3 missing cases.

One of the remaining 2 candidates was recently ruled out by
Serre, who suggests that the other is also similarly obstructed.
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Supporting evidence

In addition to the trace moment sequences, for each candidate
subgroup H C USp(4) we may also consider the component
group of H and the dimension of H.

Partitioning the L,(T) data according to suitable constraints on
p yields the predicted component distributions.

The dimension of H predicts the cardinality of the mod ¢ Galois
image. For small £ we estimate this by counting how often the
¢-Sylow subgroup of J(C/Fp) has full rank.
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Open questions

» Consider the zero-trace densities that arise in genus 2.
Can one prove that the list

0,1/6,1/4,1/2,7/12,5/8,3/4,13/16,7/8

is complete in genus 27

» |s there a lattice path interpretation for each of the
identified subgroups in USp(4)? (Probably, using
Littelmann’s work on crystal bases.)

» Can one give a group-theoretic explanation of the list of
subgroups we found? (Some ideas from Serre.)

» What happens in genus 3, and beyond?
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