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L-series of curves

Let C be a (smooth, projective, geometrically irreducible) curve
of genus g over a number field K . The L-series associated to C
is the Dirichlet series given by the Euler product

L(C, s) =
∏
p

Lp(C,Norm(p)−s)−1

in which Lp(C,T ) is a polynomial to be described shortly.
The product converges absolutely for Real(s) > 3

2 , conjecturally
with analytic continuation to C and functional equation
s 7→ 2− s with a specified gamma factor. This is only known in
general for g = 1,K = Q.

Motivating problem: compute enough terms of L(C, s) to
compute (conditionally) L(i)(C,1) to high precision. (See
Dokchitser, Computing special values of motivic L-functions.)
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L-polynomials

For p a prime of good reduction for C, with residue field Fq, the
L-polynomial Lp(C,T ) is equal to (1− T )(1− qT ) times the
zeta function

ζ(CFq ,T ) =
∏

x∈CFq

(1− T [κ(x):Fq ])−1,

where x runs over closed points of the scheme CFq . We also
have

ζ(CFq ,T ) = exp

( ∞∑
n=1

T n

n
#C(Fqn )

)
.

For p of bad reduction, Lp(C,T ) can be read off from a minimal
regular model of C at p. There are only a finite number of such
p; I’ll mostly ignore them. Instead, we ask how to efficiently
compute Lp(C,T ) for all p of good reduction with Norm(p) ≤ N.
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Distribution of Frobenius eigenvalues

The polynomial Lp(C,T ) ∈ Z[T ] has degree 2g and constant
coefficient 1, and satisfies

Lp(C,T ) = qgT 2gLp

(
C,

1
qT

)
.

Moreover, the roots of Lp(C,T ) in C have norm q−1/2.
Multiplying by q1/2 gives the normalized roots, which lie on the
unit circle.

Motivating problem: compute enough Lp(C,T ) to detect the
limiting joint distribution of the normalized roots. Only finitely
many possibilities; more on them later.
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Computing Lp(C,T ) for g = 1

For C of the form y2 = x3 + Ax + B, one way to compute
Lp(C,T ) is to enumerate C(Fq). This requires Õ(q) steps.

For all but the smallest q, it is faster to examine the group
C(Fq) using Shanks’s baby-step-giant-step method. Since we
know |q + 1− C(Fq)| ≤ 2q1/2, this requires Õ(q1/4) steps.

For q very large, one should (after Schoof, Elkies, Atkin) first
compute C(Fq) modulo some small primes `, by computing the
`-division polynomial (over K ) and factoring modulo p. To get
up to q ∼ 232, this is only relevant for ` ≤ 5. (In cryptography,
one considers only a single value of q, but it could be as big as
2160 or more.)
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Computing Lp(C,T ) for g > 1

To compute Lp(C,T ) by counting points, one must count over
Fqn for n = 1, . . . ,g. Better is to balance this against
baby-step-giant-step on the Jacobian group J(C)(Fq).

The analogue of Schoof’s algorithm for g > 1 is much less
tractable (though Gaudry and Schost recently carried it out for
q = 2127 − 1 and g = 2).

A better approach uses an explicit p-adic Weil cohomology. For
g = 2,K = Q, this is better for q > 232; for hyperelliptic curves
with g = 3,K = Q, the crossover is closer to q > 216.
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Weil cohomology

For p of good reduction, there are several ways to construct a
vector space H1(C) equipped with an endomorphism F , such
that

#C(Fqn ) = 1 + qn − Trace(F n,H1(C)).

One of these is étale cohomology; this amounts to the dualized
Tate module V`(C)∨. This is hard to write down concretely.

Another is p-adic (rigid/crystalline) cohomology, which is much
easier to write down concretely (though more difficult to prove
theorems about). In fact, as a vector space, it can be identified
with the algebraic de Rham cohomology H1

dR(C); the hard part
is to compute the operator F . This is usually computed using a
method due to Monsky and Washnitzer.
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Example of p-adic cohomology: a hyperelliptic curve

Let C be the hyperelliptic curve y2 = P(x) over Q, with P of odd
degree without repeated roots. Then H1

dR(C) is equal to the
algebraic de Rham cohomology of the affine curve, which is
freely generated by

x i dx
y

(i = 0, . . . ,2g − 1).

(Remember that 2y dy = P ′(x) dx .) By writing down relations in
cohomology like

0 ≡ d
(

A(x)

ys

)
=

A′(x) dx
ys − sA(x)P ′(x) dx

2ys+2

we can explicitly write any 1-form in terms of the basis. Note
that none of this refers explictly to a prime p.
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Example of p-adic cohomology: a Frobenius action

Now pick a prime p; we expect to get a matrix describing the
Frobenius action, with entries in Qp (which we will only compute
to some p-adic accuracy, enough to determine the zeta
function).

One way to compute the Frobenius action is to construct a
continuous endomorphism F of a certain weak p-adic
completion of Q[x , y , z]/(y2 − P(x), yz − 1) satisfying
F (x) = xp. This amounts to using Newton iteration to solve for

F (y) = F (P(x))1/2 = yp
(

1− pz2p P(x)p − P(xp)

p

)1/2

.

This requires Õ(p) steps. For p large, David Harvey has found
a method requiring Õ(p1/2) steps; this is what we used.
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Shameless advertisement for p-adic cohomology

p-adic cohomology can be used effectively for computing zeta
functions of high-genus curves and higher-dimensional
varieties, which most other methods cannot.

Sample: Magma can compute the zeta function of a genus 50
hyperelliptic curve over F3.

Sample: Abbott, K, Roe computed some zeta functions of
quartic K3 surfaces over Fp for p ≤ 23. (Direct point counts
require Õ(p20) steps.) A method of Lauder can probably do
even better.

Sample: Alan Lauder computed L-functions of elliptic surfaces
over F7 to see whether 100% of them have analytic rank 0 or 1.
They do! (In the number field case, a bias towards rank 2
persists as far as has been computed.)
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Eigenvalue distributions for elliptic curves over Q

From now on, we mostly take K = Q and write Lp(T ) for
Lp(C,T ).

Curves with complex multiplication
All elliptic curves with CM have the same limiting distribution.
This follows from classical results. (Over a number field K , one
must distinguish between whether or not the CM is defined over
K .)

Conjecture (Sato-Tate)
For any elliptic curve without CM, the limiting distribution of the
normalized trace of Frobenius is the semicircular distribution.

Proven by Clozel, Harris, Shepherd-Baron, and Taylor (2006),
provided E does not have purely additive reduction.
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Unitarized L-polynomials

The polynomial

L̄p(T ) = Lp(T/
√

p) =

2g∑
i=0

aiT i

is a real symmetric polynomial whose roots lie on the unit circle.

Every such polynomial arises as the characteristic polynomial
χ(T ) of some matrix in USp(2g) (2g × 2g complex matrices
that are both unitary and symplectic).

Note that the coefficients satisfy |ai | ≤
(2g

i

)
.
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The Katz-Sarnak model

Conjecture (Katz-Sarnak)
For a typical curve of genus g, the distribution of L̄p(T )
converges to the distribution of χ(T ) in USp(2g).

“Typical” means curves with large Galois image.
For g = 2 this is equivalent to End(C) ∼= Z (i.e. no CM).

This conjecture is known to be true “on average” for universal
families of hyperelliptic curves (including all genus 2 curves).
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The Haar measure on USp(2g)

Let e±iθ1 , . . . ,e±iθg denote the eigenvalues of a random matrix
(conjugacy class) in USp(2g). The Weyl integration formula
yields the Haar measure

µ =
1
g!

(∏
j<k

(2 cos θj − 2 cos θk )
)2∏

j

(
2
π

sin2 θjdθj

)
.

In genus 1 we have USp(2) = SU(2) and µ = 2
π sin2 θdθ, which

is the Sato-Tate distribution.

Note that −a1 =
∑

2 cos θj is the trace.
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Moment sequences

The moment sequence of a random variable X is

M[X ] = ( E[X 0],E[X 1],E[X 2], . . .).

Provided X is suitably bounded, M[X ] exists and uniquely
determines the distribution of X .

Given sample values x1, . . . , xN for X , the nth moment statistic
is the mean of xn

i . It converges to E[X n] as N →∞.

If X is a symmetric integer polynomial of the eigenvalues of a
random matrix in USp(2g) (e.g. the trace), then M[X ] is an
integer sequence (follows from representation theory). Similarly
for any subgroup of USp(2g).
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The typical trace moment sequence in genus 1

Using the measure µ in genus 1, for t = −a1 we have

E [tn] =
2
π

∫ π

0
(2 cos θ)n sin2 θdθ.

This is zero when n is odd, and for n = 2m we obtain

E [t2m] =
1

2m + 1

(
2m
m

)
.

and therefore

M[t ] = (1,0,1,0,2,0,5,0,14,0,42,0,132, . . .).

This is sequence A126120 in the OEIS.
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The typical trace moment sequence in genus g > 1

A similar computation in genus 2 yields

M[t ] = (1,0,1,0,3,0,14,0,84,0,594, . . .),

which is sequence A138349, and in genus 3 we have

M[t ] = (1,0,1,0,3,0,15,0,104,0,909, . . .),

which is sequence A138540.

The nth moment of the trace in genus g is equal to the number
of returning lattice paths in Zg satisfying x1 ≥ x2 ≥ · · · ≥ xg ≥ 0
at every step (a Weyl chamber) [Grabiner-Magyar].
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The trace moment sequence of a CM curve in genus 1

For an elliptic curve with CM we find that

E [t2m] =
1
2

(
2m
m

)
, for m > 0

yielding the moment sequence

M[t ] = (1,0,1,0,3,0,10,0,35,0,126,0, . . .),

whose even entries are A008828.

Where does this fit in a random matrix model?
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Exceptional distributions in genus 2

We surveyed the distributions of the genus 2 curves:

y2 = x5 + c4x4 + c3x3 + c2x2 + c1x + c0,

y2 = b6x6 + b5x5 + b4x4 + b3x3 + b2x2 + b1x + b0,

with integer coefficients |ci | ≤ 64 and |bi | ≤ 16.
More than 1010 curves were tested.

We found over 30,000 non-isomorphic curves with exceptional
distributions, about 20 distinct shapes.

All apparently converge to integer moment sequences.
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Genus 2 exceptional distributions (one example)

For a hyperelliptic curve whose Jacobian is the direct product
of two elliptic curves, we compute M[t ] = M[t1 + t2] via

E[(t1 + t2)n] =
∑(

n
i

)
E[t i

1]E[tn−i
2 ].

For example, using

M[t1] = (1,0,1,0,2,0,5,0,14,0,42,0,132, . . .),
M[t2] = (1,0,1,0,3,0,10,0,35,0,126,0,462, . . .),

we obtain A138551,

M[t ] = (1,0,2,0,11,0,90,0,889,0,9723, . . .).
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Analyzing the data in genus 2

Some survey highlights:

I At least 19 distinct distributions were found. This is
exceeds the possibilities for End(C), Aut(C), or MT(C).

I Some obviously correspond to split Jacobians, but many
do not. The same distribution can arise for curves with
split and simple Jacobians.

I Some have positive zero-trace densities, some do not.

I The a1 distribution appears to determine the a2 distribution.
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Random matrix subgroup model

Conjecture
For a genus g curve C, the distribution of L̄p(T ) converges to
the distribution of χ(T ) in some infinite compact subgroup
H ⊆ USp(2g).

Equality holds if and only if C has large Galois image. Serre
describes a candidate for H using the motivic Galois group of
C.
Serre also shows that this follows from analytic information
(analytic continuation and nonvanishing at the end of the critical
strip) of the L-function and its symmetric powers.
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Representations of genus 1 distributions

The Sato-Tate distribution has H = USp(2g), the typical case.

For CM curves, consider the subgroup of USp(2) = SU(2):

H =

{(
cos θ sin θ
− sin θ cos θ

)
,

(
i cos θ i sin θ
i sin θ −i cos θ

)
: θ ∈ [0,2π]

}
.

This is a compact group (the normalizer of SO(2) in SU(2)).

Its Haar measure yields the desired moment sequence. (Over a
field containing the CM, one instead gets just SO(2).)
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Candidate subgroups in genus 2

In genus 2 we have subgroups analogous to the two in genus 1.

Additionally, we consider embeddings of the two genus 1
groups as block diagonal matrices, where we allow “twisting”
by k th roots of unity that lie in a quadratic extension of Q
(so k is 1,2,3,4, or 6).

This restriction corresponds to the requirement that Lp(T ) have
integer coefficients (and yields integer moment sequences).

See http://arxiv.org/abs/0803.4462 for details.
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A conjecturally complete classification in genus 2

This model yields a total of 24 candidates in addition to USp(4)
itself. Every distribution found in our survey has a distribution
matching one of these candidates.

Initially we found only 19 exceptional distributions, but careful
examination of the survey data yielded 3 missing cases.

One of the remaining 2 candidates was recently ruled out by
Serre, who suggests that the other is also similarly obstructed.
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Supporting evidence

In addition to the trace moment sequences, for each candidate
subgroup H ⊆ USp(4) we may also consider the component
group of H and the dimension of H.

Partitioning the L̄p(T ) data according to suitable constraints on
p yields the predicted component distributions.

The dimension of H predicts the cardinality of the mod ` Galois
image. For small ` we estimate this by counting how often the
`-Sylow subgroup of J(C/Fp) has full rank.
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Open questions

I Consider the zero-trace densities that arise in genus 2.
Can one prove that the list

0,1/6,1/4,1/2,7/12,5/8,3/4,13/16,7/8

is complete in genus 2?

I Is there a lattice path interpretation for each of the
identified subgroups in USp(4)? (Probably, using
Littelmann’s work on crystal bases.)

I Can one give a group-theoretic explanation of the list of
subgroups we found? (Some ideas from Serre.)

I What happens in genus 3, and beyond?
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