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Generalities on Sato–Tate groups

L-functions of algebraic varieties

Let k be a number field with absolute Galois group Gk . For each finite
place p of k , choose a decomposition group Gp ⊂ Gk , let Ip ⊂ Gp be the
inertia subgroup, and let Frobp ∈ Gp/Ip be the Frobenius element.

Let X be a smooth proper scheme of dimension d over k . For
i = 0, . . . , 2d , the Weil conjectures imply that the L-polynomial

LX ,i ,p(T ) = det(1− T Frobp,H
i
et(Xk ,Q`)

Ip)

belongs to 1 + TZ[T ].∗

The L-function LX ,i (s) is defined for Real(s)� 0, then (conjecturally)
meromorphically extended to C, by setting

LX ,i (s) =
∏
p

LX ,i ,p(Norm(p)−s)−1.

∗If the weight-monodromy conjecture holds for X , then this does not depend on `.
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Generalities on Sato–Tate groups

L-polynomials of algebraic varieties

Hereafter, we consider only finite places p at which X admits a smooth
model, with mod-p reduction Xp. For q = Norm(p), the zeta function of
Xp has the form

Z (Xp,T ) = exp

( ∞∑
n=1

#Xp(Fqn)
T n

n

)
=

2d∏
i=0

LX ,i ,p(T )(−1)i+1
.

By the Weil conjectures, the roots of LX ,p,i have C-absolute value q−i/2.
It is thus natural to consider the normalized L-polynomial

LX ,i ,p(T ) = LX ,i ,p(Tq−i/2) ∈ 1 + TR[T ]

which has roots on the circle |T | = 1.
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Generalities on Sato–Tate groups

The Sato-Tate group of an abelian variety

Hereafter, we take X = A to be an abelian variety of dimension g and take
i = 1. Then there exist a compact Lie group ST(A) contained in USp(2g)
(the group of unitary symplectic 2g × 2g matrices) and a sequence of
conjugacy classes Fp ∈ Conj(ST(A)) such that

LA,1,p(T ) = det(1− TFp).

For generic A we have ST(A) = USp(2g).

The generalized Sato–Tate conjecture for A is that the Fp are uniformly
distributed† in Conj(ST(A)) for the image of Haar measure. This would
follow from the analytic continuation of “enough” arithmetic L-functions.

†
This is a strictly stronger assertion than the statement that the characteristic polynomials are equidistributed, due to

fusion from ST(A) to USp(2g). We will see later that this fusion can conflate different groups; to separate them one must work
with representations of USp(2g) other than the standard one.

Kiran S. Kedlaya Sato–Tate groups of abelian threefolds Poznań-Szczecin, July 8, 2021 5 / 28
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Generalities on Sato–Tate groups

The case of dimension 1

For A = E an elliptic curve, we have

LA,1,p(T ) = 1− apT + qT 2, |ap| ≤ 2
√
q.

There are three possibilities for ST(A) as a conjugacy class of subgroups of
SU(2) = USp(2).

If E does not have complex multiplication, then ST(A) = SU(2).

If E has complex multiplication by a quadratic field contained in k ,
then ST(A) = SO(2).

If E has complex multiplication by a quadratic field not contained in
k , then ST(A) is the normalizer of SO(2) in SU(2). This is a
disconnected compact Lie group; the component group π0(ST(A)) is
cyclic of order 2.
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Generalities on Sato–Tate groups

Relationship with the motivic Galois group

Under suitable motivic conjectures, the Sato–Tate group can be described
in terms of the motivic Galois group of the 1-motive of A (Serre). This
can be made more concrete and explicit (Banaszak–K) precisely in cases
where the Mumford–Tate conjecture is known (Commelin–Cantoral
Farfán).

In this talk, we will be interested in the case g ≤ 3. Then things simplify
because all Hodge classes on powers of A are linear combinations of
powers of hyperplane classes, so the Mumford–Tate group and the
Sato–Tate group are both controlled by endomorphisms.
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Generalities on Sato–Tate groups

Endomorphisms

Pick an embedding k ↪→ C and equip H1(X an
C ,Q) with the symplectic form

ψ coming from the cup product. For g ≤ 3,‡ we can characterize ST(A)
as the subgroup of USp(2g) consisting of those elements which carry

End(AC)⊗Z Q ⊂ End(H1(X an
C ,C))

to itself via the action of some element of Gk .

From the construction, we have a canonical group isomorphism

π0(ST(A)) ∼= Gal(L/k)

where L is the endomorphism field of A: the minimal field of definition
of all endomorphisms of Ak .

‡
For g > 3, a similar statement holds provided that the Mumford–Tate group is controlled by endomorphisms. Otherwise,

one must replace endomorphisms with the algebra of absolute Hodge cycles.
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Sato–Tate groups of surfaces and threefolds
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Sato–Tate groups of surfaces and threefolds

The case of surfaces

Theorem (Fité–K–Rotger–Sutherland, 2012)

There are 52 conjugacy classes of closed subgroups of USp(4) which occur
as ST(A) for some abelian surface A over some number field K.

This includes 6 options for ST(A)◦; see next slide.

#π0(ST(A)) divides 48 = 24 × 3 (and this value occurs).

The 52 cases correspond to distinct distributions of Lp.

The theorem is quantified over all K . If we require K = Q, then 34
cases occur. If we require K to be totally real, then 35 cases occur.

There is a field K over which all 52 cases occur (Fité–Guitart).

Nothing changes if we restrict to principally polarized abelian surfaces
or even Jacobians. FKRS give explicit genus 2 curves in all cases.
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Sato–Tate groups of surfaces and threefolds

Identity components vs. extensions: the case of surfaces

End(AQ)R ST(A)◦ Extensions Maximal

R USp(4) 1 1
R× R SU(2)× SU(2) 2 1
C× R U(1)× SU(2) 2 1
C× C U(1)× U(1) 5 2
M2(R) SU(2)2 10 2
M2(C) U(1)2 32 2

Total 52 9

Here ∗2 denotes the diagonal embedding.

Warning: if A is geometrically simple, ST(A)◦ can still be decomposable
because it only depends on End(Ak)⊗Z R. For example, if A has CM by a
quartic field K , then End(Ak)⊗Z R ∼= K ⊗Q R ∼= C× C.
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Sato–Tate groups of surfaces and threefolds

The case of threefolds

Theorem (Fité–K–Sutherland, 2021 preprint)

There are 410 conjugacy classes of closed subgroups of USp(6) which
occur as ST(A) for some abelian threefold A over some number field K.

This includes 14 options for ST(A)◦ (Moonen–Zarhin).

#π0(ST(A)) divides§ one of 192 = 26 × 3, 336 = 24 × 3× 7,
432 = 24 × 33 (and these values occur).

The 410 cases correspond to only 409 distinct distributions of Lp.
The two cases that collide have distinct component groups.

We do not know what happens if we restrict K .

We do not know what happens if we require a principal polarization.¶

§
This refines earlier estimates by Silverberg and Guralnick-K, the latter computing the LCM of all values of #π0(ST(A)).

¶
I previously announced that all cases can be realized with a principal polarization; we no longer believe this. Our examples

include polarizations of degree 1, 2, 3, 6.
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Theorem (Fité–K–Sutherland, 2021 preprint)

There are 410 conjugacy classes of closed subgroups of USp(6) which
occur as ST(A) for some abelian threefold A over some number field K.

This includes 14 options for ST(A)◦ (Moonen–Zarhin).

#π0(ST(A)) divides§ one of 192 = 26 × 3, 336 = 24 × 3× 7,
432 = 24 × 33 (and these values occur).

The 410 cases correspond to only 409 distinct distributions of Lp.
The two cases that collide have distinct component groups.

We do not know what happens if we restrict K .

We do not know what happens if we require a principal polarization.¶

§
This refines earlier estimates by Silverberg and Guralnick-K, the latter computing the LCM of all values of #π0(ST(A)).

¶
I previously announced that all cases can be realized with a principal polarization; we no longer believe this. Our examples

include polarizations of degree 1, 2, 3, 6.
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Sato–Tate groups of surfaces and threefolds

Identity components vs. extensions: the case of threefolds

End(AQ)R ST(A)◦ Extensions Maximal

R USp(6) 1 1
C U(3) 2 1

R× R SU(2)× USp(4) 1 1
C× R U(1)× USp(4) 2 1

R× R× R SU(2)× SU(2)× SU(2) 4 1
C× R× R U(1)× SU(2)× SU(2) 5 1
C× C× R U(1)× U(1)× SU(2) 5 2
C× C× C U(1)× U(1)× U(1) 13 3
R×M2(R) SU(2)× SU(2)2 10 2
R×M2(C) SU(2)× U(1)2 32 2
C×M2(R) U(1)× SU(2)2 31 2
C×M2(C) U(1)× U(1)2 122 2

M3(R) SU(2)3 11 2
M3(C) U(1)3 171 12
Total 410 33
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Some notes on the classification for abelian threefolds
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Some notes on the classification for abelian threefolds

An initial subdivision

For each candidate G ◦ for ST(A)◦, candidates for G correspond to
conjugacy classes of finite subgroups of N/G ◦ where N is the normalizer
of G ◦ in USp(6). We distinguish four subcases.

Indecomposable: G ◦ = USp(6),U(3). In these cases, the only
options are USp(6),U(3),N(U(3)).

Split product: G ◦ factors as a nontrivial product G ◦1 × G ◦2 with no
shared factors between the two sides (i.e., U(1)× ∗ × SU(2) or
∗ × ∗2). In these cases, N splits as N1 × N2, so we can reduce to the
classification for elliptic curves and abelian surfaces.

Triple products: G ◦ = SU(2)× SU(2)× SU(2),U(1)× U(1)× U(1).
In these cases, N/G ◦ is finite.

Triple diagonals: G ◦ = SU(2)3,U(1)3. In these cases, N/G ◦ is
infinite, but there is a bound on the order of elements in N/G ◦

coming from the rationality condition (see below).
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Some notes on the classification for abelian threefolds

The upper bound: a group-theoretic classification

For each candidate G ◦ for ST(A)◦, we identify all extensions of G ◦ within
USp(6) satisfying the rationality condition: for every representation of
USp(6), the average trace on each coset of G ◦ is in Z.

This gives the correct upper bound except when G ◦ includes multiple
factors of U(1), in which case one must rule out some cases using
Shimura’s theory of CM types. (For G ◦ = U(1)× U(1)× U(1),
[N : G ◦] = 48 but [G : G ◦] ≤ 8.)

Most of the work occurs when G ◦ = U(1)3; in this case N = U(3) o C2.
More on this later.
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Some notes on the classification for abelian threefolds

The upper bound: a group-theoretic classification

For each candidate G ◦ for ST(A)◦, we identify all extensions of G ◦ within
USp(6) satisfying the rationality condition: for every representation of
USp(6), the average trace on each coset of G ◦ is in Z.

This gives the correct upper bound except when G ◦ includes multiple
factors of U(1), in which case one must rule out some cases using
Shimura’s theory of CM types. (For G ◦ = U(1)× U(1)× U(1),
[N : G ◦] = 48 but [G : G ◦] ≤ 8.)

Most of the work occurs when G ◦ = U(1)3; in this case N = U(3) o C2.
More on this later.

Kiran S. Kedlaya Sato–Tate groups of abelian threefolds Poznań-Szczecin, July 8, 2021 16 / 28
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Some notes on the classification for abelian threefolds

The lower bound: realization by PPAVs

By base extension, for each G ◦ it suffices to realize each maximal
candidate for G using some abelian threefold over Q.

For G ◦ indecomposable, use generic hyperelliptic and Picard curves.

For G ◦ a split product, use products of lower-dimensional examples.
In all cases except G ◦ = U(1)× U(1)2, we also find explicit examples
of genus 3 curves.

For G ◦ = SU(2)× SU(2)× SU(2),U(1)× U(1)× U(1), SU(2)3, we
find explicit examples of genus 3 curves.

For G ◦ = U(1)3, we realize G by twisting either the cube of an elliptic
curve with CM by an imaginary quadratic field M, or an isogenous
abelian variety. The twist uses a Galois cocycle valued in a subgroup‖

of GL(3, oM) with projective image G/G ◦.

‖
These are almost all complex reflection groups, which makes it easy to solve the embedding problem needed to construct

the cocycle. To make explicit examples, we use the LMFDB tables of number fields.
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Some notes on the classification for abelian threefolds

The lower bound: realization by PPAVs

By base extension, for each G ◦ it suffices to realize each maximal
candidate for G using some abelian threefold over Q.

For G ◦ indecomposable, use generic hyperelliptic and Picard curves.

For G ◦ a split product, use products of lower-dimensional examples.
In all cases except G ◦ = U(1)× U(1)2, we also find explicit examples
of genus 3 curves.

For G ◦ = SU(2)× SU(2)× SU(2),U(1)× U(1)× U(1), SU(2)3, we
find explicit examples of genus 3 curves.

For G ◦ = U(1)3, we realize G by twisting either the cube of an elliptic
curve with CM by an imaginary quadratic field M, or an isogenous
abelian variety. The twist uses a Galois cocycle valued in a subgroup‖

of GL(3, oM) with projective image G/G ◦.

‖
These are almost all complex reflection groups, which makes it easy to solve the embedding problem needed to construct

the cocycle. To make explicit examples, we use the LMFDB tables of number fields.

Kiran S. Kedlaya Sato–Tate groups of abelian threefolds Poznań-Szczecin, July 8, 2021 17 / 28
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Adventures in SU(3)

The case G ◦ = U(1)3

We classify groups G which can occur as the Sato–Tate group of an
abelian threefold with G ◦ = U(1)3. The normalizer N of G ◦ in USp(6) is

U(3) o C2 =

{(
A 0

0 A

)}
o 〈J〉, J =

(
0 I3
−I3 0

)
.

We identify finite subgroups of H = N/G ◦ = U(3)/U(1)3 o C2 satisfying(
A 0

0 A

)
∈ H ∩ U(3)/U(1)3 =⇒ |Trace(A)|2 ∈ Z;

this is the rationality condition for the representation ∧2C6 of USp(6).

The inclusion SU(3) ⊂ U(3) induces an isomorphism

PSU(3) = SU(3)/µ3
∼= U(3)/U(1)3.

We may thus assume that H ⊂ SU(3)/µ3 o C2, then replace H with its
inverse image in SU(3) o C2 (and remember that it contains µ3).
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Adventures in SU(3)

The finite subgroups of SU(3)

The finite subgroups of SU(3) containing µ3 were classified in 1916 by
Blichfeldt–Dickson–Miller. They come in four infinite families:

(A) abelian groups, which conjugate into the diagonal torus;

(B) subgroups of SU(2) which are projectively Dn,A4, S4,A5;

(C) groups projectively of the form ∗o C3;

(D) groups projectively of the form ∗o S3;

together with six exceptional cases which we label by their projective
orders:

E (36),E (72),E (216),E (60),E (360),E (168).

Of these, the first three are an increasing sequence of solvable groups
ending with the Hessian group; the last three have simple projective
images A5,A6,PSL(2, 7).
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together with six exceptional cases which we label by their projective
orders:

E (36),E (72),E (216),E (60),E (360),E (168).

Of these, the first three are an increasing sequence of solvable groups
ending with the Hessian group; the last three have simple projective
images A5,A6,PSL(2, 7).
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Adventures in SU(3)

The rationality condition for cyclic groups

To impose the (restricted) rationality condition for cyclic groups, it is
enough to treat the group generated by a diagonal matrix Diag(a, b, c)
where a, b, c are roots of unity with abc = 1. The rationality condition for
∧2C6 implies that |an + bn + cn|2 ∈ Z. For x = a/b, y = b/c , z = c/a,
this becomes(

xn + x−n
)

+
(
yn + y−n

)
+
(
zn + z−n

)
∈ Z (n = 1, 2, . . . ).

We resolve the case n = 1 using the classification of short additive relations
among roots of unity (Mann, W lodarski, Conway–Jones). In particular,
either (a + b)(b + c)(c + a) = 0 or am = bm = cm = 1 for some m ≤ 90.

We then formally deduce the general case. We find that
am = bm = cm = 1 for some m ≤ 36.

Kiran S. Kedlaya Sato–Tate groups of abelian threefolds Poznań-Szczecin, July 8, 2021 21 / 28
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Adventures in SU(3)

The rationality condition for noncyclic groups

From the previous calculation, we obtain a finite set S of conjugacy classes
in SU(3) with the property: a finite subgroup of SU(3) satisfies the
(restricted) rationality condition iff it is contained in the union over S .

At this point, it is “straightforward” to step through the classification of
finite subgroups of SU(3) to impose rationality. We obtain 63 groups in all.
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Adventures in SU(3)

Extensions: standard, split, and nonsplit

Fix a subgroup H ⊂ SU(3) in our classification. How can it occur as the
intersection with SU(3) of a finite subgroup of SU(3) o C2?

In our classification, we construct explicit representatives such that in all
but one case, H is stable under complex conjugation. We thus get one
extension of the form H ∪ JH, which we call standard.

We then classify additional extensions by computing the normalizer NH of
H in SU(3). We call these split or nonsplit according to whether they are
of the form H o C2. (Warning: an extension group is not uniquely
determined by its extension class!)

For any given H, we obtain at most one extension of each type (standard,
split, nonsplit)
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Adventures in SU(3)

Table of results

Case H J Js Jn Total

Abelian groups 22 22 15 9 60
Extensions by C2 18 18 12 0 48
Exceptional groups from SU(2) 6 5 4 0 15
Extensions by A3 7 7 5 0 19
Extensions by S3 6 6 0 0 12
Solvable exceptional groups 3 3 0 1 7
Simple exceptional groups 1 1 0 0 2

Total 63 62 36 10 171

Numbers of finite subgroups of SU(3) o C2 accounted for at the various stages of
the classification. The columns H, J, Js , Jn count subgroups of SU(3), standard
extensions, split nonstandard extensions, and nonsplit nonstandard extensions.
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Complements

Moment statistics

For G a closed subgroup of USp(6) and e1, e2, e3 nonnegative integers, the
moment Me1,e2,e3 of G can be interpreted either as:

the expected value of ae1
1 ae2

2 ae3
3 where 1 + a1T + · · ·+ T 6 is the

charpoly of a random element of G ;

the dimension of the G -fixed subspace of
(C6)⊗e1 ⊗ (∧2C6)⊗e2 ⊗ (∧3C6)⊗e3 . (This is a nonnegative integer!)

For our 410 groups, we obtain 409 distinct collections∗∗ of moments. The
collision comes from two cases with identity component U(1)3 whose π0’s
are distinct groups of order 54 with a common index-2 subgroup.

∗∗It suffices to consider triples with e1 + e2 + e3 ≤ 6.
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Complements

Other statistics

An alternative to moments was suggested by Shieh: for a given
representation V , compute the dimension of the G -fixed subspace of
V ⊗ V . These diagonal character norms give statistics with better
convergence than moments.

When comparing to L-function data, it is useful to also record the density
of points on which a1, a2, a3 are constant; e.g., for a non-CM elliptic curve,
a1 = 0 with density 1/2. (By parity, only the value 0 can occur for a1, a3

with positive density, but a2 can take other integer values.)
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Complements

Averaging over Sato–Tate groups

Let G be a closed subgroup of USp(6). We say G is of central type if G
can be written as 〈G ◦,H〉 for some finite subgroup H such that for each
h ∈ H, the map

G ◦ → R[T ], g 7→ det(1− ghT )

is a class function.

In this case, averaging a class function over a component of G can be
achieved by averaging a related class function over G ◦. We can then use
the Weyl character formula again to do the averaging.

This leaves a few sticky cases, notably N(U(3)). In this case we use a
method of Lee–Oh based on work of Bump–Gamburd. More on this in
Francesc’s talk...
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